
f x y xyThe function (,) = sin plotted by computer

−

load

2 Functions

(load "functions.scm")

(functions)

functional
programming.

function.

f x x f
argument x

returns

not

17

Throughout most of this book we’re going to be using a technique called
We can’t give a complete definition of this term yet, but in this chapter we

introduce the building block of functional programming, the

Basically we mean by “function” the same thing that your high school algebra teacher
meant, except that our functions don’t necessarily relate to numbers. But the essential
idea is just like the kind of function described by () = 6 2. In that example, is
the name of a function; that function takes an called , which is a number, and

some other number.

In this chapter you are going to use the computer to explore functions, but you
are going to use the standard Scheme notation as in the rest of the book. That’s
because, in this chapter, we want to separate the idea of functions from the complexities
of programming language notation. For example, real Scheme notation lets you write
expressions that involve more than one function, but in this chapter you can only use
one at a time.

To get into this chapter’s special computer interface, first start running Scheme as
you did in the first chapter, then type

to tell Scheme to read the program you’ll be using. (If you have trouble loading the
program, look in Appendix A for further information about .) Then, to start the
program, type

boldface

Arithmetic

+
3
5

sqrt
144

you computer

18 Part I Introduction: Functions

lightface

functions exit

+ - * / sqrt quotient remainder
random round max expt

* If you get no response at all after you type , just press the Return or Enter key
again. Tell your instructor to read Appendix A to see how to fix this.

Function:
Argument:
Argument:

The result is: 8

Function:
Argument:

The result is: 12

Function: /
Argument: 1
Argument: 987654321987654321

Function: remainder
Argument: 12
Argument: -5

(functions)

You’ll then be able to carry out interactions like the following.* In the text below we’ve
printed what type in and what the types in printing:

As you can see, different functions can have different numbers of arguments. In these
examples we added two numbers, and we took the square root of one number. However,
every function gives exactly one result each time we use it.

To leave the program, type when it asks for a function.

Experiment with these arithmetic functions: , , , , , , ,
, , , and . Try different kinds of numbers, including integers

and numbers with decimal fractions. What if you try to divide by zero? Throughout this
chapter we are going to let you experiment with functions rather than just give you a
long, boring list of how each one works. (The boring list is available for reference on
page 553.)

Try these:

Play with It

Thinking about What You’ve Done

functions.

function

22 Part I Introduction: Functions

number-of-arguments

first
(the long and winding road) every

keep even? odd?
number?

Function: number-of-arguments
Argument: equal?

The result is: 2

Function: every
Argument: first
Argument: (the long and winding road)

Function: keep
Argument: vowel?
Argument: constantinople

The range of is nonnegative integers. But its domain is
For example, try using it as an argument to itself!

If you’ve used other computer programming languages, it may seem strange to use a
function—that is, a part of a computer program—as data. Most languages make a sharp
distinction between program and data. We’ll soon see that the ability to treat functions
as data helps make Scheme programming very powerful and convenient.

Try these examples:

Think carefully about these. You aren’t applying the function to the sentence
; you’re applying the function to a function

and a sentence.

Other functions that can be used with include and , whose
domains are the integers, and , whose domain is everything.

If you’ve been reading the book but not trying things out on the computer as you go
along, get to work! Spend some time getting used to these ideas and thinking about
them. When you’re done, read ahead.

The idea of is at the heart of both mathematics and computer science. For
example, when mathematicians want to think very formally about the system of numbers,
they use functions to create the integers. They say, let’s suppose we have one number,

first keep

expt

keep every

function f x x
f f

process
transformation

domain range

function as process.

function as object.

higher-order functions

Chapter 2 Functions 23

called zero; then let’s suppose we have the given by () = + 1. By applying that
function repeatedly, we can create 1 = (0), then 2 = (1), and so on.

Functions are important in computer science because they give us a way to think
about —in simple English, a way to think about something happening, something
changing. A function embodies a of information, taking in something
we know and returning something we didn’t know. That’s what computers do: They
transform information to produce new results.

A lot of the mathematics taught in school is about numbers, but we’ve seen
that functions don’t have to be about numbers. We’ve used functions of words and
sentences, such as , and even functions of functions, such as . You can
imagine functions that transform information of any kind at all, such as the function
French(window)=fenêtre or the function capital(California)=Sacramento.

You’ve done a lot of thinking about the and of functions. You can add
two numbers, but it doesn’t make sense to add two words that aren’t numbers. Some
two-argument functions have complicated domains because the acceptable values for one
argument depend on the specific value used for the other one. (The function is
an example; make sure you’ve tried both positive and negative numbers, and fractional
as well as whole-number powers.)

Part of the definition of a function is that you always get the same answer whenever
you call a function with the same argument(s). The value returned by the function,
in other words, shouldn’t change regardless of anything else you may have computed
meanwhile. One of the “functions” you’ve explored in this chapter isn’t a real function
according to this rule; which one? The rule may seem too restrictive, and indeed it’s
often convenient to use the name “function” loosely for processes that can give different
results in different circumstances. But we’ll see that sometimes it’s important to stick
with the strict definition and refrain from using processes that aren’t truly functions.

We’ve hinted at two different ways of thinking about functions. The first is called
Here, a function is a rule that tells us how to transform some

information into some other information. The function is just a rule, not a thing in
its own right. The actual “things” are the words or numbers or whatever the function
manipulates. The second way of thinking is called In this view, a function
is a perfectly good “thing” in itself. We can use a function as an argument to another
function, for example. Research with college math students shows that this second idea is
hard for most people, but it’s worth the effort because you’ll see that
(functions of functions) like and can make programs much easier to write.

2.1

2.2

Exercises

* Yes, there is an English word. It has to do with astronomy.

haven’t
composition

Use the program for all these exercises.

24 Part I Introduction: Functions

peel

functions

word now here
sentence now here
first blackbird
first (blackbird)

3 4 7
every (thank you girl) (hank ou irl)
member? e aardvark
member? the #t
keep vowel? (i will)
keep vowel? eieio
last ()

last (honey pie) (y e)
taxman aa

vowel?

As a homey analogy, think about a carrot peeler. If we focus our attention on the
carrots—which are, after all, what we want to eat—then the peeler just represents a
process. We are peeling carrots. We are applying the function to carrots. It’s the
carrot that counts. But we can also think about the peeler as a thing in its own right,
when we clean it, or worry about whether its blade is sharp enough.

The big idea that we explored in this chapter (although we used it a lot in
Chapter 1) is the of functions: using the result from one function as an argu-
ment to another function. It’s a crucial idea; we write large programs by defining a bunch
of small functions and then composing them with each other to produce the desired
result. We’ll start doing that in the next chapter, where we return to real Scheme notation.

In each line of the following table we’ve left out one piece of information. Fill in
the missing details.

function arg 1 arg 2 result

none
none

*
none

What is the domain of the function?

2.3

2.4

2.5

2.6

2.7

2.8

2.9

f commutative f a b f b a a b

f associative f f a b c f a f b c a
b c

Chapter 2 Functions 25

appearances

item

+ - / <= < = >= > and appearances
butfirst butlast cos count equal? every even? expt first if item
keep last max member? not number? number-of-arguments odd? or
quotient random remainder round sentence sqrt vowel? word

+ word

* /

One of the functions you can use is called . Experiment with it, and
then describe fully its domain and range, and what it does. (Make sure to try lots of cases.
Hint: Think about its name.)

One of the functions you can use is called . Experiment with it, and then
describe fully its domain and range, and what it does.

The following exercises ask for functions that meet certain criteria. For your conve-
nience, here are the functions in this chapter: , , , , , , , , , ,

, , , , , , , , , , ,
, , , , , , , , ,

, , , , , , , and .

List the one-argument functions in this chapter for which the type of the return
value is always different from the type of the argument.

List the one-argument functions in this chapter for which the type of the return
value is sometimes different from the type of the argument.

Mathematicians sometimes use the term “operator” to mean a function of two
arguments, both of the same type, that returns a result of the same type. Which of the
functions you’ve seen in this chapter satisfy that definition?

An operator is if (,) = (,) for all possible arguments and .
For example, is commutative, but isn’t. Which of the operators from Exercise 2.7
are commutative?

An operator is if ((,),) = (, (,)) for all possible arguments ,
, and . For example, is associative, but not . Which of the operators from Exercise

2.7 are associative?

