about summary refs log tree commit diff stats
BranchCommit messageAuthorAge
bongkeys: st-xterm compatAcid Bong3 years
masterbump version to 6.4Hiltjo Posthuma3 years
musldmenumon fixAcid Bong3 years
 
TagDownloadAuthorAge
6.4dwm-6.4.tar.gz  Hiltjo Posthuma3 years
6.3dwm-6.3.tar.gz  Hiltjo Posthuma4 years
6.2dwm-6.2.tar.gz  Anselm R Garbe7 years
6.1dwm-6.1.tar.gz  Hiltjo Posthuma10 years
6.0dwm-6.0.tar.gz  anselm@garbe.us14 years
5.9dwm-5.9.tar.gz  garbeam@gmail.com14 years
5.8.2dwm-5.8.2.tar.gz  Anselm R Garbe15 years
5.8.1dwm-5.8.1.tar.gz  Anselm R Garbe15 years
5.8dwm-5.8.tar.gz  anselm@garbe.us15 years
5.7.2dwm-5.7.2.tar.gz  Anselm R Garbe16 years
5.7.1dwm-5.7.1.tar.gz  Anselm R Garbe16 years
5.7dwm-5.7.tar.gz  Anselm R Garbe16 years
5.6.1dwm-5.6.1.tar.gz  Anselm R Garbe16 years
5.6dwm-5.6.tar.gz  Anselm R Garbe16 years
5.5dwm-5.5.tar.gz  Anselm R Garbe16 years
5.4.1dwm-5.4.1.tar.gz  a@null17 years
5.4dwm-5.4.tar.gz  a@null17 years
5.3.1dwm-5.3.1.tar.gz  Anselm R Garbe17 years
5.3dwm-5.3.tar.gz  Anselm R Garbe17 years
5.2dwm-5.2.tar.gz  Anselm R Garbe17 years
5.1dwm-5.1.tar.gz  Anselm R Garbe17 years
5.0dwm-5.0.tar.gz  Anselm R Garbe17 years
4.9dwm-4.9.tar.gz  Anselm R Garbe17 years
4.8dwm-4.8.tar.gz  Anselm R Garbe17 years
4.7dwm-4.7.tar.gz  Anselm R. Garbe18 years
4.6dwm-4.6.tar.gz  arg@suckless.org18 years
4.5dwm-4.5.tar.gz  Anselm R. Garbe18 years
4.4.1dwm-4.4.1.tar.gz  Anselm R. Garbe18 years
4.4dwm-4.4.tar.gz  Anselm R. Garbe18 years
4.3dwm-4.3.tar.gz  arg@f00b4r18 years
4.2dwm-4.2.tar.gz  Anselm R. Garbe18 years
4.1dwm-4.1.tar.gz  Anselm R. Garbe18 years
4.0dwm-4.0.tar.gz  Anselm R. Garbe18 years
3.9dwm-3.9.tar.gz  Anselm R. Garbe18 years
3.8dwm-3.8.tar.gz  Anselm R. Garbe18 years
3.7dwm-3.7.tar.gz  Anselm R. Garbe18 years
3.6.1dwm-3.6.1.tar.gz  Anselm R. Garbe18 years
3.6dwm-3.6.tar.gz  Anselm R. Garbe18 years
3.5dwm-3.5.tar.gz  Anselm R. Garbe18 years
3.4dwm-3.4.tar.gz  Anselm R. Garbe19 years
3.3dwm-3.3.tar.gz  Anselm R. Garbe19 years
3.2.2dwm-3.2.2.tar.gz  Anselm R. Garbe19 years
3.2.1dwm-3.2.1.tar.gz  Anselm R. Garbe19 years
3.2dwm-3.2.tar.gz  Anselm R. Garbe19 years
3.1dwm-3.1.tar.gz  Anselm R. Garbe19 years
3.0dwm-3.0.tar.gz  Anselm R. Garbe19 years
2.9dwm-2.9.tar.gz  Anselm R. Garbe19 years
2.8dwm-2.8.tar.gz  arg@mig2919 years
2.7dwm-2.7.tar.gz  arg@mig2919 years
2.6dwm-2.6.tar.gz  arg@mig2919 years
2.5.1dwm-2.5.1.tar.gz  arg@mig2919 years
2.5dwm-2.5.tar.gz  arg@mig2919 years
2.4dwm-2.4.tar.gz  arg@mig2919 years
2.3dwm-2.3.tar.gz  arg@mig2919 years
2.2dwm-2.2.tar.gz  arg@mig2919 years
2.1dwm-2.1.tar.gz  arg@mig2919 years
2.0dwm-2.0.tar.gz  arg@mig2919 years
1.9dwm-1.9.tar.gz  Anselm R. Garbe19 years
1.8dwm-1.8.tar.gz  Anselm R. Garbe19 years
1.7.1dwm-1.7.1.tar.gz  Anselm R. Garbe19 years
1.7dwm-1.7.tar.gz  arg@mmvi19 years
1.6dwm-1.6.tar.gz  arg@mmvi19 years
1.5dwm-1.5.tar.gz  Anselm R. Garbe19 years
1.4dwm-1.4.tar.gz  Anselm R. Garbe19 years
1.3dwm-1.3.tar.gz  Anselm R. Garbe19 years
1.2dwm-1.2.tar.gz  Anselm R. Garbe19 years
1.1dwm-1.1.tar.gz  Anselm R. Garbe19 years
1.0dwm-1.0.tar.gz  Anselm R. Garbe19 years
0.9dwm-0.9.tar.gz  Anselm R.Garbe19 years
0.8dwm-0.8.tar.gz  Anselm R.Garbe19 years
0.7dwm-0.7.tar.gz  arg@10ksloc.org19 years
0.6dwm-0.6.tar.gz  arg@10ksloc.org19 years
0.5dwm-0.5.tar.gz  arg@10ksloc.org19 years
0.4dwm-0.4.tar.gz  arg@10ksloc.org19 years
0.3dwm-0.3.tar.gz  arg@10ksloc.org19 years
0.2dwm-0.2.tar.gz  Anselm R. Garbe19 years
0.1dwm-0.1.tar.gz  Anselm R. Garbe19 years
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements semantic checking for calls.
# included from sem.nim

from std/algorithm import sort


proc sameMethodDispatcher(a, b: PSym): bool =
  result = false
  if a.kind == skMethod and b.kind == skMethod:
    var aa = lastSon(a.ast)
    var bb = lastSon(b.ast)
    if aa.kind == nkSym and bb.kind == nkSym:
      if aa.sym == bb.sym:
        result = true
    else:
      discard
      # generics have no dispatcher yet, so we need to compare the method
      # names; however, the names are equal anyway because otherwise we
      # wouldn't even consider them to be overloaded. But even this does
      # not work reliably! See tmultim6 for an example:
      # method collide[T](a: TThing, b: TUnit[T]) is instantiated and not
      # method collide[T](a: TUnit[T], b: TThing)! This means we need to
      # *instantiate* every candidate! However, we don't keep more than 2-3
      # candidates around so we cannot implement that for now. So in order
      # to avoid subtle problems, the call remains ambiguous and needs to
      # be disambiguated by the programmer; this way the right generic is
      # instantiated.

proc determineType(c: PContext, s: PSym)

proc initCandidateSymbols(c: PContext, headSymbol: PNode,
                          initialBinding: PNode,
                          filter: TSymKinds,
                          best, alt: var TCandidate,
                          o: var TOverloadIter,
                          diagnostics: bool): seq[tuple[s: PSym, scope: int]] =
  ## puts all overloads into a seq and prepares best+alt
  result = @[]
  var symx = initOverloadIter(o, c, headSymbol)
  while symx != nil:
    if symx.kind in filter:
      result.add((symx, o.lastOverloadScope))
    symx = nextOverloadIter(o, c, headSymbol)
  if result.len > 0:
    initCandidate(c, best, result[0].s, initialBinding,
                  result[0].scope, diagnostics)
    initCandidate(c, alt, result[0].s, initialBinding,
                  result[0].scope, diagnostics)
    best.state = csNoMatch

proc pickBestCandidate(c: PContext, headSymbol: PNode,
                       n, orig: PNode,
                       initialBinding: PNode,
                       filter: TSymKinds,
                       best, alt: var TCandidate,
                       errors: var CandidateErrors,
                       diagnosticsFlag: bool,
                       errorsEnabled: bool, flags: TExprFlags) =
  # `matches` may find new symbols, so keep track of count
  var symCount = c.currentScope.symbols.counter

  var o: TOverloadIter
  # https://github.com/nim-lang/Nim/issues/21272
  # prevent mutation during iteration by storing them in a seq
  # luckily `initCandidateSymbols` does just that
  var syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
                                  best, alt, o, diagnosticsFlag)
  if len(syms) == 0:
    return
  # current overload being considered
  var sym = syms[0].s
  var scope = syms[0].scope

  # starts at 1 because 0 is already done with setup, only needs checking
  var nextSymIndex = 1
  var z: TCandidate # current candidate
  while true:
    determineType(c, sym)
    initCandidate(c, z, sym, initialBinding, scope, diagnosticsFlag)

    # this is kinda backwards as without a check here the described
    # problems in recalc would not happen, but instead it 100%
    # does check forever in some cases
    if c.currentScope.symbols.counter == symCount:
      # may introduce new symbols with caveats described in recalc branch
      matches(c, n, orig, z)

      if z.state == csMatch:
        # little hack so that iterators are preferred over everything else:
        if sym.kind == skIterator:
          if not (efWantIterator notin flags and efWantIterable in flags):
            inc(z.exactMatches, 200)
          else:
            dec(z.exactMatches, 200)
        case best.state
        of csEmpty, csNoMatch: best = z
        of csMatch:
          var cmp = cmpCandidates(best, z)
          if cmp < 0: best = z   # x is better than the best so far
          elif cmp == 0: alt = z # x is as good as the best so far
      elif errorsEnabled or z.diagnosticsEnabled:
        errors.add(CandidateError(
          sym: sym,
          firstMismatch: z.firstMismatch,
          diagnostics: z.diagnostics))
    else:
      # this branch feels like a ticking timebomb
      # one of two bad things could happen
      # 1) new symbols are discovered but the loop ends before we recalc
      # 2) new symbols are discovered and resemmed forever
      # not 100% sure if these are possible though as they would rely
      #  on somehow introducing a new overload during overload resolution

      # Symbol table has been modified. Restart and pre-calculate all syms
      # before any further candidate init and compare. SLOW, but rare case.
      syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
                                  best, alt, o, diagnosticsFlag)

      # reset counter because syms may be in a new order
      symCount = c.currentScope.symbols.counter
      nextSymIndex = 0

      # just in case, should be impossible though
      if syms.len == 0:
        break

    if nextSymIndex > high(syms):
      # we have reached the end
      break

    # advance to next sym
    sym = syms[nextSymIndex].s
    scope = syms[nextSymIndex].scope
    inc(nextSymIndex)


proc effectProblem(f, a: PType; result: var string; c: PContext) =
  if f.kind == tyProc and a.kind == tyProc:
    if tfThread in f.flags and tfThread notin a.flags:
      result.add "\n  This expression is not GC-safe. Annotate the " &
          "proc with {.gcsafe.} to get extended error information."
    elif tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
      result.add "\n  This expression can have side effects. Annotate the " &
          "proc with {.noSideEffect.} to get extended error information."
    else:
      case compatibleEffects(f, a)
      of efCompat: discard
      of efRaisesDiffer:
        result.add "\n  The `.raises` requirements differ."
      of efRaisesUnknown:
        result.add "\n  The `.raises` requirements differ. Annotate the " &
            "proc with {.raises: [].} to get extended error information."
      of efTagsDiffer:
        result.add "\n  The `.tags` requirements differ."
      of efTagsUnknown:
        result.add "\n  The `.tags` requirements differ. Annotate the " &
            "proc with {.tags: [].} to get extended error information."
      of efEffectsDelayed:
        result.add "\n  The `.effectsOf` annotations differ."
      of efTagsIllegal:
        result.add "\n  The `.forbids` requirements caught an illegal tag."
      when defined(drnim):
        if not c.graph.compatibleProps(c.graph, f, a):
          result.add "\n  The `.requires` or `.ensures` properties are incompatible."

proc renderNotLValue(n: PNode): string =
  result = $n
  let n = if n.kind == nkHiddenDeref: n[0] else: n
  if n.kind == nkHiddenCallConv and n.len > 1:
    result = $n[0] & "(" & result & ")"
  elif n.kind in {nkHiddenStdConv, nkHiddenSubConv} and n.len == 2:
    result = typeToString(n.typ.skipTypes(abstractVar)) & "(" & result & ")"

proc presentFailedCandidates(c: PContext, n: PNode, errors: CandidateErrors):
                            (TPreferedDesc, string) =
  var prefer = preferName
  # to avoid confusing errors like:
  #   got (SslPtr, SocketHandle)
  #   but expected one of:
  #   openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint
  # we do a pre-analysis. If all types produce the same string, we will add
  # module information.
  let proto = describeArgs(c, n, 1, preferName)
  for err in errors:
    var errProto = ""
    let n = err.sym.typ.n
    for i in 1..<n.len:
      var p = n[i]
      if p.kind == nkSym:
        errProto.add(typeToString(p.sym.typ, preferName))
        if i != n.len-1: errProto.add(", ")
      # else: ignore internal error as we're already in error handling mode
    if errProto == proto:
      prefer = preferModuleInfo
      break

  # we pretend procs are attached to the type of the first
  # argument in order to remove plenty of candidates. This is
  # comparable to what C# does and C# is doing fine.
  var filterOnlyFirst = false
  if optShowAllMismatches notin c.config.globalOptions and verboseTypeMismatch in c.config.legacyFeatures:
    for err in errors:
      if err.firstMismatch.arg > 1:
        filterOnlyFirst = true
        break

  var maybeWrongSpace = false

  var candidatesAll: seq[string]
  var candidates = ""
  var skipped = 0
  for err in errors:
    candidates.setLen 0
    if filterOnlyFirst and err.firstMismatch.arg == 1:
      inc skipped
      continue

    if verboseTypeMismatch notin c.config.legacyFeatures:
      candidates.add "[" & $err.firstMismatch.arg & "] "

    if err.sym.kind in routineKinds and err.sym.ast != nil:
      candidates.add(renderTree(err.sym.ast,
            {renderNoBody, renderNoComments, renderNoPragmas}))
    else:
      candidates.add(getProcHeader(c.config, err.sym, prefer))
    candidates.addDeclaredLocMaybe(c.config, err.sym)
    candidates.add("\n")
    let nArg = if err.firstMismatch.arg < n.len: n[err.firstMismatch.arg] else: nil
    let nameParam = if err.firstMismatch.formal != nil: err.firstMismatch.formal.name.s else: ""
    if n.len > 1 and verboseTypeMismatch in c.config.legacyFeatures:
      candidates.add("  first type mismatch at position: " & $err.firstMismatch.arg)
      # candidates.add "\n  reason: " & $err.firstMismatch.kind # for debugging
      case err.firstMismatch.kind
      of kUnknownNamedParam:
        if nArg == nil:
          candidates.add("\n  unknown named parameter")
        else:
          candidates.add("\n  unknown named parameter: " & $nArg[0])
      of kAlreadyGiven: candidates.add("\n  named param already provided: " & $nArg[0])
      of kPositionalAlreadyGiven: candidates.add("\n  positional param was already given as named param")
      of kExtraArg: candidates.add("\n  extra argument given")
      of kMissingParam: candidates.add("\n  missing parameter: " & nameParam)
      of kTypeMismatch, kVarNeeded:
        doAssert nArg != nil
        let wanted = err.firstMismatch.formal.typ
        doAssert err.firstMismatch.formal != nil
        candidates.add("\n  required type for " & nameParam &  ": ")
        candidates.addTypeDeclVerboseMaybe(c.config, wanted)
        candidates.add "\n  but expression '"
        if err.firstMismatch.kind == kVarNeeded:
          candidates.add renderNotLValue(nArg)
          candidates.add "' is immutable, not 'var'"
        else:
          candidates.add renderTree(nArg)
          candidates.add "' is of type: "
          let got = nArg.typ
          candidates.addTypeDeclVerboseMaybe(c.config, got)
          doAssert wanted != nil
          if got != nil:
            if got.kind == tyProc and wanted.kind == tyProc:
              # These are proc mismatches so,
              # add the extra explict detail of the mismatch
              candidates.addPragmaAndCallConvMismatch(wanted, got, c.config)
            effectProblem(wanted, got, candidates, c)

      of kUnknown: discard "do not break 'nim check'"
      candidates.add "\n"
      if err.firstMismatch.arg == 1 and nArg.kind == nkTupleConstr and
          n.kind == nkCommand:
        maybeWrongSpace = true
    for diag in err.diagnostics:
      candidates.add(diag & "\n")
    candidatesAll.add candidates
  candidatesAll.sort # fix #13538
  candidates = join(candidatesAll)
  if skipped > 0:
    candidates.add($skipped & " other mismatching symbols have been " &
        "suppressed; compile with --showAllMismatches:on to see them\n")
  if maybeWrongSpace:
    candidates.add("maybe misplaced space between " & renderTree(n[0]) & " and '(' \n")

  result = (prefer, candidates)

const
  errTypeMismatch = "type mismatch: got <"
  errButExpected = "but expected one of:"
  errExpectedPosition = "Expected one of (first mismatch at [position]):"
  errUndeclaredField = "undeclared field: '$1'"
  errUndeclaredRoutine = "attempting to call undeclared routine: '$1'"
  errBadRoutine = "attempting to call routine: '$1'$2"
  errAmbiguousCallXYZ = "ambiguous call; both $1 and $2 match for: $3"

proc describeParamList(c: PContext, n: PNode, startIdx = 1; prefer = preferName): string =
  result = "Expression: " & $n
  for i in startIdx..<n.len:
    result.add "\n  [" & $i & "] " & renderTree(n[i]) & ": "
    result.add describeArg(c, n, i, startIdx, prefer)
  result.add "\n"

template legacynotFoundError(c: PContext, n: PNode, errors: CandidateErrors) =
  let (prefer, candidates) = presentFailedCandidates(c, n, errors)
  var result = errTypeMismatch
  result.add(describeArgs(c, n, 1, prefer))
  result.add('>')
  if candidates != "":
    result.add("\n" & errButExpected & "\n" & candidates)
  localError(c.config, n.info, result & "\nexpression: " & $n)

proc notFoundError*(c: PContext, n: PNode, errors: CandidateErrors) =
  # Gives a detailed error message; this is separated from semOverloadedCall,
  # as semOverloadedCall is already pretty slow (and we need this information
  # only in case of an error).
  if c.config.m.errorOutputs == {}:
    # fail fast:
    globalError(c.config, n.info, "type mismatch")
    return
  # see getMsgDiagnostic:
  if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}:
    let ident = considerQuotedIdent(c, n[0], n).s
    let sym = n[1].typ.typSym
    var typeHint = ""
    if sym == nil:
      discard
    else:
      typeHint = " for type " & getProcHeader(c.config, sym)
    localError(c.config, n.info, errUndeclaredField % ident & typeHint)
    return
  if errors.len == 0:
    if n[0].kind in nkIdentKinds:
      let ident = considerQuotedIdent(c, n[0], n).s
      localError(c.config, n.info, errUndeclaredRoutine % ident)
    else:
      localError(c.config, n.info, "expression '$1' cannot be called" % n[0].renderTree)
    return

  if verboseTypeMismatch in c.config.legacyFeatures:
    legacynotFoundError(c, n, errors)
  else:
    let (prefer, candidates) = presentFailedCandidates(c, n, errors)
    var result = "type mismatch\n"
    result.add describeParamList(c, n, 1, prefer)
    if candidates != "":
      result.add("\n" & errExpectedPosition & "\n" & candidates)
    localError(c.config, n.info, result)

proc bracketNotFoundError(c: PContext; n: PNode) =
  var errors: CandidateErrors = @[]
  var o: TOverloadIter
  let headSymbol = n[0]
  var symx = initOverloadIter(o, c, headSymbol)
  while symx != nil:
    if symx.kind in routineKinds:
      errors.add(CandidateError(sym: symx,
                                firstMismatch: MismatchInfo(),
                                diagnostics: @[],
                                enabled: false))
    symx = nextOverloadIter(o, c, headSymbol)
  if errors.len == 0:
    localError(c.config, n.info, "could not resolve: " & $n)
  else:
    notFoundError(c, n, errors)

proc getMsgDiagnostic(c: PContext, flags: TExprFlags, n, f: PNode): string =
  if c.compilesContextId > 0:
    # we avoid running more diagnostic when inside a `compiles(expr)`, to
    # errors while running diagnostic (see test D20180828T234921), and
    # also avoid slowdowns in evaluating `compiles(expr)`.
    discard
  else:
    var o: TOverloadIter
    var sym = initOverloadIter(o, c, f)
    while sym != nil:
      result &= "\n  found $1" % [getSymRepr(c.config, sym)]
      sym = nextOverloadIter(o, c, f)

  let ident = considerQuotedIdent(c, f, n).s
  if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}:
    let sym = n[1].typ.typSym
    var typeHint = ""
    if sym == nil:
      # Perhaps we're in a `compiles(foo.bar)` expression, or
      # in a concept, e.g.:
      #   ExplainedConcept {.explain.} = concept x
      #     x.foo is int
      # We could use: `(c.config $ n[1].info)` to get more context.
      discard
    else:
      typeHint = " for type " & getProcHeader(c.config, sym)
    let suffix = if result.len > 0: " " & result else: ""
    result = errUndeclaredField % ident & typeHint & suffix
  else:
    if result.len == 0: result = errUndeclaredRoutine % ident
    else: result = errBadRoutine % [ident, result]

proc resolveOverloads(c: PContext, n, orig: PNode,
                      filter: TSymKinds, flags: TExprFlags,
                      errors: var CandidateErrors,
                      errorsEnabled: bool): TCandidate =
  var initialBinding: PNode
  var alt: TCandidate
  var f = n[0]
  if f.kind == nkBracketExpr:
    # fill in the bindings:
    semOpAux(c, f)
    initialBinding = f
    f = f[0]
  else:
    initialBinding = nil

  pickBestCandidate(c, f, n, orig, initialBinding,
                    filter, result, alt, errors, efExplain in flags,
                    errorsEnabled, flags)

  var dummyErrors: CandidateErrors
  template pickSpecialOp(headSymbol) =
    pickBestCandidate(c, headSymbol, n, orig, initialBinding,
                      filter, result, alt, dummyErrors, efExplain in flags,
                      false, flags)

  let overloadsState = result.state
  if overloadsState != csMatch:
    if nfDotField in n.flags:
      internalAssert c.config, f.kind == nkIdent and n.len >= 2

      # leave the op head symbol empty,
      # we are going to try multiple variants
      n.sons[0..1] = [nil, n[1], f]
      orig.sons[0..1] = [nil, orig[1], f]

      template tryOp(x) =
        let op = newIdentNode(getIdent(c.cache, x), n.info)
        n[0] = op
        orig[0] = op
        pickSpecialOp(op)

      if nfExplicitCall in n.flags:
        tryOp ".()"

      if result.state in {csEmpty, csNoMatch}:
        tryOp "."

    elif nfDotSetter in n.flags and f.kind == nkIdent and n.len == 3:
      # we need to strip away the trailing '=' here:
      let calleeName = newIdentNode(getIdent(c.cache, f.ident.s[0..^2]), n.info)
      let callOp = newIdentNode(getIdent(c.cache, ".="), n.info)
      n.sons[0..1] = [callOp, n[1], calleeName]
      orig.sons[0..1] = [callOp, orig[1], calleeName]
      pickSpecialOp(callOp)

    if overloadsState == csEmpty and result.state == csEmpty:
      if efNoUndeclared notin flags: # for tests/pragmas/tcustom_pragma.nim
        result.state = csNoMatch
        if efNoDiagnostics in flags:
          return
        # xxx adapt/use errorUndeclaredIdentifierHint(c, n, f.ident)
        localError(c.config, n.info, getMsgDiagnostic(c, flags, n, f))
      return
    elif result.state != csMatch:
      if nfExprCall in n.flags:
        localError(c.config, n.info, "expression '$1' cannot be called" %
                   renderTree(n, {renderNoComments}))
      else:
        if {nfDotField, nfDotSetter} * n.flags != {}:
          # clean up the inserted ops
          n.sons.delete(2)
          n[0] = f
      return
  if alt.state == csMatch and cmpCandidates(result, alt) == 0 and
      not sameMethodDispatcher(result.calleeSym, alt.calleeSym):
    internalAssert c.config, result.state == csMatch
    #writeMatches(result)
    #writeMatches(alt)
    if c.config.m.errorOutputs == {}:
      # quick error message for performance of 'compiles' built-in:
      globalError(c.config, n.info, errGenerated, "ambiguous call")
    elif c.config.errorCounter == 0:
      # don't cascade errors
      var args = "("
      for i in 1..<n.len:
        if i > 1: args.add(", ")
        args.add(typeToString(n[i].typ))
      args.add(")")

      localError(c.config, n.info, errAmbiguousCallXYZ % [
        getProcHeader(c.config, result.calleeSym),
        getProcHeader(c.config, alt.calleeSym),
        args])

proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) =
  let a = if a.kind == nkHiddenDeref: a[0] else: a
  if a.kind == nkHiddenCallConv and a[0].kind == nkSym:
    let s = a[0].sym
    if s.isGenericRoutineStrict:
      let finalCallee = generateInstance(c, s, x.bindings, a.info)
      a[0].sym = finalCallee
      a[0].typ = finalCallee.typ
      #a.typ = finalCallee.typ[0]

proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) =
  assert n.kind in nkCallKinds
  if x.genericConverter:
    for i in 1..<n.len:
      instGenericConvertersArg(c, n[i], x)

proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode =
  var m = newCandidate(c, f)
  result = paramTypesMatch(m, f, a, arg, nil)
  if m.genericConverter and result != nil:
    instGenericConvertersArg(c, result, m)

proc inferWithMetatype(c: PContext, formal: PType,
                       arg: PNode, coerceDistincts = false): PNode =
  var m = newCandidate(c, formal)
  m.coerceDistincts = coerceDistincts
  result = paramTypesMatch(m, formal, arg.typ, arg, nil)
  if m.genericConverter and result != nil:
    instGenericConvertersArg(c, result, m)
  if result != nil:
    # This almost exactly replicates the steps taken by the compiler during
    # param matching. It performs an embarrassing amount of back-and-forth
    # type jugling, but it's the price to pay for consistency and correctness
    result.typ = generateTypeInstance(c, m.bindings, arg.info,
                                      formal.skipTypes({tyCompositeTypeClass}))
  else:
    typeMismatch(c.config, arg.info, formal, arg.typ, arg)
    # error correction:
    result = copyTree(arg)
    result.typ = formal

proc updateDefaultParams(call: PNode) =
  # In generic procs, the default parameter may be unique for each
  # instantiation (see tlateboundgenericparams).
  # After a call is resolved, we need to re-assign any default value
  # that was used during sigmatch. sigmatch is responsible for marking
  # the default params with `nfDefaultParam` and `instantiateProcType`
  # computes correctly the default values for each instantiation.
  let calleeParams = call[0].sym.typ.n
  for i in 1..<call.len:
    if nfDefaultParam in call[i].flags:
      let def = calleeParams[i].sym.ast
      if nfDefaultRefsParam in def.flags: call.flags.incl nfDefaultRefsParam
      call[i] = def

proc getCallLineInfo(n: PNode): TLineInfo =
  case n.kind
  of nkAccQuoted, nkBracketExpr, nkCall, nkCallStrLit, nkCommand:
    if len(n) > 0:
      return getCallLineInfo(n[0])
  of nkDotExpr:
    if len(n) > 1:
      return getCallLineInfo(n[1])
  else:
    discard
  result = n.info

proc semResolvedCall(c: PContext, x: TCandidate,
                     n: PNode, flags: TExprFlags): PNode =
  assert x.state == csMatch
  var finalCallee = x.calleeSym
  let info = getCallLineInfo(n)
  markUsed(c, info, finalCallee)
  onUse(info, finalCallee)
  assert finalCallee.ast != nil
  if x.hasFauxMatch:
    result = x.call
    result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
    if containsGenericType(result.typ) or x.fauxMatch == tyUnknown:
      result.typ = newTypeS(x.fauxMatch, c)
      if result.typ.kind == tyError: incl result.typ.flags, tfCheckedForDestructor
    return
  let gp = finalCallee.ast[genericParamsPos]
  if gp.isGenericParams:
    if x.calleeSym.kind notin {skMacro, skTemplate}:
      if x.calleeSym.magic in {mArrGet, mArrPut}:
        finalCallee = x.calleeSym
      else:
        finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info)
    else:
      # For macros and templates, the resolved generic params
      # are added as normal params.
      for s in instantiateGenericParamList(c, gp, x.bindings):
        case s.kind
        of skConst:
          if not s.astdef.isNil:
            x.call.add s.astdef
          else:
            x.call.add c.graph.emptyNode
        of skType:
          x.call.add newSymNode(s, n.info)
        else:
          internalAssert c.config, false

  result = x.call
  instGenericConvertersSons(c, result, x)
  result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
  result.typ = finalCallee.typ[0]
  updateDefaultParams(result)

proc canDeref(n: PNode): bool {.inline.} =
  result = n.len >= 2 and (let t = n[1].typ;
    t != nil and t.skipTypes({tyGenericInst, tyAlias, tySink}).kind in {tyPtr, tyRef})

proc tryDeref(n: PNode): PNode =
  result = newNodeI(nkHiddenDeref, n.info)
  result.typ = n.typ.skipTypes(abstractInst)[0]
  result.add n

proc semOverloadedCall(c: PContext, n, nOrig: PNode,
                       filter: TSymKinds, flags: TExprFlags): PNode =
  var errors: CandidateErrors = @[] # if efExplain in flags: @[] else: nil
  var r = resolveOverloads(c, n, nOrig, filter, flags, errors, efExplain in flags)
  if r.state == csMatch:
    # this may be triggered, when the explain pragma is used
    if errors.len > 0:
      let (_, candidates) = presentFailedCandidates(c, n, errors)
      message(c.config, n.info, hintUserRaw,
              "Non-matching candidates for " & renderTree(n) & "\n" &
              candidates)
    result = semResolvedCall(c, r, n, flags)
  else:
    if efExplain notin flags:
      # repeat the overload resolution,
      # this time enabling all the diagnostic output (this should fail again)
      result = semOverloadedCall(c, n, nOrig, filter, flags + {efExplain})
    elif efNoUndeclared notin flags:
      notFoundError(c, n, errors)

proc explicitGenericInstError(c: PContext; n: PNode): PNode =
  localError(c.config, getCallLineInfo(n), errCannotInstantiateX % renderTree(n))
  result = n

proc explicitGenericSym(c: PContext, n: PNode, s: PSym): PNode =
  # binding has to stay 'nil' for this to work!
  var m = newCandidate(c, s, nil)

  for i in 1..<n.len:
    let formal = s.ast[genericParamsPos][i-1].typ
    var arg = n[i].typ
    # try transforming the argument into a static one before feeding it into
    # typeRel
    if formal.kind == tyStatic and arg.kind != tyStatic:
      let evaluated = c.semTryConstExpr(c, n[i])
      if evaluated != nil:
        arg = newTypeS(tyStatic, c)
        arg.sons = @[evaluated.typ]
        arg.n = evaluated
    let tm = typeRel(m, formal, arg)
    if tm in {isNone, isConvertible}: return nil
  var newInst = generateInstance(c, s, m.bindings, n.info)
  newInst.typ.flags.excl tfUnresolved
  let info = getCallLineInfo(n)
  markUsed(c, info, s)
  onUse(info, s)
  result = newSymNode(newInst, info)

proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
  assert n.kind == nkBracketExpr
  for i in 1..<n.len:
    let e = semExprWithType(c, n[i])
    if e.typ == nil:
      n[i].typ = errorType(c)
    else:
      n[i].typ = e.typ.skipTypes({tyTypeDesc})
  var s = s
  var a = n[0]
  if a.kind == nkSym:
    # common case; check the only candidate has the right
    # number of generic type parameters:
    if s.ast[genericParamsPos].safeLen != n.len-1:
      let expected = s.ast[genericParamsPos].safeLen
      localError(c.config, getCallLineInfo(n), errGenerated, "cannot instantiate: '" & renderTree(n) &
         "'; got " & $(n.len-1) & " typeof(s) but expected " & $expected)
      return n
    result = explicitGenericSym(c, n, s)
    if result == nil: result = explicitGenericInstError(c, n)
  elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}:
    # choose the generic proc with the proper number of type parameters.
    # XXX I think this could be improved by reusing sigmatch.paramTypesMatch.
    # It's good enough for now.
    result = newNodeI(a.kind, getCallLineInfo(n))
    for i in 0..<a.len:
      var candidate = a[i].sym
      if candidate.kind in {skProc, skMethod, skConverter,
                            skFunc, skIterator}:
        # it suffices that the candidate has the proper number of generic
        # type parameters:
        if candidate.ast[genericParamsPos].safeLen == n.len-1:
          let x = explicitGenericSym(c, n, candidate)
          if x != nil: result.add(x)
    # get rid of nkClosedSymChoice if not ambiguous:
    if result.len == 1 and a.kind == nkClosedSymChoice:
      result = result[0]
    elif result.len == 0: result = explicitGenericInstError(c, n)
    # candidateCount != 1: return explicitGenericInstError(c, n)
  else:
    result = explicitGenericInstError(c, n)

proc searchForBorrowProc(c: PContext, startScope: PScope, fn: PSym): PSym =
  # Searches for the fn in the symbol table. If the parameter lists are suitable
  # for borrowing the sym in the symbol table is returned, else nil.
  # New approach: generate fn(x, y, z) where x, y, z have the proper types
  # and use the overloading resolution mechanism:
  var call = newNodeI(nkCall, fn.info)
  var hasDistinct = false
  call.add(newIdentNode(fn.name, fn.info))
  for i in 1..<fn.typ.n.len:
    let param = fn.typ.n[i]
    const desiredTypes = abstractVar + {tyCompositeTypeClass} - {tyTypeDesc, tyDistinct}
    #[.
      # We only want the type not any modifiers such as `ptr`, `var`, `ref` ...
      # tyCompositeTypeClass is here for
      # when using something like:
      type Foo[T] = distinct int
      proc `$`(f: Foo): string {.borrow.}
      # We want to skip the `Foo` to get `int`
    ]#
    let t = skipTypes(param.typ, desiredTypes)
    if t.kind == tyDistinct or param.typ.kind == tyDistinct: hasDistinct = true
    var x: PType
    if param.typ.kind == tyVar:
      x = newTypeS(param.typ.kind, c)
      x.addSonSkipIntLit(t.baseOfDistinct(c.graph, c.idgen), c.idgen)
    else:
      x = t.baseOfDistinct(c.graph, c.idgen)
    call.add(newNodeIT(nkEmpty, fn.info, x))
  if hasDistinct:
    let filter = if fn.kind in {skProc, skFunc}: {skProc, skFunc} else: {fn.kind}
    var resolved = semOverloadedCall(c, call, call, filter, {})
    if resolved != nil:
      result = resolved[0].sym
      if not compareTypes(result.typ[0], fn.typ[0], dcEqIgnoreDistinct):
        result = nil
      elif result.magic in {mArrPut, mArrGet}:
        # cannot borrow these magics for now
        result = nil