about summary refs log tree commit diff stats
path: root/LICENSE
blob: 67e22c37c3a994e66539612cb02de910eca91baa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
MIT/X Consortium License

(C)opyright MMVI Anselm R. Garbe <garbeam at gmail dot com>
(C)opyright MMVI Sander van Dijk <a dot h dot vandijk at gmail dot com>

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in 
all copies or substantial portions of the Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL 
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
DEALINGS IN THE SOFTWARE.
a id='n233' href='#n233'>233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
#
#
#           The Nimrod Compiler
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# This module implements the transformator. It transforms the syntax tree
# to ease the work of the code generators. Does some transformations:
#
# * inlines iterators
# * inlines constants
# * performes constant folding
# * converts "continue" to "break"
# * introduces method dispatchers
# * performs lambda lifting for closure support

import 
  intsets, strutils, lists, options, ast, astalgo, trees, treetab, msgs, os, 
  idents, renderer, types, passes, semfold, magicsys, cgmeth, rodread,
  lambdalifting

const 
  genPrefix* = ":tmp"         # prefix for generated names

proc transfPass*(): TPass
# implementation

type 
  PTransNode* = distinct PNode
  
  PTransCon = ref TTransCon
  TTransCon{.final.} = object # part of TContext; stackable
    mapping: TIdNodeTable     # mapping from symbols to nodes
    owner: PSym               # current owner
    forStmt: PNode            # current for stmt
    forLoopBody: PTransNode   # transformed for loop body 
    yieldStmts: int           # we count the number of yield statements, 
                              # because we need to introduce new variables
                              # if we encounter the 2nd yield statement
    next: PTransCon           # for stacking
  
  TTransfContext = object of passes.TPassContext
    module: PSym
    transCon: PTransCon      # top of a TransCon stack
    inlining: int            # > 0 if we are in inlining context (copy vars)
    nestedProcs: int         # > 0 if we are in a nested proc
    contSyms, breakSyms: seq[PSym]  # to transform 'continue' and 'break'
    inLoop: int              # > 0 if we are in a loop
    transformedInnerProcs: TIntSet
  PTransf = ref TTransfContext

proc newTransNode(a: PNode): PTransNode {.inline.} = 
  result = PTransNode(shallowCopy(a))

proc newTransNode(kind: TNodeKind, info: TLineInfo, 
                  sons: int): PTransNode {.inline.} = 
  var x = newNodeI(kind, info)
  newSeq(x.sons, sons)
  result = x.PTransNode

proc newTransNode(kind: TNodeKind, n: PNode, 
                  sons: int): PTransNode {.inline.} = 
  var x = newNodeIT(kind, n.info, n.typ)
  newSeq(x.sons, sons)
  x.typ = n.typ
  result = x.PTransNode

proc `[]=`(a: PTransNode, i: int, x: PTransNode) {.inline.} = 
  var n = PNode(a)
  n.sons[i] = PNode(x)

proc `[]`(a: PTransNode, i: int): PTransNode {.inline.} = 
  var n = PNode(a)
  result = n.sons[i].PTransNode
  
proc add(a, b: PTransNode) {.inline.} = addSon(PNode(a), PNode(b))
proc len(a: PTransNode): int {.inline.} = result = sonsLen(a.PNode)

proc newTransCon(owner: PSym): PTransCon = 
  assert owner != nil
  new(result)
  initIdNodeTable(result.mapping)
  result.owner = owner

proc pushTransCon(c: PTransf, t: PTransCon) = 
  t.next = c.transCon
  c.transCon = t

proc popTransCon(c: PTransf) = 
  if (c.transCon == nil): InternalError("popTransCon")
  c.transCon = c.transCon.next

proc getCurrOwner(c: PTransf): PSym = 
  if c.transCon != nil: result = c.transCon.owner
  else: result = c.module
  
proc newTemp(c: PTransf, typ: PType, info: TLineInfo): PSym = 
  result = newSym(skTemp, getIdent(genPrefix), getCurrOwner(c))
  result.info = info
  result.typ = skipTypes(typ, {tyGenericInst})
  incl(result.flags, sfFromGeneric)

proc transform(c: PTransf, n: PNode): PTransNode

proc transformSons(c: PTransf, n: PNode): PTransNode =
  result = newTransNode(n)
  for i in countup(0, sonsLen(n)-1): 
    result[i] = transform(c, n.sons[i])

# Transforming iterators into non-inlined versions is pretty hard, but
# unavoidable for not bloating the code too much. If we had direct access to
# the program counter, things'd be much easier.
# ::
#
#  iterator items(a: string): char =
#    var i = 0
#    while i < length(a):
#      yield a[i]
#      inc(i)
#
#  for ch in items("hello world"): # `ch` is an iteration variable
#    echo(ch)
#
# Should be transformed into::
#
#  type
#    TItemsClosure = record
#      i: int
#      state: int
#  proc items(a: string, c: var TItemsClosure): char =
#    case c.state
#    of 0: goto L0 # very difficult without goto!
#    of 1: goto L1 # can be implemented by GCC's computed gotos
#
#    block L0:
#      c.i = 0
#      while c.i < length(a):
#        c.state = 1
#        return a[i]
#        block L1: inc(c.i)
#
# More efficient, but not implementable::
#
#  type
#    TItemsClosure = record
#      i: int
#      pc: pointer
#
#  proc items(a: string, c: var TItemsClosure): char =
#    goto c.pc
#    c.i = 0
#    while c.i < length(a):
#      c.pc = label1
#      return a[i]
#      label1: inc(c.i)
#

proc newAsgnStmt(c: PTransf, le: PNode, ri: PTransNode): PTransNode = 
  result = newTransNode(nkFastAsgn, PNode(ri).info, 2)
  result[0] = PTransNode(le)
  result[1] = ri

proc transformSymAux(c: PTransf, n: PNode): PNode = 
  var b: PNode
  var tc = c.transCon
  if sfBorrow in n.sym.flags: 
    # simply exchange the symbol:
    b = n.sym.getBody
    if b.kind != nkSym: internalError(n.info, "wrong AST for borrowed symbol")
    b = newSymNode(b.sym)
    b.info = n.info
  else: 
    b = n
  while tc != nil: 
    result = IdNodeTableGet(tc.mapping, b.sym)
    if result != nil: return
    tc = tc.next
  result = b
  when false:
    case b.sym.kind
    of skConst, skEnumField: 
      if sfFakeConst notin b.sym.flags:
        if skipTypes(b.sym.typ, abstractInst).kind notin ConstantDataTypes: 
          result = getConstExpr(c.module, b)
          if result == nil: InternalError(b.info, "transformSym: const")
    else: 
      nil

proc transformSym(c: PTransf, n: PNode): PTransNode = 
  result = PTransNode(transformSymAux(c, n))

proc transformVarSection(c: PTransf, v: PNode): PTransNode =
  result = newTransNode(v)
  for i in countup(0, sonsLen(v)-1):
    var it = v.sons[i]
    if it.kind == nkCommentStmt: 
      result[i] = PTransNode(it)
    elif it.kind == nkIdentDefs: 
      if it.sons[0].kind != nkSym: InternalError(it.info, "transformVarSection")
      var newVar = copySym(it.sons[0].sym)
      incl(newVar.flags, sfFromGeneric)
      # fixes a strange bug for rodgen:
      #include(it.sons[0].sym.flags, sfFromGeneric);
      newVar.owner = getCurrOwner(c)
      IdNodeTablePut(c.transCon.mapping, it.sons[0].sym, newSymNode(newVar))
      var defs = newTransNode(nkIdentDefs, it.info, 3)
      defs[0] = newSymNode(newVar).PTransNode
      defs[1] = it.sons[1].PTransNode
      defs[2] = transform(c, it.sons[2])
      result[i] = defs
    else: 
      if it.kind != nkVarTuple: 
        InternalError(it.info, "transformVarSection: not nkVarTuple")
      var L = sonsLen(it)
      var defs = newTransNode(it.kind, it.info, L)
      for j in countup(0, L-3): 
        var newVar = copySym(it.sons[j].sym)
        incl(newVar.flags, sfFromGeneric)
        newVar.owner = getCurrOwner(c)
        IdNodeTablePut(c.transCon.mapping, it.sons[j].sym, newSymNode(newVar))
        defs[j] = newSymNode(newVar).PTransNode
      assert(it.sons[L-2].kind == nkEmpty)
      defs[L-1] = transform(c, it.sons[L-1])
      result[i] = defs

proc transformConstSection(c: PTransf, v: PNode): PTransNode =
  result = newTransNode(v)
  for i in countup(0, sonsLen(v)-1):
    var it = v.sons[i]
    if it.kind == nkCommentStmt:
      result[i] = PTransNode(it)
    else:
      if it.kind != nkConstDef: InternalError(it.info, "transformConstSection")
      if it.sons[0].kind != nkSym:
        InternalError(it.info, "transformConstSection")
      if sfFakeConst in it[0].sym.flags:
        var b = newNodeI(nkConstDef, it.info)
        addSon(b, it[0])
        addSon(b, ast.emptyNode)            # no type description
        addSon(b, transform(c, it[2]).pnode)
        result[i] = PTransNode(b)
      else:
        result[i] = PTransNode(it)
  

proc hasContinue(n: PNode): bool = 
  case n.kind
  of nkEmpty..nkNilLit, nkForStmt, nkParForStmt, nkWhileStmt: nil
  of nkContinueStmt: result = true
  else: 
    for i in countup(0, sonsLen(n) - 1): 
      if hasContinue(n.sons[i]): return true

proc newLabel(c: PTransf, n: PNode): PSym =
  result = newSym(skLabel, nil, getCurrOwner(c))
  result.name = getIdent(genPrefix & $result.id)
  result.info = n.info

proc transformBlock(c: PTransf, n: PNode): PTransNode =
  var labl: PSym
  if n.sons[0].kind != nkEmpty:
    # already named block? -> Push symbol on the stack:
    labl = n.sons[0].sym
  else:
    labl = newLabel(c, n)
  c.breakSyms.add(labl)
  result = transformSons(c, n)
  discard c.breakSyms.pop
  result[0] = newSymNode(labl).PTransNode

proc transformBreak(c: PTransf, n: PNode): PTransNode =
  if c.inLoop > 0 or n.sons[0].kind != nkEmpty:
    result = n.ptransNode
  else:
    let labl = c.breakSyms[c.breakSyms.high]
    result = transformSons(c, n)
    result[0] = newSymNode(labl).PTransNode

proc transformLoopBody(c: PTransf, n: PNode): PTransNode =  
  # What if it contains "continue" and "break"? "break" needs 
  # an explicit label too, but not the same!
  
  # We fix this here by making every 'break' belong to its enclosing loop
  # and changing all breaks that belong to a 'block' by annotating it with
  # a label (if it hasn't one already).
  if hasContinue(n):
    let labl = newLabel(c, n)
    c.contSyms.add(labl)

    result = newTransNode(nkBlockStmt, n.info, 2)
    result[0] = newSymNode(labl).PTransNode
    result[1] = transform(c, n)
    discard c.contSyms.pop()
  else: 
    result = transform(c, n)
  
proc newTupleAccess(tup: PNode, i: int): PNode = 
  result = newNodeIT(nkBracketExpr, tup.info, tup.typ.sons[i])
  addSon(result, copyTree(tup))
  var lit = newNodeIT(nkIntLit, tup.info, getSysType(tyInt))
  lit.intVal = i
  addSon(result, lit)

proc unpackTuple(c: PTransf, n: PNode, father: PTransNode) = 
  # XXX: BUG: what if `n` is an expression with side-effects?
  for i in countup(0, sonsLen(c.transCon.forStmt) - 3): 
    add(father, newAsgnStmt(c, c.transCon.forStmt.sons[i], 
        transform(c, newTupleAccess(n, i))))

proc introduceNewLocalVars(c: PTransf, n: PNode): PTransNode = 
  case n.kind
  of nkSym: 
    result = transformSym(c, n)
  of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: 
    # nothing to be done for leaves:
    result = PTransNode(n)
  of nkVarSection, nkLetSection:
    result = transformVarSection(c, n)
  else:
    result = newTransNode(n)
    for i in countup(0, sonsLen(n)-1): 
      result[i] =  introduceNewLocalVars(c, n.sons[i])

proc transformYield(c: PTransf, n: PNode): PTransNode = 
  result = newTransNode(nkStmtList, n.info, 0)
  var e = n.sons[0]
  # c.transCon.forStmt.len == 3 means that there is one for loop variable
  # and thus no tuple unpacking:
  if skipTypes(e.typ, {tyGenericInst}).kind == tyTuple and
      c.transCon.forStmt.len != 3:
    e = skipConv(e)
    if e.kind == nkPar: 
      for i in countup(0, sonsLen(e) - 1): 
        add(result, newAsgnStmt(c, c.transCon.forStmt.sons[i], 
                                transform(c, e.sons[i])))
    else: 
      unpackTuple(c, e, result)
  else: 
    var x = transform(c, e)
    add(result, newAsgnStmt(c, c.transCon.forStmt.sons[0], x))
  
  inc(c.transCon.yieldStmts)
  if c.transCon.yieldStmts <= 1:
    # common case
    add(result, c.transCon.forLoopBody)
  else: 
    # we need to introduce new local variables:
    add(result, introduceNewLocalVars(c, c.transCon.forLoopBody.pnode))

proc transformAddrDeref(c: PTransf, n: PNode, a, b: TNodeKind): PTransNode =
  result = transformSons(c, n)
  var n = result.pnode
  case n.sons[0].kind
  of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
    var m = n.sons[0].sons[0]
    if m.kind == a or m.kind == b:
      # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
      n.sons[0].sons[0] = m.sons[0]
      result = PTransNode(n.sons[0])
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    var m = n.sons[0].sons[1]
    if m.kind == a or m.kind == b:
      # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
      n.sons[0].sons[1] = m.sons[0]
      result = PTransNode(n.sons[0])
  else:
    if n.sons[0].kind == a or n.sons[0].kind == b:
      # addr ( deref ( x )) --> x
      result = PTransNode(n.sons[0].sons[0])

proc generateThunk(c: PTransf, prc: PNode, dest: PType): PNode =
  ## Converts 'prc' into '(thunk, nil)' so that it's compatible with
  ## a closure.
  
  # we cannot generate a proper thunk here for GC-safety reasons (see internal
  # documentation):
  if gCmd == cmdCompileToEcmaScript: return prc
  result = newNodeIT(nkClosure, prc.info, dest)
  var conv = newNodeIT(nkHiddenStdConv, prc.info, dest)
  conv.add(emptyNode)
  conv.add(prc)
  result.add(conv)
  result.add(newNodeIT(nkNilLit, prc.info, getSysType(tyNil)))
  
proc transformConv(c: PTransf, n: PNode): PTransNode = 
  # numeric types need range checks:
  var dest = skipTypes(n.typ, abstractVarRange)
  var source = skipTypes(n.sons[1].typ, abstractVarRange)
  case dest.kind
  of tyInt..tyInt64, tyEnum, tyChar, tyBool, tyUInt8..tyUInt32: 
    # we don't include uint and uint64 here as these are no ordinal types ;-)
    if not isOrdinalType(source):
      # XXX int64 -> float conversion?
      result = transformSons(c, n)
    elif firstOrd(dest) <= firstOrd(source) and
        lastOrd(source) <= lastOrd(dest): 
      # BUGFIX: simply leave n as it is; we need a nkConv node,
      # but no range check:
      result = transformSons(c, n)
    else: 
      # generate a range check:
      if dest.kind == tyInt64 or source.kind == tyInt64: 
        result = newTransNode(nkChckRange64, n, 3)
      else: 
        result = newTransNode(nkChckRange, n, 3)
      dest = skipTypes(n.typ, abstractVar)
      result[0] = transform(c, n.sons[1])
      result[1] = newIntTypeNode(nkIntLit, firstOrd(dest), source).PTransNode
      result[2] = newIntTypeNode(nkIntLit, lastOrd(dest), source).PTransNode
  of tyFloat..tyFloat128: 
    if skipTypes(n.typ, abstractVar).kind == tyRange: 
      result = newTransNode(nkChckRangeF, n, 3)
      dest = skipTypes(n.typ, abstractVar)
      result[0] = transform(c, n.sons[1])
      result[1] = copyTree(dest.n.sons[0]).PTransNode
      result[2] = copyTree(dest.n.sons[1]).PTransNode
    else:
      result = transformSons(c, n)
  of tyOpenArray: 
    result = transform(c, n.sons[1])
  of tyCString: 
    if source.kind == tyString: 
      result = newTransNode(nkStringToCString, n, 1)
      result[0] = transform(c, n.sons[1])
    else:
      result = transformSons(c, n)
  of tyString: 
    if source.kind == tyCString: 
      result = newTransNode(nkCStringToString, n, 1)
      result[0] = transform(c, n.sons[1])
    else:
      result = transformSons(c, n)
  of tyRef, tyPtr: 
    dest = skipTypes(dest, abstractPtrs)
    source = skipTypes(source, abstractPtrs)
    if source.kind == tyObject: 
      var diff = inheritanceDiff(dest, source)
      if diff < 0: 
        result = newTransNode(nkObjUpConv, n, 1)
        result[0] = transform(c, n.sons[1])
      elif diff > 0: 
        result = newTransNode(nkObjDownConv, n, 1)
        result[0] = transform(c, n.sons[1])
      else: 
        result = transform(c, n.sons[1])
    else:
      result = transformSons(c, n)
  of tyObject: 
    var diff = inheritanceDiff(dest, source)
    if diff < 0: 
      result = newTransNode(nkObjUpConv, n, 1)
      result[0] = transform(c, n.sons[1])
    elif diff > 0: 
      result = newTransNode(nkObjDownConv, n, 1)
      result[0] = transform(c, n.sons[1])
    else: 
      result = transform(c, n.sons[1])
  of tyProc:
    if dest.callConv == ccClosure and source.callConv == ccDefault:
      let x = transform(c, n.sons[1]).pnode
      result = generateThunk(c, x, dest).ptransnode
    else:
      result = transformSons(c, n)    
  of tyGenericParam, tyOrdinal, tyTypeClass:
    result = transform(c, n.sons[1])
    # happens sometimes for generated assignments, etc.
  else: 
    result = transformSons(c, n)
  
type 
  TPutArgInto = enum 
    paDirectMapping, paFastAsgn, paVarAsgn

proc putArgInto(arg: PNode, formal: PType): TPutArgInto = 
  # This analyses how to treat the mapping "formal <-> arg" in an
  # inline context.
  if skipTypes(formal, abstractInst).kind == tyOpenArray: 
    return paDirectMapping    # XXX really correct?
                              # what if ``arg`` has side-effects?
  case arg.kind
  of nkEmpty..nkNilLit: 
    result = paDirectMapping
  of nkPar, nkCurly, nkBracket: 
    result = paFastAsgn
    for i in countup(0, sonsLen(arg) - 1): 
      if putArgInto(arg.sons[i], formal) != paDirectMapping: return 
    result = paDirectMapping
  else: 
    if skipTypes(formal, abstractInst).kind == tyVar: result = paVarAsgn
    else: result = paFastAsgn
  
proc transformFor(c: PTransf, n: PNode): PTransNode = 
  # generate access statements for the parameters (unless they are constant)
  # put mapping from formal parameters to actual parameters
  if n.kind != nkForStmt: InternalError(n.info, "transformFor")
  #echo "transforming: ", renderTree(n)
  result = newTransNode(nkStmtList, n.info, 0)
  var length = sonsLen(n)
  var loopBody = transformLoopBody(c, n.sons[length-1])
  var v = newNodeI(nkVarSection, n.info)
  for i in countup(0, length - 3): 
    addVar(v, copyTree(n.sons[i])) # declare new vars
  add(result, v.ptransNode)
  var call = n.sons[length - 2]
  if call.kind notin nkCallKinds or call.sons[0].kind != nkSym:
    InternalError(call.info, "transformFor")
  
  # Bugfix: inlined locals belong to the invoking routine, not to the invoked
  # iterator!
  let iter = call.sons[0].sym
  var newC = newTransCon(getCurrOwner(c))
  newC.forStmt = n
  newC.forLoopBody = loopBody
  if iter.kind != skIterator: InternalError(call.info, "transformFor") 
  # generate access statements for the parameters (unless they are constant)
  pushTransCon(c, newC)
  for i in countup(1, sonsLen(call) - 1): 
    var arg = transform(c, call.sons[i]).pnode
    var formal = skipTypes(iter.typ, abstractInst).n.sons[i].sym 
    case putArgInto(arg, formal.typ)
    of paDirectMapping: 
      IdNodeTablePut(newC.mapping, formal, arg)
    of paFastAsgn: 
      # generate a temporary and produce an assignment statement:
      var temp = newTemp(c, formal.typ, formal.info)
      addVar(v, newSymNode(temp))
      add(result, newAsgnStmt(c, newSymNode(temp), arg.ptransNode))
      IdNodeTablePut(newC.mapping, formal, newSymNode(temp))
    of paVarAsgn:
      assert(skipTypes(formal.typ, abstractInst).kind == tyVar)
      IdNodeTablePut(newC.mapping, formal, arg)
      # XXX BUG still not correct if the arg has a side effect!
  var body = iter.getBody
  pushInfoContext(n.info)
  inc(c.inlining)
  add(result, transform(c, body))
  dec(c.inlining)
  popInfoContext()
  popTransCon(c)
  #echo "transformed: ", renderTree(n)
  
proc getMagicOp(call: PNode): TMagic = 
  if call.sons[0].kind == nkSym and
      call.sons[0].sym.kind in {skProc, skMethod, skConverter}: 
    result = call.sons[0].sym.magic
  else:
    result = mNone

proc transformCase(c: PTransf, n: PNode): PTransNode = 
  # removes `elif` branches of a case stmt
  # adds ``else: nil`` if needed for the code generator
  result = newTransNode(nkCaseStmt, n, 0)
  var ifs = PTransNode(nil)
  for i in 0 .. sonsLen(n)-1: 
    var it = n.sons[i]
    var e = transform(c, it)
    case it.kind
    of nkElifBranch:
      if ifs.pnode == nil:
        ifs = newTransNode(nkIfStmt, it.info, 0)
      ifs.add(e)
    of nkElse:
      if ifs.pnode == nil: result.add(e)
      else: ifs.add(e)
    else:
      result.add(e)
  if ifs.pnode != nil:
    var elseBranch = newTransNode(nkElse, n.info, 1)
    elseBranch[0] = ifs
    result.add(elseBranch)
  elif result.Pnode.lastSon.kind != nkElse and not (
      skipTypes(n.sons[0].Typ, abstractVarRange).Kind in
        {tyInt..tyInt64, tyChar, tyEnum}):
    # fix a stupid code gen bug by normalizing: 
    var elseBranch = newTransNode(nkElse, n.info, 1)
    elseBranch[0] = newTransNode(nkNilLit, n.info, 0)
    add(result, elseBranch)
  
proc transformArrayAccess(c: PTransf, n: PNode): PTransNode = 
  result = newTransNode(n)
  result[0] = transform(c, skipConv(n.sons[0]))
  result[1] = transform(c, skipConv(n.sons[1]))
  
proc getMergeOp(n: PNode): PSym = 
  case n.kind
  of nkCall, nkHiddenCallConv, nkCommand, nkInfix, nkPrefix, nkPostfix, 
     nkCallStrLit: 
    if (n.sons[0].Kind == nkSym) and (n.sons[0].sym.kind == skProc) and
        (sfMerge in n.sons[0].sym.flags): 
      result = n.sons[0].sym
  else: nil

proc flattenTreeAux(d, a: PNode, op: PSym) = 
  var op2 = getMergeOp(a)
  if op2 != nil and
      (op2.id == op.id or op.magic != mNone and op2.magic == op.magic): 
    for i in countup(1, sonsLen(a)-1): flattenTreeAux(d, a.sons[i], op)
  else: 
    addSon(d, copyTree(a))
  
proc flattenTree(root: PNode): PNode = 
  var op = getMergeOp(root)
  if op != nil: 
    result = copyNode(root)
    addSon(result, copyTree(root.sons[0]))
    flattenTreeAux(result, root, op)
  else: 
    result = root
  
proc transformCall(c: PTransf, n: PNode): PTransNode = 
  var n = flattenTree(n)
  var op = getMergeOp(n)
  if (op != nil) and (op.magic != mNone) and (sonsLen(n) >= 3): 
    result = newTransNode(nkCall, n, 0)
    add(result, transform(c, n.sons[0]))
    var j = 1
    while j < sonsLen(n): 
      var a = transform(c, n.sons[j]).pnode
      inc(j)
      if isConstExpr(a): 
        while (j < sonsLen(n)):
          let b = transform(c, n.sons[j]).pnode
          if not isConstExpr(b): break
          a = evalOp(op.magic, n, a, b, nil)
          inc(j)
      add(result, a.ptransnode)
    if len(result) == 2: result = result[1]
  elif n.sons[0].kind == nkSym and n.sons[0].sym.kind == skMethod: 
    # use the dispatcher for the call:
    result = methodCall(transformSons(c, n).pnode).ptransNode
  else:
    result = transformSons(c, n)

proc dontInlineConstant(orig, cnst: PNode): bool {.inline.} =
  # symbols that expand to a complex constant (array, etc.) should not be
  # inlined, unless it's the empty array:
  result = orig.kind == nkSym and cnst.kind in {nkCurly, nkPar, nkBracket} and 
      cnst.len != 0

proc warnNarrowingConversion(n: PNode) =
  if n.kind == nkHiddenStdConv:
    var dest = skipTypes(n.typ, abstractVarRange)
    var source = skipTypes(n.sons[1].typ, abstractVarRange)
    if source.kind == tyInt and
       source.size > dest.size and n.sons[1].kind != nkIntLit:
      Message(n.info, warnImplicitNarrowing, renderTree(n.sons[1]))

proc transform(c: PTransf, n: PNode): PTransNode = 
  case n.kind
  of nkSym: 
    result = transformSym(c, n)
  of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: 
    # nothing to be done for leaves:
    result = PTransNode(n)
  of nkBracketExpr: result = transformArrayAccess(c, n)
  of procDefs:
    if n.sons[genericParamsPos].kind == nkEmpty:
      var s = n.sons[namePos].sym
      n.sons[bodyPos] = PNode(transform(c, s.getBody))
      if s.ast.sons[bodyPos] != n.sons[bodyPos]:
        # somehow this can happen ... :-/
        s.ast.sons[bodyPos] = n.sons[bodyPos]
      n.sons[bodyPos] = liftLambdas(n)
      if n.kind == nkMethodDef: methodDef(s, false)
    result = PTransNode(n)
  of nkMacroDef:
    # XXX no proper closure support yet:
    if n.sons[genericParamsPos].kind == nkEmpty:
      var s = n.sons[namePos].sym
      n.sons[bodyPos] = PNode(transform(c, s.getBody))
      if n.kind == nkMethodDef: methodDef(s, false)
    result = PTransNode(n)
  of nkForStmt: 
    inc c.inLoop
    result = transformFor(c, n)
    dec c.inLoop
  of nkParForStmt:
    inc c.inLoop
    result = transformSons(c, n)
    dec c.inLoop
  of nkCaseStmt: result = transformCase(c, n)
  of nkContinueStmt:
    result = PTransNode(newNode(nkBreakStmt))
    var labl = c.contSyms[c.contSyms.high]
    add(result, PTransNode(newSymNode(labl)))
  of nkBreakStmt: result = transformBreak(c, n)
  of nkWhileStmt: 
    inc c.inLoop
    result = newTransNode(n)
    result[0] = transform(c, n.sons[0])
    result[1] = transformLoopBody(c, n.sons[1])
    dec c.inLoop
  of nkCall, nkHiddenCallConv, nkCommand, nkInfix, nkPrefix, nkPostfix, 
     nkCallStrLit: 
    result = transformCall(c, n)
  of nkAddr, nkHiddenAddr: 
    result = transformAddrDeref(c, n, nkDerefExpr, nkHiddenDeref)
  of nkDerefExpr, nkHiddenDeref: 
    result = transformAddrDeref(c, n, nkAddr, nkHiddenAddr)
  of nkHiddenStdConv, nkHiddenSubConv, nkConv: 
    result = transformConv(c, n)
  of nkDiscardStmt: 
    result = transformSons(c, n)
    if isConstExpr(PNode(result).sons[0]): 
      # ensure that e.g. discard "some comment" gets optimized away completely:
      result = PTransNode(newNode(nkCommentStmt))
  of nkCommentStmt, nkTemplateDef: 
    return n.ptransNode
  of nkConstSection:
    # do not replace ``const c = 3`` with ``const 3 = 3``
    return transformConstSection(c, n)
  of nkTypeSection:
    # no need to transform type sections:
    return PTransNode(n)
  of nkVarSection, nkLetSection:
    if c.inlining > 0:
      # we need to copy the variables for multiple yield statements:
      result = transformVarSection(c, n)
    else:
      result = transformSons(c, n)
  of nkYieldStmt: 
    if c.inlining > 0:
      result = transformYield(c, n)
    else: 
      result = transformSons(c, n)
  of nkBlockStmt, nkBlockExpr:
    result = transformBlock(c, n)
  else:
    result = transformSons(c, n)
  var cnst = getConstExpr(c.module, PNode(result))
  # we inline constants if they are not complex constants:
  if cnst != nil and not dontInlineConstant(n, cnst):
    result = PTransNode(cnst) # do not miss an optimization

proc processTransf(context: PPassContext, n: PNode): PNode = 
  # Note: For interactive mode we cannot call 'passes.skipCodegen' and skip
  # this step! We have to rely that the semantic pass transforms too errornous
  # nodes into an empty node.
  if passes.skipCodegen(n) or context.fromCache or nfTransf in n.flags: return n
  var c = PTransf(context)
  pushTransCon(c, newTransCon(getCurrOwner(c)))
  result = PNode(transform(c, n))
  popTransCon(c)
  incl(result.flags, nfTransf)

proc openTransf(module: PSym, filename: string): PPassContext = 
  var n: PTransf
  new(n)
  n.contSyms = @[]
  n.breakSyms = @[]
  n.module = module
  n.transformedInnerProcs = initIntSet()
  result = n

proc openTransfCached(module: PSym, filename: string, 
                      rd: PRodReader): PPassContext = 
  result = openTransf(module, filename)
  for m in items(rd.methods): methodDef(m, true)

proc transfPass(): TPass = 
  initPass(result)
  result.open = openTransf
  result.openCached = openTransfCached
  result.process = processTransf
  result.close = processTransf # we need to process generics too!
  
proc transform*(module: PSym, n: PNode): PNode =
  if nfTransf in n.flags:
    result = n
  else:
    var c = openTransf(module, "")
    result = processTransf(c, n)
    incl(result.flags, nfTransf)