
Practical 4: Reinforcement Learning

Group 11: Rohan Thavarjah / Jonne Saleva / Anthony Soroka
rthavarajah@g. / jonnesaleva@college. / atsoroka@g.

April 28, 2017

1 Technical Approach

The objective is to build an agent that learns to play Swingy Monkey - a game similar to the 2013
hit Flappy Bird. The agent requires a framework to learn and act in its world. We naturally use a
Markov Decision Process (MDP) as the framework, with the MDP consisting of:

• A set of states S, and a set of actions A

• A reward function r : S× A→ R

• A transition model p(s′|s, a), ∀s, s ∈ S, a ∈ A

From this framework the agent learns a policy π, mapping states to actions, i.e. π : S→ A.

If we knew the reward function and transition model (i.e. understood the dynamics of the world),
we could consider using value or policy iteration to determine an optimal policy (though con-
vergence would take a significant amount of time given the size of the state space). Similarly,
model-based RL is not an option given that the transition model for the world would be too large.

Hence we use model-free reinforcement learning. We specifically consider both the on-policy
SARSA (State-Action-Reward-State-Action) approach and off-policy Q-Learning approach, with
update functions as per below:

SARSA: ws,a ← (1− η)ws,a + η[r + γQ(s′, π(s′); w)]

Q-Learning: ws,a ← (1− η)ws,a + η[r + γ max
a′∈A

Q(s′, π(s′); w)]

While the above explains how and why we utilize the MDP framework, we still need to determine
how to represent the world. The states space, after all, is effectively continuous. To reduce this
complexity, we discretize the positional state representation. We break the 600 x 400 pixel screen
into square bins using the parameter PIX BINSIZE. We limit the positional components of the
state space to a horizontal and vertical component. The horizontal positional component records
the horizontal bin distance of the monkey to the upcoming tree (see Figure 1):

1



state[’tree’][’dist’] // PIX BINSIZE

The vertical positional component captures the vertical bin distance between the monkey’s feet
the bottom tree stub:

(state[’monkey’][’bot’] - state[’tree’][’bot’])// PIX BINSIZE

We acknowledge this ignores 1) how close the monkey is from the top or bottom of the screen re-
gardless of the tree’s position 2) the location of the top tree stub. We hypothesize the ideal policy
has the monkey hovering at some height above the bottom trunk. Additionally we believe there
would be marginal benefit of expanding the vertical state representation given 1) our vertical po-
sition estimate does offer some proxy for the other vertical positional information 2) a larger state
space requires more exploration (i.e. train time).

state[’tree’][’dist’]

state[’tree’][’top’]

state[’tree’][’bot’]
state[’monkey’][’bot’]

state[’monkey’][’top’]

state[’monkey’][’vel’]

state[’score’]

Figure 1: Positional Components of State Representation

Next we incorporate the dynamics of the game into the state space. The monkey’s vertical velocity
can generally range in integer values between -50 and 50. In aims of limiting the number of states
so we can learn more a generalizable policy, we discretize the velocity states into 5 bins:

Velocity Bin -2 -1 0 1 2

Velocity Range ≤ -15 (-15,0) [0,15) [15,30) ≥ 30

Table 1: Discretizing Velocity

Unlike in the original MDP Model 1, Model 2 incorporates gravity in the state representation. Rec-
ognizing that the the gravity parameter randomly rotates between two values (either 1 or 4), Model
2’s agent learns gravity by taking no action (not jumping) on the first time step and interpreting
its velocity after the first time step to deduce the gravity parameter.

With the set of states now defined, the MDP next requires a set of Actions A and reward function
r. These are essentially provided in the game as:

A = {0 : Do Nothing, 1 : Jump}

r(s, a) = {Pass Tree→ +1, Hit Tree→ −5, Hit Top/Bottom→ −10, Otherwise→ 0

2



Lastly, we set the remaining reinforcement learning parameters: the discount rate, the learning
rate, and the exploration rate. γ is the discount rate which we originally set to .9. η is the learning
rate, weighting how much to adjust previous learned Q-values due to recent experiences. When
the agent hasn’t experienced state s and action a many times before, we want to amend the Q(s, a)
significantly, and less so as the agent gains experience. Hence, we set η to:

η =
1

K(s, a)
, where K(s, a) = Counts of experiencing s, a

Q-Learning uses ε-greedy policy to balance exploitation (choosing believed best course of action)
with exploration (trying new actions out). Similar to η, we reduce the exploration rate ε based off
how many times the agent has encountered the greedy state action pair. Specifically we use:

εutil =
εparam

K(s, a)
, where K(s, a) = Counts of experiencing greedy s, a

εparam is our parametrization (originally set to .01), and εutil the actual probability of exploration.

2 Results

In order to find optimal hyperparameters, we conducted several experiments. Specifically, we
varied the gamma values, the size of the bin in pixels, as well as the learning method (Q-learning
vs. SARSA) and gravity (on/off). We limited ourselves to these parameters with computational
concerns in mind, since we were optimizing with plain grid search. We noticed several patterns
that hold throughout regardless of parameter settings. For example, most runs seem to end in
low scores, but the maximum scoring ability of Swingy Monkey seems to increase. This creates
a ”funnel” pattern in the score traceplots, visualized in Figure 2. Swingy Monkey also seems
to reach scores greater than 100 in everything except the SARSA - No gravity condition, which
speaks to the strength of the methodology used.

Figure 2: Score of Swingy Monkey vs. Iteration. The different plots correspond to different learn-
ing type / gravity settings.

Overall, there is a lot of noise in the results for each hyperparameter setting, as can be seen in the
Figures 3 and 4 below. It is clear, however, that with gravity activated, Swingy Monkey seems to
do better on average, at least in terms of the maximum score attained in 5 epochs of 100 runs each.

3



Figure 3: Average max score ± standard deviation. Left: SARSA, Right: Q-Learning

Figure 4: Bar plot of average Max Score reached by Swingy Monkey. Note how the effect of gravity
is nearly uniformly positive.

Given more time, we would have wanted to explore the additional effect of running Swingy Mon-
key for more than 100 iterations.

3 Discussion

With more time, we would have liked to study balancing train time versus maximizing eventual
performance. Specifically, we hypothesize that an agent in a larger, more complicated state space
will take longer to reach reasonable performance, but after significant training will eventually
outperform an agent using a simpler state representation. We used both experimentation and rea-
soning to decide on our state representation, balancing how quickly we wanted the agent to learn
and maximizing eventual performance. Formally analyzing how adding complexity to the state
representation affects these two outcomes could be very insightful.

Moreover, we would have liked to use neural networks for function approximation to represent
the value function or the Q-function. DeepMind Techologies illustrated how Convolutional Neu-
ral Networks can be applied to Atari games, and their research encourages applying a similar
approach to Swingy Monkey.

4


