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1) Introduction

The purpose of this practical was to identify the presence of malicious software in computer
systems. This presence was to be detected by analyzing logs of computer activity in
XML format. In particular, the task is to learn to classify a particular XMl document as
representing a particular class of malware, or alternatively designate it as clean.

In addition to the clean class, there are 14 types of malware found in the data set:

Agent Magania

AutoRun Poison
FraudLoad Swizzor
FraudPack Tdss

Hupigon VB
Krap Virut
Lipler ZBot

We obtain a near-80% classification accuracy on this task, using a logistic regression baseline
and additional ensemble methods, random forests and xgboost.

2) Technical approach

We hypothesize that malware classes are characterized by a fingerprint-like set of system
calls. We flesh our reasoning out in the discussion section but in brief, our technical approach
is guided by searching for a model best suited to identifying these fingerprints.

Logistic Regression

First, to establish a sound baseline, we run a multiclass logistic regression using the unigram
features along with the standard features, and select out L2 regularization parameter via
5-fold cross validation.

When regularization is very strong (low c¢), we attain a biased model with low accuracy but
similar performance on the training vs validation sets. When regularization is weak (high c),
model variance becomes an issue and we begin to overfit the data. We observe that accuracy
on the validation set is compromised (though we had hoped it would look more parabolic in
shapel).

However, a logistic regression on unigrams is unable to capture how a group of system calls
interact to behave maliciously. We have two options: (1) we can explicitly generate features



to check for the simultaneous presence of different types of system calls (2) we can turn from
logistic regression to random forests, a model that is suited to generating these interactions
automatically.

Random Forests

With this in mind, we turn to random forests as a method. One of the clear advantages
of using random forests over explicit feature generation is that RF takes care of some
feature engineering for us. In particular, we do not know how many system calls interact to
characterize malware. Indeed, the number of system calls required may differ by malware
category (eg. AutoRun involves {Order A, Order B} but Swizzor involves {Order A,
Order B and Order C}).

Therefore we opt for the second approach and abandon logistic regression in favor of random
forests. When tuning the random forest classifier we run through a number of options. A
random forest is an ensemble of multiple trees and we experiment with the maximum depth
of each one in the range [1,5,10,20,50,100].

As with very strong regularization for logistic regression, a random forest with low max
depth is likely to be biased manifesting in low accuracy. Unlike logistic regression, when
we ramp up max depth, although each tree is likely to be vulnerable to high variance, by
averaging many such trees, we mitigate their individual variance. We opt for a max depth
= 20.

We experiment with other random forest parameters, including the number of trees
[1,5,10,20,50,100], using entropy vs gini as the splitting criterion and the number
of features used when looking for the best split [n_features, sqrt, log2]. We use 20
trees, gini and n_features finding that other configurations have a marginal impact on
validation performance (omitted for conciseness). The parameter we thought would be most
promising was “class_weight”.

We observe that the class distribution is highly asymmetric. The “not malware” class appears
over 50% of the time whereas “Poison” appears <1%. We experiment with the balanced
mode which weights classes according to their frequency. This however caused our validation
accuracy to dip from 0.89 to 0.88.

Given that when our performance is judged, correctly classifying the most frequent class
is given the same weight as correctly classifying a rare one we did not explore further.
However, if for instance identifying a particularly pernicious form of malware is of interest,
this parameter would warrant further investigation.

Finally, we consider counting pairs of adjacent calls (bigrams). We juxtapose performance
with bigrams and performance with interactions. We hypothesize that interactions are better
suited to malware classification as order is probably unnecessarily constraining (it doesn’t so
much matter if order A immediately follows order B. What matters is if order A and order
B occur anywhere in the same file). Indeed, we yield better results on the kaggle test set
with interactions (0.794 vs 0.784) and favor them over bigrams in the final model.

Extreme Gradient Boosting (xgboost)
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Figure 1: 5-fold cross-validation training vs validation accuracy for parameter tuning

Finally, inspired by our results using an ensemble method, we turn to another famous learning
algorithm — xgboost. Our motivation for using this algorithm comes from its ability to
both (i.) reduce variance without increasing bias too much, and (ii.) since the algorithm
automatically re-weights misclassified points — a trait certainly desirable for us, given that
our data set contains very rarely appearing data.

For tuning, we simply opt to tune the number of boosted trees, and learning rate:
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Figure 2: xgboost. (a) Accuracy vs. learning rate (b) Accuracy vs. no. of parameters

Overall, xgboost does not improve a whole lot with tuning on the dev set — in hindsight
max_depth would have been a good parameter to examine more. Perhaps the unresponsive-
ness to tuning also results from our accuracy already being so high!



3) Results

Happily, both Random Forest and XGBoost outperformed the Bigram Baseline Model, as
can be seen below:

Model Leaderboard score
Random Forest (enhanced features) 0.794
xgboost (enhanced) 0.788
Bigram baseline 0.781
Logistic Regression (enhanced) 0.722
Logistic Regression (given features) 0.601
Most Frequent Class Baseline 0.414

4) Discussion

We begin by working with the three features given to us i) first_call_feat (a one-hot
encoded vector of the first system call), ii) last_call_feat (a one-hot encoded vector of the
last system call), and iii) num_system_call (count of system calls). For a baseline model, we
apply logistic regression with 5-fold cross validation to tune the L2 regularization parameter.
Using this simple feature space and logistic regression achieves 57% test accuracy.

We next explore more sophisticated feature extraction. First, after reviewing the Global
Feature Dictionary, it becomes evident that the first_call_feat is adding no value as the
first call is always “load image” in the training data. We amend this feature to capture the
second system call instead. Additionally, besides knowing the total number of system calls,
having the counts of each specific system call should prove valuable as well (the unigrams
discussed in the technical approach).

With our improved feature space, we reapply Logistic Regression. This leads to an im-
proved test accuracy of 72.2%. At this point we start to consider investigating alternative
classification methodologies.

Given that logistic regression is linear, and we expect non-linearity in our basis we consider
non-linear classifiers. Hence we next apply Random Forest - a decision tree-based classi-
fier. For the reasons discussed in our technical approach, Random Forest lives up to our
expectations, and improves our test accuracy to nearly 80%, surpassing the Bigram Baseline.

Seeing the significant improvement the classification technique can lead to, we investigate
another non-linear classifier: XGBoost. The algorithm fits a new model to the residuals of the
previous one, re-weighting the points on which there was high error. After tuning, XGBoost
performed similarly to Random Forest, surpassing the Bigram Baseline and achieving a test
accuracy of nearly 79%.

With more time we would like to investigate enhancing our feature space. Specifically, we
considered using a deque data structure to record the first and last n features rather (for
example recording the first 5 and last 5 features) and localizing system calls by thread.
Finally, we would like to apply deep learning to this problem given their noteworthy ability
to detect patterns from complicated and/or imprecise data similar to this problem.
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