about summary refs log tree commit diff stats
path: root/README
blob: 2dcaeddfdc0e18dc8971c71a5c56a9a2e4993e66 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
dwm - dynamic window manager
============================
dwm is an extremely fast, small, and dynamic window manager for X.


Requirements
------------
In order to build dwm you need the Xlib header files.


Installation
------------
Edit config.mk to match your local setup (dwm is installed into
the /usr/local namespace by default).

Afterwards enter the following command to build and install dwm (if
necessary as root):

    make clean install

If you are going to use the default bluegray color scheme it is highly
recommended to also install the bluegray files shipped in the dextra package.


Running dwm
-----------
Add the following line to your .xinitrc to start dwm using startx:

    exec dwm

In order to connect dwm to a specific display, make sure that
the DISPLAY environment variable is set correctly, e.g.:

    DISPLAY=foo.bar:1 exec dwm

(This will start dwm on display :1 of the host foo.bar.)

In order to display status info in the bar, you can do something
like this in your .xinitrc:

    while true
    do
        echo `date` `uptime | sed 's/.*,//'`
        sleep 1
    done | dwm


Configuration
-------------
The configuration of dwm is done by creating a custom config.h
and (re)compiling the source code.
/a> 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
# Copyright (c) 2007 Scott Lembcke
#  
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#  SOFTWARE.
# 

const Lib = "libchipmunk.so.6.1.1"

when defined(MoreNim):
  {.hint: "MoreNim defined; some Chipmunk functions replaced in Nim".}
{.deadCodeElim: on.}
from math import sqrt, sin, cos, arctan2
when defined(CpUseFloat):
  {.hint: "CpUseFloat defined; using float32 as float".}
  type CpFloat* = cfloat
else:
  type CpFloat* = cdouble
const 
  CP_BUFFER_BYTES* = (32 * 1024)  
  CP_MAX_CONTACTS_PER_ARBITER* = 4
  CpInfinity*: CpFloat = 1.0/0
{.pragma: pf, pure, final.}
type 
  Bool32* = cint  #replace one day with cint-compatible bool
  CpDataPointer* = pointer
  TVector* {.final, pure.} = object
    x*, y*: CpFloat
  TTimestamp* = cuint
  TBodyVelocityFunc* = proc(body: PBody, gravity: TVector,
                            damping: CpFloat; dt: CpFloat){.cdecl.}
  TBodyPositionFunc* = proc(body: PBody; dt: CpFloat){.cdecl.}
  TComponentNode*{.pf.} = object 
    root*: PBody
    next*: PBody
    idleTime*: CpFloat
  
  THashValue = cuint  # uintptr_t 
  TCollisionType* = cuint #uintptr_t
  TGroup * = cuint #uintptr_t
  TLayers* = cuint
  PArray = ptr TArray
  TArray{.pure,final.} = object
  PHashSet = ptr THashSet
  THashSet{.pf.} = object
  PContact* = ptr TContact
  TContact*{.pure,final.} = object
  PArbiter* = ptr TArbiter
  TArbiter*{.pf.} = object 
    e*: CpFloat
    u*: CpFloat 
    surface_vr*: TVector
    a*: PShape
    b*: PShape
    body_a*: PBody
    body_b*: PBody
    thread_a*: TArbiterThread
    thread_b*: TArbiterThread
    numContacts*: cint
    contacts*: PContact
    stamp*: TTimestamp
    handler*: PCollisionHandler
    swappedColl*: Bool32
    state*: TArbiterState
  PCollisionHandler* = ptr TCollisionHandler
  TCollisionHandler*{.pf.} = object 
    a*: TCollisionType
    b*: TCollisionType
    begin*: TCollisionBeginFunc
    preSolve*: TCollisionPreSolveFunc
    postSolve*: TCollisionPostSolveFunc
    separate*: TCollisionSeparateFunc
    data*: pointer
  TArbiterState*{.size: sizeof(cint).} = enum 
    ArbiterStateFirstColl,    # Arbiter is active and its not the first collision.
    ArbiterStateNormal,       # Collision has been explicitly ignored.
                              # Either by returning false from a begin collision handler or calling cpArbiterIgnore().
    ArbiterStateIgnore,       # Collison is no longer active. A space will cache an arbiter for up to cpSpace.collisionPersistence more steps.
    ArbiterStateCached
  TArbiterThread*{.pf.} = object 
    next*: PArbiter        # Links to next and previous arbiters in the contact graph.
    prev*: PArbiter
  
  TContactPoint*{.pf.} = object 
    point*: TVector    #/ The position of the contact point.
    normal*: TVector   #/ The normal of the contact point.
    dist*: CpFloat     #/ The depth of the contact point.
  #/ A struct that wraps up the important collision data for an arbiter.
  PContactPointSet* = ptr TContactPointSet
  TContactPointSet*{.pf.} = object 
    count*: cint              #/ The number of contact points in the set.
    points*: array[0..CP_MAX_CONTACTS_PER_ARBITER - 1, TContactPoint] #/ The array of contact points.
  
  #/ Collision begin event function callback type.
  #/ Returning false from a begin callback causes the collision to be ignored until
  #/ the the separate callback is called when the objects stop colliding.
  TCollisionBeginFunc* = proc (arb: PArbiter; space: PSpace; data: pointer): bool{.
      cdecl.}
  #/ Collision pre-solve event function callback type.
  #/ Returning false from a pre-step callback causes the collision to be ignored until the next step.
  TCollisionPreSolveFunc* = proc (arb: PArbiter; space: PSpace; 
                                  data: pointer): bool {.cdecl.}
  #/ Collision post-solve event function callback type.
  TCollisionPostSolveFunc* = proc (arb: PArbiter; space: PSpace; 
                                   data: pointer){.cdecl.}
  #/ Collision separate event function callback type.
  TCollisionSeparateFunc* = proc (arb: PArbiter; space: PSpace; 
                                  data: pointer){.cdecl.}
  
  #/ Chipmunk's axis-aligned 2D bounding box type. (left, bottom, right, top)
  PBB* = ptr TBB
  TBB* {.pf.} = object 
    l*, b*, r*, t*: CpFloat
  
  #/ Spatial index bounding box callback function type.
  #/ The spatial index calls this function and passes you a pointer to an object you added
  #/ when it needs to get the bounding box associated with that object.
  TSpatialIndexBBFunc* = proc (obj: pointer): TBB{.cdecl.}
  #/ Spatial index/object iterator callback function type.
  TSpatialIndexIteratorFunc* = proc (obj: pointer; data: pointer){.cdecl.}
  #/ Spatial query callback function type. 
  TSpatialIndexQueryFunc* = proc (obj1: pointer; obj2: pointer; data: pointer){.
      cdecl.}
  #/ Spatial segment query callback function type.
  TSpatialIndexSegmentQueryFunc* = proc (obj1: pointer; obj2: pointer; 
      data: pointer): CpFloat {.cdecl.}
  #/ private
  PSpatialIndex = ptr TSpatialIndex
  TSpatialIndex{.pf.} = object 
    klass: PSpatialIndexClass
    bbfun: TSpatialIndexBBFunc
    staticIndex: PSpatialIndex
    dynamicIndex: PSpatialIndex

  TSpatialIndexDestroyImpl* = proc (index: PSpatialIndex){.cdecl.}
  TSpatialIndexCountImpl* = proc (index: PSpatialIndex): cint{.cdecl.}
  TSpatialIndexEachImpl* = proc (index: PSpatialIndex; 
                                 fun: TSpatialIndexIteratorFunc; data: pointer){.
      cdecl.}
  TSpatialIndexContainsImpl* = proc (index: PSpatialIndex; obj: pointer; 
                                     hashid: THashValue): Bool32 {.cdecl.}
  TSpatialIndexInsertImpl* = proc (index: PSpatialIndex; obj: pointer; 
                                   hashid: THashValue){.cdecl.}
  TSpatialIndexRemoveImpl* = proc (index: PSpatialIndex; obj: pointer; 
                                   hashid: THashValue){.cdecl.}
  TSpatialIndexReindexImpl* = proc (index: PSpatialIndex){.cdecl.}
  TSpatialIndexReindexObjectImpl* = proc (index: PSpatialIndex; 
      obj: pointer; hashid: THashValue){.cdecl.}
  TSpatialIndexReindexQueryImpl* = proc (index: PSpatialIndex; 
      fun: TSpatialIndexQueryFunc; data: pointer){.cdecl.}
  TSpatialIndexPointQueryImpl* = proc (index: PSpatialIndex; point: TVector; 
                                       fun: TSpatialIndexQueryFunc; 
                                       data: pointer){.cdecl.}
  TSpatialIndexSegmentQueryImpl* = proc (index: PSpatialIndex; obj: pointer; 
      a: TVector; b: TVector; t_exit: CpFloat; fun: TSpatialIndexSegmentQueryFunc; 
      data: pointer){.cdecl.}
  TSpatialIndexQueryImpl* = proc (index: PSpatialIndex; obj: pointer; 
                                  bb: TBB; fun: TSpatialIndexQueryFunc; 
                                  data: pointer){.cdecl.}
  PSpatialIndexClass* = ptr TSpatialIndexClass
  TSpatialIndexClass*{.pf.} = object 
    destroy*: TSpatialIndexDestroyImpl
    count*: TSpatialIndexCountImpl
    each*: TSpatialIndexEachImpl
    contains*: TSpatialIndexContainsImpl
    insert*: TSpatialIndexInsertImpl
    remove*: TSpatialIndexRemoveImpl
    reindex*: TSpatialIndexReindexImpl
    reindexObject*: TSpatialIndexReindexObjectImpl
    reindexQuery*: TSpatialIndexReindexQueryImpl
    pointQuery*: TSpatialIndexPointQueryImpl
    segmentQuery*: TSpatialIndexSegmentQueryImpl
    query*: TSpatialIndexQueryImpl
  
  PSpaceHash* = ptr TSpaceHash
  TSpaceHash* {.pf.} = object
  PBBTree* = ptr TBBTree
  TBBTree* {.pf.} = object
  PSweep1D* = ptr TSweep1D
  TSweep1D* {.pf.} = object
  
  #/ Bounding box tree velocity callback function.
  #/ This function should return an estimate for the object's velocity.
  TBBTreeVelocityFunc* = proc (obj: pointer): TVector {.cdecl.}
  
  PContactBufferHeader* = ptr TContentBufferHeader
  TContentBufferHeader* {.pf.} = object
  TSpaceArbiterApplyImpulseFunc* = proc (arb: PArbiter){.cdecl.}
  
  PSpace* = ptr TSpace
  TSpace* {.pf.} = object
    iterations*: cint 
    gravity*: TVector
    damping*: CpFloat
    idleSpeedThreshold*: CpFloat 
    sleepTimeThreshold*: CpFloat 
    collisionSlop*: CpFloat 
    collisionBias*: CpFloat
    collisionPersistence*: TTimestamp        
    enableContactGraph*: cint ##BOOL
    data*: pointer
    staticBody*: PBody
    stamp: TTimestamp
    currDT: CpFloat
    bodies: PArray
    rousedBodies: PArray
    sleepingComponents: PArray
    staticShapes: PSpatialIndex
    activeShapes: PSpatialIndex
    arbiters: PArray
    contactBuffersHead: PContactBufferHeader
    cachedArbiters: PHashSet
    pooledArbiters: PArray
    constraints: PArray
    allocatedBuffers: PArray
    locked: cint
    collisionHandlers: PHashSet
    defaultHandler: TCollisionHandler
    postStepCallbacks: PHashSet
    arbiterApplyImpulse: TSpaceArbiterApplyImpulseFunc
    staticBody2: TBody  #_staticBody 
  PBody* = ptr TBody
  TBody*{.pf.} = object 
    velocityFunc*: TBodyVelocityFunc 
    positionFunc*: TBodyPositionFunc                                       
    m*: CpFloat           
    mInv*: CpFloat       
    i*: CpFloat           
    iInv*: CpFloat       
    p*: TVector            
    v*: TVector            
    f*: TVector 
    a*: CpFloat 
    w*: CpFloat 
    t*: CpFloat 
    rot*: TVector 
    data*: pointer
    vLimit*: CpFloat   
    wLimit*: CpFloat
    vBias*: TVector
    wBias*: CpFloat
    space*: PSpace
    shapeList*: PShape
    arbiterList*: PArbiter
    constraintList*: PConstraint
    node*: TComponentNode
  #/ Body/shape iterator callback function type. 
  TBodyShapeIteratorFunc* = proc (body: PBody; shape: PShape; 
                                   data: pointer) {.cdecl.}
  #/ Body/constraint iterator callback function type. 
  TBodyConstraintIteratorFunc* = proc (body: PBody; 
                                        constraint: PConstraint; 
                                        data: pointer) {.cdecl.}
  #/ Body/arbiter iterator callback function type. 
  TBodyArbiterIteratorFunc* = proc (body: PBody; arbiter: PArbiter; 
                                     data: pointer) {.cdecl.}
  
  PNearestPointQueryInfo* = ptr TNearestPointQueryInfo
  #/ Nearest point query info struct.
  TNearestPointQueryInfo*{.pf.} = object
    shape: PShape  #/ The nearest shape, NULL if no shape was within range.
    p: TVector     #/ The closest point on the shape's surface. (in world space coordinates)
    d: CpFloat      #/ The distance to the point. The distance is negative if the point is inside the shape.
  
  PSegmentQueryInfo* = ptr TSegmentQueryInfo
  #/ Segment query info struct.
  TSegmentQueryInfo*{.pf.} = object 
    shape*: PShape         #/ The shape that was hit, NULL if no collision occurred.
    t*: CpFloat            #/ The normalized distance along the query segment in the range [0, 1].
    n*: TVector            #/ The normal of the surface hit.
  TShapeType*{.size: sizeof(cint).} = enum 
    CP_CIRCLE_SHAPE, CP_SEGMENT_SHAPE, CP_POLY_SHAPE, CP_NUM_SHAPES
  TShapeCacheDataImpl* = proc (shape: PShape; p: TVector; rot: TVector): TBB{.cdecl.}
  TShapeDestroyImpl* = proc (shape: PShape){.cdecl.}
  TShapePointQueryImpl* = proc (shape: PShape; p: TVector): Bool32 {.cdecl.}
  TShapeSegmentQueryImpl* = proc (shape: PShape; a: TVector; b: TVector; 
                                  info: PSegmentQueryInfo){.cdecl.}
  PShapeClass* = ptr TShapeClass
  TShapeClass*{.pf.} = object 
    kind*: TShapeType
    cacheData*: TShapeCacheDataImpl
    destroy*: TShapeDestroyImpl
    pointQuery*: TShapePointQueryImpl
    segmentQuery*: TShapeSegmentQueryImpl
  PShape* = ptr TShape
  TShape*{.pf.} = object 
    klass: PShapeClass   #/ PRIVATE
    body*: PBody           #/ The rigid body this collision shape is attached to.
    bb*: TBB               #/ The current bounding box of the shape.   
    sensor*: Bool32        #/ Sensor flag.
                           #/ Sensor shapes call collision callbacks but don't produce collisions.  
    e*: CpFloat            #/ Coefficient of restitution. (elasticity)
    u*: CpFloat            #/ Coefficient of friction.
    surface_v*: TVector    #/ Surface velocity used when solving for friction.
    data*: pointer        #/ User definable data pointer. Generally this points to your the game object class so you can access it when given a cpShape reference in a callback.
    collision_type*: TCollisionType #/ Collision type of this shape used when picking collision handlers.
    group*: TGroup      #/ Group of this shape. Shapes in the same group don't collide.
    layers*: TLayers   #/ Layer bitmask for this shape. Shapes only collide if the bitwise and of their layers is non-zero.
    space: PSpace        #PRIVATE
    next: PShape         #PRIVATE
    prev: PShape         #PRIVATE
    hashid: THashValue  #PRIVATE
  PCircleShape* = ptr TCircleShape
  TCircleShape*{.pf.} = object
    shape: PShape
    c, tc: TVector
    r: CpFloat
  PPolyShape* = ptr TPolyShape
  TPolyShape*{.pf.} = object
    shape: PShape
    numVerts: cint
    verts, tVerts: TVector
    planes, tPlanes: PSplittingPlane
  PSegmentShape* = ptr TSegmentShape
  TSegmentShape*{.pf.} = object
    shape: PShape
    a, b, n: TVector
    ta, tb, tn: TVector
    r: CpFloat
    aTangent, bTangent: TVector
  PSplittingPlane* = ptr TSplittingPlane
  TSplittingPlane*{.pf.} = object
    n: TVector
    d: CpFloat
  
  #/ Post Step callback function type.
  TPostStepFunc* = proc (space: PSpace; obj: pointer; data: pointer){.cdecl.}
  #/ Point query callback function type.
  TSpacePointQueryFunc* = proc (shape: PShape; data: pointer){.cdecl.}
  #/ Segment query callback function type.
  TSpaceSegmentQueryFunc* = proc (shape: PShape; t: CpFloat; n: TVector; 
                                  data: pointer){.cdecl.}
  #/ Rectangle Query callback function type.
  TSpaceBBQueryFunc* = proc (shape: PShape; data: pointer){.cdecl.}
  #/ Shape query callback function type.
  TSpaceShapeQueryFunc* = proc (shape: PShape; points: PContactPointSet; 
                                data: pointer){.cdecl.}
  #/ Space/body iterator callback function type.
  TSpaceBodyIteratorFunc* = proc (body: PBody; data: pointer){.cdecl.}
  #/ Space/body iterator callback function type.
  TSpaceShapeIteratorFunc* = proc (shape: PShape; data: pointer){.cdecl.}
  #/ Space/constraint iterator callback function type.
  TSpaceConstraintIteratorFunc* = proc (constraint: PConstraint; 
                                        data: pointer){.cdecl.}
  #/ Opaque cpConstraint struct.
  PConstraint* = ptr TConstraint
  TConstraint*{.pf.} = object 
    klass: PConstraintClass #/PRIVATE
    a*: PBody            #/ The first body connected to this constraint.
    b*: PBody              #/ The second body connected to this constraint.
    space: PSpace         #/PRIVATE
    next_a: PConstraint  #/PRIVATE
    next_b: PConstraint #/PRIVATE
    maxForce*: CpFloat  #/ The maximum force that this constraint is allowed to use. Defaults to infinity.
    errorBias*: CpFloat #/ The rate at which joint error is corrected. Defaults to pow(1.0 - 0.1, 60.0) meaning that it will correct 10% of the error every 1/60th of a second.
    maxBias*: CpFloat    #/ The maximum rate at which joint error is corrected. Defaults to infinity.       
    preSolve*: TConstraintPreSolveFunc  #/ Function called before the solver runs. Animate your joint anchors, update your motor torque, etc.
    postSolve*: TConstraintPostSolveFunc #/ Function called after the solver runs. Use the applied impulse to perform effects like breakable joints.
    data*: CpDataPointer  # User definable data pointer. Generally this points to your the game object class so you can access it when given a cpConstraint reference in a callback.
  TConstraintPreStepImpl = proc (constraint: PConstraint; dt: CpFloat){.cdecl.}
  TConstraintApplyCachedImpulseImpl = proc (constraint: PConstraint; dt_coef: CpFloat){.cdecl.}
  TConstraintApplyImpulseImpl = proc (constraint: PConstraint){.cdecl.}
  TConstraintGetImpulseImpl = proc (constraint: PConstraint): CpFloat{.cdecl.}
  PConstraintClass = ptr TConstraintClass
  TConstraintClass{.pf.} = object 
    preStep*: TConstraintPreStepImpl
    applyCachedImpulse*: TConstraintApplyCachedImpulseImpl
    applyImpulse*: TConstraintApplyImpulseImpl
    getImpulse*: TConstraintGetImpulseImpl
  #/ Callback function type that gets called before solving a joint.
  TConstraintPreSolveFunc* = proc (constraint: PConstraint; space: PSpace){.
    cdecl.}
  #/ Callback function type that gets called after solving a joint.
  TConstraintPostSolveFunc* = proc (constraint: PConstraint; space: PSpace){.
    cdecl.}

##cp property emulators
template defGetter(otype: typedesc, memberType: typedesc, memberName: expr, procName: expr): stmt {.immediate.} =
  proc `get procName`*(obj: otype): memberType {.cdecl.} =
    return obj.memberName
template defSetter(otype: typedesc, memberType: typedesc, memberName: expr, procName: expr): stmt {.immediate.} =
  proc `set procName`*(obj: otype, value: memberType) {.cdecl.} =
    obj.memberName = value
template defProp(otype: typedesc, memberType: typedesc, memberName: expr, procName: expr): stmt {.immediate.} =
  defGetter(otype, memberType, memberName, procName)
  defSetter(otype, memberType, memberName, procName)


##cpspace.h
proc allocSpace*(): PSpace {.
  importc: "cpSpaceAlloc", dynlib: Lib.}
proc Init*(space: PSpace): PSpace {.
  importc: "cpSpaceInit", dynlib: Lib.}
proc newSpace*(): PSpace {.
  importc: "cpSpaceNew", dynlib: Lib.}
proc destroy*(space: PSpace) {.
  importc: "cpSpaceDestroy", dynlib: Lib.}
proc free*(space: PSpace) {.
  importc: "cpSpaceFree", dynlib: Lib.}

defProp(PSpace, cint, iterations, Iterations)
defProp(PSpace, TVector, gravity, Gravity)
defProp(PSpace, CpFloat, damping, Damping)
defProp(PSpace, CpFloat, idleSpeedThreshold, IdleSpeedThreshold)
defProp(PSpace, CpFloat, sleepTimeThreshold, SleepTimeThreshold)
defProp(PSpace, CpFloat, collisionSlop, CollisionSlop)
defProp(PSpace, CpFloat, collisionBias, CollisionBias)
defProp(PSpace, TTimestamp, collisionPersistence, CollisionPersistence)
defProp(PSpace, Bool32, enableContactGraph, EnableContactGraph)
defProp(PSpace, pointer, data, UserData)
defGetter(PSpace, PBody, staticBody, StaticBody)
defGetter(PSpace, CpFloat, currDt, CurrentTimeStep)


#/ returns true from inside a callback and objects cannot be added/removed.
proc isLocked*(space: PSpace): bool{.inline.} = 
  result = space.locked.bool

#/ Set a default collision handler for this space.
#/ The default collision handler is invoked for each colliding pair of shapes
#/ that isn't explicitly handled by a specific collision handler.
#/ You can pass NULL for any function you don't want to implement.
proc setDefaultCollisionHandler*(space: PSpace; begin: TCollisionBeginFunc; 
                                  preSolve: TCollisionPreSolveFunc; 
                                  postSolve: TCollisionPostSolveFunc; 
                                  separate: TCollisionSeparateFunc; 
                                  data: pointer){.
  cdecl, importc: "cpSpaceSetDefaultCollisionHandler", dynlib: Lib.}
#/ Set a collision handler to be used whenever the two shapes with the given collision types collide.
#/ You can pass NULL for any function you don't want to implement.
proc addCollisionHandler*(space: PSpace; a, b: TCollisionType; 
                           begin: TCollisionBeginFunc; 
                           preSolve: TCollisionPreSolveFunc; 
                           postSolve: TCollisionPostSolveFunc; 
                           separate: TCollisionSeparateFunc; data: pointer){.
  cdecl, importc: "cpSpaceAddCollisionHandler", dynlib: Lib.}
#/ Unset a collision handler.
proc removeCollisionHandler*(space: PSpace; a: TCollisionType; 
                                  b: TCollisionType){.
  cdecl, importc: "cpSpaceRemoveCollisionHandler", dynlib: Lib.}
#/ Add a collision shape to the simulation.
#/ If the shape is attached to a static body, it will be added as a static shape.
proc addShape*(space: PSpace; shape: PShape): PShape{.
  cdecl, importc: "cpSpaceAddShape", dynlib: Lib.}
#/ Explicity add a shape as a static shape to the simulation.
proc addStaticShape*(space: PSpace; shape: PShape): PShape{.
  cdecl, importc: "cpSpaceAddStaticShape", dynlib: Lib.}
#/ Add a rigid body to the simulation.
proc addBody*(space: PSpace; body: PBody): PBody{.
  cdecl, importc: "cpSpaceAddBody", dynlib: Lib.}
#/ Add a constraint to the simulation.
proc addConstraint*(space: PSpace; constraint: PConstraint): PConstraint{.
    cdecl, importc: "cpSpaceAddConstraint", dynlib: Lib.}
#/ Remove a collision shape from the simulation.
proc removeShape*(space: PSpace; shape: PShape){.
  cdecl, importc: "cpSpaceRemoveShape", dynlib: Lib.}
#/ Remove a collision shape added using cpSpaceAddStaticShape() from the simulation.
proc removeStaticShape*(space: PSpace; shape: PShape){.
  cdecl, importc: "cpSpaceRemoveStaticShape", dynlib: Lib.}
#/ Remove a rigid body from the simulation.
proc removeBody*(space: PSpace; body: PBody){.
  cdecl, importc: "cpSpaceRemoveBody", dynlib: Lib.}
#/ Remove a constraint from the simulation.
proc RemoveConstraint*(space: PSpace; constraint: PConstraint){.
  cdecl, importc: "cpSpaceRemoveConstraint", dynlib: Lib.}
#/ Test if a collision shape has been added to the space.
proc containsShape*(space: PSpace; shape: PShape): bool{.
  cdecl, importc: "cpSpaceContainsShape", dynlib: Lib.}
#/ Test if a rigid body has been added to the space.
proc containsBody*(space: PSpace; body: PBody): bool{.
  cdecl, importc: "cpSpaceContainsBody", dynlib: Lib.}
#/ Test if a constraint has been added to the space.

proc containsConstraint*(space: PSpace; constraint: PConstraint): bool{.
  cdecl, importc: "cpSpaceContainsConstraint", dynlib: Lib.}
#/ Schedule a post-step callback to be called when cpSpaceStep() finishes.
#/ @c obj is used a key, you can only register one callback per unique value for @c obj
proc addPostStepCallback*(space: PSpace; fun: TPostStepFunc; 
                               obj: pointer; data: pointer){.
  cdecl, importc: "cpSpaceAddPostStepCallback", dynlib: Lib.}
                                        
#/ Query the space at a point and call @c func for each shape found.
proc pointQuery*(space: PSpace; point: TVector; layers: TLayers; 
                      group: TGroup; fun: TSpacePointQueryFunc; data: pointer){.
  cdecl, importc: "cpSpacePointQuery", dynlib: Lib.}

#/ Query the space at a point and return the first shape found. Returns NULL if no shapes were found.
proc pointQueryFirst*(space: PSpace; point: TVector; layers: TLayers; 
                       group: TGroup): PShape{.
  cdecl, importc: "cpSpacePointQueryFirst", dynlib: Lib.}

#/ Perform a directed line segment query (like a raycast) against the space calling @c func for each shape intersected.
proc segmentQuery*(space: PSpace; start: TVector; to: TVector; 
                    layers: TLayers; group: TGroup; 
                    fun: TSpaceSegmentQueryFunc; data: pointer){.
  cdecl, importc: "cpSpaceSegmentQuery", dynlib: Lib.}
#/ Perform a directed line segment query (like a raycast) against the space and return the first shape hit. Returns NULL if no shapes were hit.
proc segmentQueryFirst*(space: PSpace; start: TVector; to: TVector; 
                         layers: TLayers; group: TGroup; 
                         res: PSegmentQueryInfo): PShape{.
  cdecl, importc: "cpSpaceSegmentQueryFirst", dynlib: Lib.}

#/ Perform a fast rectangle query on the space calling @c func for each shape found.
#/ Only the shape's bounding boxes are checked for overlap, not their full shape.
proc BBQuery*(space: PSpace; bb: TBB; layers: TLayers; group: TGroup; 
                   fun: TSpaceBBQueryFunc; data: pointer){.
  cdecl, importc: "cpSpaceBBQuery", dynlib: Lib.}

#/ Query a space for any shapes overlapping the given shape and call @c func for each shape found.
proc shapeQuery*(space: PSpace; shape: PShape; fun: TSpaceShapeQueryFunc; data: pointer): bool {.
  cdecl, importc: "cpSpaceShapeQuery", dynlib: Lib.}
#/ Call cpBodyActivate() for any shape that is overlaps the given shape.
proc activateShapesTouchingShape*(space: PSpace; shape: PShape){.
    cdecl, importc: "cpSpaceActivateShapesTouchingShape", dynlib: Lib.}

#/ Call @c func for each body in the space.
proc eachBody*(space: PSpace; fun: TSpaceBodyIteratorFunc; data: pointer){.
  cdecl, importc: "cpSpaceEachBody", dynlib: Lib.}

#/ Call @c func for each shape in the space.
proc eachShape*(space: PSpace; fun: TSpaceShapeIteratorFunc; 
                     data: pointer){.
  cdecl, importc: "cpSpaceEachShape", dynlib: Lib.}
#/ Call @c func for each shape in the space.
proc eachConstraint*(space: PSpace; fun: TSpaceConstraintIteratorFunc; 
                          data: pointer){.
  cdecl, importc: "cpSpaceEachConstraint", dynlib: Lib.}
#/ Update the collision detection info for the static shapes in the space.
proc reindexStatic*(space: PSpace){.
  cdecl, importc: "cpSpaceReindexStatic", dynlib: Lib.}
#/ Update the collision detection data for a specific shape in the space.
proc reindexShape*(space: PSpace; shape: PShape){.
  cdecl, importc: "cpSpaceReindexShape", dynlib: Lib.}
#/ Update the collision detection data for all shapes attached to a body.
proc reindexShapesForBody*(space: PSpace; body: PBody){.
  cdecl, importc: "cpSpaceReindexShapesForBody", dynlib: Lib.}
#/ Switch the space to use a spatial has as it's spatial index.
proc SpaceUseSpatialHash*(space: PSpace; dim: CpFloat; count: cint){.
  cdecl, importc: "cpSpaceUseSpatialHash", dynlib: Lib.}
#/ Step the space forward in time by @c dt.
proc step*(space: PSpace; dt: CpFloat) {.
  cdecl, importc: "cpSpaceStep", dynlib: Lib.}


#/ Convenience constructor for cpVect structs.
proc vector*(x, y: CpFloat): TVector {.inline.} =
  result.x = x
  result.y = y
proc newVector*(x, y: CpFloat): TVector {.inline.} =
  return vector(x, y)
#let VectorZero* = newVector(0.0, 0.0)
var VectorZero* = newVector(0.0, 0.0)

#/ Vector dot product.
proc dot*(v1, v2: TVector): CpFloat {.inline.} = 
  result = v1.x * v2.x + v1.y * v2.y

#/ Returns the length of v.
#proc len*(v: TVector): CpFloat {.
#  cdecl, importc: "cpvlength", dynlib: Lib.}
proc len*(v: TVector): CpFloat {.inline.} =
  result = v.dot(v).sqrt
#/ Spherical linearly interpolate between v1 and v2.
proc slerp*(v1, v2: TVector; t: CpFloat): TVector {.
  cdecl, importc: "cpvslerp", dynlib: Lib.}
#/ Spherical linearly interpolate between v1 towards v2 by no more than angle a radians
proc slerpconst*(v1, v2: TVector; a: CpFloat): TVector {.
  cdecl, importc: "cpvslerpconst", dynlib: Lib.}
#/ Returns the unit length vector for the given angle (in radians).
#proc vectorForAngle*(a: CpFloat): TVector {.
#  cdecl, importc: "cpvforangle", dynlib: Lib.}
proc vectorForAngle*(a: CpFloat): TVector {.inline.} =
  result = newVector(math.cos(a), math.sin(a))
#/ Returns the angular direction v is pointing in (in radians).
proc toAngle*(v: TVector): CpFloat {.inline.} =
  result = math.arctan2(v.y, v.x)
#/	Returns a string representation of v. Intended mostly for debugging purposes and not production use.
#/	@attention The string points to a static local and is reset every time the function is called.
#/	If you want to print more than one vector you will have to split up your printing onto separate lines.
proc `$`*(v: TVector): cstring {.cdecl, importc: "cpvstr", dynlib: Lib.}


#/ Check if two vectors are equal. (Be careful when comparing floating point numbers!)
proc `==`*(v1, v2: TVector): bool {.inline.} =
  result = v1.x == v2.x and v1.y == v2.y

#/ Add two vectors
proc `+`*(v1, v2: TVector): TVector {.inline.} =
  result = newVector(v1.x + v2.x, v1.y + v2.y)
proc `+=`*(v1: var TVector; v2: TVector) =
  v1.x = v1.x + v2.x
  v1.y = v1.y + v2.y

#/ Subtract two vectors.
proc `-`*(v1, v2: TVector): TVector {.inline.} =
  result = newVector(v1.x - v2.x, v1.y - v2.y)
proc `-=`*(v1: var TVector; v2: TVector) =
  v1.x = v1.x - v2.x
  v1.y = v1.y - v2.y

#/ Negate a vector.
proc `-`*(v: TVector): TVector {.inline.} = 
  result = newVector(- v.x, - v.y)

#/ Scalar multiplication.
proc `*`*(v: TVector, s: CpFloat): TVector {.inline.} =
  result.x = v.x * s
  result.y = v.y * s
proc `*=`*(v: var TVector; s: CpFloat) =
  v.x = v.x * s
  v.y = v.y * s

#/ 2D vector cross product analog.
#/ The cross product of 2D vectors results in a 3D vector with only a z component.
#/ This function returns the magnitude of the z value.
proc cross*(v1, v2: TVector): CpFloat {.inline.} = 
  result = v1.x * v2.y - v1.y * v2.x

#/ Returns a perpendicular vector. (90 degree rotation)
proc perp*(v: TVector): TVector {.inline.} = 
  result = newVector(- v.y, v.x)

#/ Returns a perpendicular vector. (-90 degree rotation)
proc rperp*(v: TVector): TVector {.inline.} = 
  result = newVector(v.y, - v.x)

#/ Returns the vector projection of v1 onto v2.
proc project*(v1,v2: TVector): TVector {.inline.} = 
  result = v2 * (v1.dot(v2) / v2.dot(v2))

#/ Uses complex number multiplication to rotate v1 by v2. Scaling will occur if v1 is not a unit vector.

proc rotate*(v1, v2: TVector): TVector {.inline.} = 
  result = newVector(v1.x * v2.x - v1.y * v2.y, v1.x * v2.y + v1.y * v2.x)
#/ Inverse of cpvrotate().
proc unrotate*(v1, v2: TVector): TVector {.inline.} = 
  result = newVector(v1.x * v2.x + v1.y * v2.y, v1.y * v2.x - v1.x * v2.y)
#/ Returns the squared length of v. Faster than cpvlength() when you only need to compare lengths.
proc lenSq*(v: TVector): CpFloat {.inline.} = 
  result = v.dot(v)
#/ Linearly interpolate between v1 and v2.
proc lerp*(v1, v2: TVector; t: CpFloat): TVector {.inline.} = 
  result = (v1 * (1.0 - t)) + (v2 * t)
#/ Returns a normalized copy of v.
proc normalize*(v: TVector): TVector {.inline.} = 
  result = v * (1.0 / v.len)
#/ Returns a normalized copy of v or cpvzero if v was already cpvzero. Protects against divide by zero errors.
proc normalizeSafe*(v: TVector): TVector {.inline.} = 
  result = if v.x == 0.0 and v.y == 0.0: VectorZero else: v.normalize
#/ Clamp v to length len.
proc clamp*(v: TVector; len: CpFloat): TVector {.inline.} = 
  result = if v.dot(v) > len * len: v.normalize * len else: v
#/ Linearly interpolate between v1 towards v2 by distance d.
proc lerpconst*(v1, v2: TVector; d: CpFloat): TVector {.inline.} = 
  result = v1 + clamp(v2 - v1, d)             #vadd(v1 + vclamp(vsub(v2, v1), d))
#/ Returns the distance between v1 and v2.
proc dist*(v1, v2: TVector): CpFloat {.inline.} = 
  result = (v1 - v2).len #vlength(vsub(v1, v2))
#/ Returns the squared distance between v1 and v2. Faster than cpvdist() when you only need to compare distances.
proc distsq*(v1, v2: TVector): CpFloat {.inline.} = 
  result = (v1 - v2).lenSq  #vlengthsq(vsub(v1, v2))
#/ Returns true if the distance between v1 and v2 is less than dist.
proc near*(v1, v2: TVector; dist: CpFloat): bool{.inline.} = 
  result = v1.distSq(v2) < dist * dist



##cpBody.h
proc allocBody*(): PBody {.importc: "cpBodyAlloc", dynlib: Lib.}
proc init*(body: PBody; m: CpFloat; i: CpFloat): PBody {.
  importc: "cpBodyInit", dynlib: Lib.}
proc newBody*(m: CpFloat; i: CpFloat): PBody {.
  importc: "cpBodyNew", dynlib: Lib.}

proc initStaticBody*(body: PBody): PBody{.
  importc: "cpBodyInitStatic", dynlib: Lib.}
#/ Allocate and initialize a static cpBody.
proc newStatic*(): PBody{.importc: "cpBodyNewStatic", dynlib: Lib.}
#/ Destroy a cpBody.
proc destroy*(body: PBody){.importc: "cpBodyDestroy", dynlib: Lib.}
#/ Destroy and free a cpBody.
proc free*(body: PBody){.importc: "cpBodyFree", dynlib: Lib.}

#/ Wake up a sleeping or idle body.
proc activate*(body: PBody){.importc: "cpBodyActivate", dynlib: Lib.}
#/ Wake up any sleeping or idle bodies touching a static body.
proc activateStatic*(body: PBody; filter: PShape){.
    importc: "cpBodyActivateStatic", dynlib: Lib.}
#/ Force a body to fall asleep immediately.
proc Sleep*(body: PBody){.importc: "cpBodySleep", dynlib: Lib.}
#/ Force a body to fall asleep immediately along with other bodies in a group.
proc SleepWithGroup*(body: PBody; group: PBody){.
    importc: "cpBodySleepWithGroup", dynlib: Lib.}
#/ Returns true if the body is sleeping.
proc isSleeping*(body: PBody): bool {.inline.} = 
  return body.node.root != nil
#/ Returns true if the body is static.
proc isStatic*(body: PBody): bool {.inline.} = 
  return body.node.idleTime == CpInfinity
#/ Returns true if the body has not been added to a space.
proc isRogue*(body: PBody): bool {.inline.} = 
  return body.space == nil

# #define CP_DefineBodyStructGetter(type, member, name) \
# static inline type cpBodyGet##name(const cpBody *body){return body->member;}
# #define CP_DefineBodyStructSetter(type, member, name) \
# static inline void cpBodySet##name(cpBody *body, const type value){ \
# 	cpBodyActivate(body); \
# 	cpBodyAssertSane(body); \
# 	body->member = value; \
# }
# #define CP_DefineBodyStructProperty(type, member, name) \
# CP_DefineBodyStructGetter(type, member, name) \
# CP_DefineBodyStructSetter(type, member, name)

defGetter(PBody, CpFloat, m, Mass)
#/ Set the mass of a body.
when defined(MoreNim):
  defSetter(PBody, CpFloat, m, Mass)
else:
  proc setMass*(body: PBody; m: CpFloat){.
    cdecl, importc: "cpBodySetMass", dynlib: Lib.}

#/ Get the moment of a body.
defGetter(PBody, CpFloat, i, Moment)
#/ Set the moment of a body.
when defined(MoreNim):
  defSetter(PBody, CpFloat, i, Moment)
else: 
  proc SetMoment*(body: PBody; i: CpFloat) {.
    cdecl, importc: "cpBodySetMoment", dynlib: Lib.}

#/ Get the position of a body.
defGetter(PBody, TVector, p, Pos)
#/ Set the position of a body.
when defined(MoreNim):
  defSetter(PBody, TVector, p, Pos)
else:
  proc setPos*(body: PBody; pos: TVector) {.
    cdecl, importc: "cpBodySetPos", dynlib: Lib.}

defProp(PBody, TVector, v, Vel)
defProp(PBody, TVector, f, Force)

#/ Get the angle of a body.
defGetter(PBody, CpFloat, a, Angle)
#/ Set the angle of a body.
proc setAngle*(body: PBody; a: CpFloat){.
  cdecl, importc: "cpBodySetAngle", dynlib: Lib.}

defProp(PBody, CpFloat, w, AngVel)
defProp(PBody, CpFloat, t, Torque)
defGetter(PBody, TVector, rot, Rot)
defProp(PBody, CpFloat, v_limit, VelLimit)
defProp(PBody, CpFloat, w_limit, AngVelLimit)
defProp(PBody, pointer, data, UserData)

#/ Default Integration functions.
proc UpdateVelocity*(body: PBody; gravity: TVector; damping: CpFloat; dt: CpFloat){.
  cdecl, importc: "cpBodyUpdateVelocity", dynlib: Lib.}
proc UpdatePosition*(body: PBody; dt: CpFloat){.
  cdecl, importc: "cpBodyUpdatePosition", dynlib: Lib.}
#/ Convert body relative/local coordinates to absolute/world coordinates.
proc Local2World*(body: PBody; v: TVector): TVector{.inline.} = 
  result = body.p + v.rotate(body.rot) ##return cpvadd(body.p, cpvrotate(v, body.rot))
#/ Convert body absolute/world coordinates to  relative/local coordinates.
proc world2Local*(body: PBody; v: TVector): TVector{.inline.} = 
  result = (v - body.p).unrotate(body.rot)
#/ Set the forces and torque or a body to zero.
proc resetForces*(body: PBody){.
  cdecl, importc: "cpBodyResetForces", dynlib: Lib.}
#/ Apply an force (in world coordinates) to the body at a point relative to the center of gravity (also in world coordinates).
proc applyForce*(body: PBody; f, r: TVector){.
  cdecl, importc: "cpBodyApplyForce", dynlib: Lib.}
#/ Apply an impulse (in world coordinates) to the body at a point relative to the center of gravity (also in world coordinates).
proc applyImpulse*(body: PBody; j, r: TVector){.
  cdecl, importc: "cpBodyApplyImpulse", dynlib: Lib.}
#/ Get the velocity on a body (in world units) at a point on the body in world coordinates.

proc getVelAtWorldPoint*(body: PBody; point: TVector): TVector{.
  cdecl, importc: "cpBodyGetVelAtWorldPoint", dynlib: Lib.}
#/ Get the velocity on a body (in world units) at a point on the body in local coordinates.
proc getVelAtLocalPoint*(body: PBody; point: TVector): TVector{.
  cdecl, importc: "cpBodyGetVelAtLocalPoint", dynlib: Lib.}
#/ Get the kinetic energy of a body.
# static inline CpFloat cpBodyKineticEnergy(const cpBody *body)
# {
# 	// Need to do some fudging to avoid NaNs
# 	cpFloat vsq = cpvdot(body->v, body->v);
# 	cpFloat wsq = body->w*body->w;
# 	return (vsq ? vsq*body->m : 0.0f) + (wsq ? wsq*body->i : 0.0f);
# }
proc kineticEnergy*(body: PBOdy): CpFloat =
  result = (body.v.dot(body.v) * body.m) + (body.w * body.w * body.i)

#/ Call @c func once for each shape attached to @c body and added to the space.
proc eachShape*(body: PBody; fun: TBodyShapeIteratorFunc; 
                      data: pointer){.
  cdecl, importc: "cpBodyEachShape", dynlib: Lib.}
#/ Call @c func once for each constraint attached to @c body and added to the space.
proc eachConstraint*(body: PBody; fun: TBodyConstraintIteratorFunc; 
                           data: pointer) {.
  cdecl, importc: "cpBodyEachConstraint", dynlib: Lib.}
#/ Call @c func once for each arbiter that is currently active on the body.
proc eachArbiter*(body: PBody; fun: TBodyArbiterIteratorFunc; 
                        data: pointer){.
  cdecl, importc: "cpBodyEachArbiter", dynlib: Lib.}
#/ Allocate a spatial hash.
proc SpaceHashAlloc*(): PSpaceHash{.
  cdecl, importc: "cpSpaceHashAlloc", dynlib: Lib.}
#/ Initialize a spatial hash. 
proc SpaceHashInit*(hash: PSpaceHash; celldim: CpFloat; numcells: cint; 
                    bbfun: TSpatialIndexBBFunc; staticIndex: PSpatialIndex): PSpatialIndex{.
  cdecl, importc: "cpSpaceHashInit", dynlib: Lib.}
#/ Allocate and initialize a spatial hash.
proc SpaceHashNew*(celldim: CpFloat; cells: cint; bbfun: TSpatialIndexBBFunc; 
                   staticIndex: PSpatialIndex): PSpatialIndex{.
  cdecl, importc: "cpSpaceHashNew", dynlib: Lib.}
#/ Change the cell dimensions and table size of the spatial hash to tune it.
#/ The cell dimensions should roughly match the average size of your objects
#/ and the table size should be ~10 larger than the number of objects inserted.
#/ Some trial and error is required to find the optimum numbers for efficiency.
proc SpaceHashResize*(hash: PSpaceHash; celldim: CpFloat; numcells: cint){.
  cdecl, importc: "cpSpaceHashResize", dynlib: Lib.}
#MARK: AABB Tree


#/ Allocate a bounding box tree.
proc BBTreeAlloc*(): PBBTree{.cdecl, importc: "cpBBTreeAlloc", dynlib: Lib.}
#/ Initialize a bounding box tree.
proc BBTreeInit*(tree: PBBTree; bbfun: TSpatialIndexBBFunc; 
                 staticIndex: ptr TSpatialIndex): ptr TSpatialIndex{.cdecl, 
    importc: "cpBBTreeInit", dynlib: Lib.}
#/ Allocate and initialize a bounding box tree.
proc BBTreeNew*(bbfun: TSpatialIndexBBFunc; staticIndex: PSpatialIndex): PSpatialIndex{.
    cdecl, importc: "cpBBTreeNew", dynlib: Lib.}
#/ Perform a static top down optimization of the tree.
proc BBTreeOptimize*(index: PSpatialIndex){.
  cdecl, importc: "cpBBTreeOptimize", dynlib: Lib.}
#/ Set the velocity function for the bounding box tree to enable temporal coherence.

proc BBTreeSetVelocityFunc*(index: PSpatialIndex; fun: TBBTreeVelocityFunc){.
    cdecl, importc: "cpBBTreeSetVelocityFunc", dynlib: Lib.}
#MARK: Single Axis Sweep


#/ Allocate a 1D sort and sweep broadphase.

proc Sweep1DAlloc*(): ptr TSweep1D{.cdecl, importc: "cpSweep1DAlloc", 
                                    dynlib: Lib.}
#/ Initialize a 1D sort and sweep broadphase.

proc Sweep1DInit*(sweep: ptr TSweep1D; bbfun: TSpatialIndexBBFunc; 
                  staticIndex: ptr TSpatialIndex): ptr TSpatialIndex{.cdecl, 
    importc: "cpSweep1DInit", dynlib: Lib.}
#/ Allocate and initialize a 1D sort and sweep broadphase.

proc Sweep1DNew*(bbfun: TSpatialIndexBBFunc; staticIndex: ptr TSpatialIndex): ptr TSpatialIndex{.
    cdecl, importc: "cpSweep1DNew", dynlib: Lib.}



defProp(PArbiter, CpFloat, e, Elasticity)
defProp(PArbiter, CpFloat, u, Friction)
defProp(PArbiter, TVector, surface_vr, SurfaceVelocity)

#/ Calculate the total impulse that was applied by this 
#/ This function should only be called from a post-solve, post-step or cpBodyEachArbiter callback.
proc totalImpulse*(obj: PArbiter): TVector {.cdecl, importc: "cpArbiterTotalImpulse", dynlib: Lib.}

#/ Calculate the total impulse including the friction that was applied by this arbiter.
#/ This function should only be called from a post-solve, post-step or cpBodyEachArbiter callback.
proc totalImpulseWithFriction*(obj: PArbiter): TVector {.cdecl, importc: "cpArbiterTotalImpulseWithFriction", dynlib: Lib.}

#/ Calculate the amount of energy lost in a collision including static, but not dynamic friction.
#/ This function should only be called from a post-solve, post-step or cpBodyEachArbiter callback.
proc totalKE*(obj: PArbiter): CpFloat {.cdecl, importc: "cpArbiterTotalKE", dynlib: Lib.}


#/ Causes a collision pair to be ignored as if you returned false from a begin callback.
#/ If called from a pre-step callback, you will still need to return false
#/ if you want it to be ignored in the current step.
proc ignore*(arb: PArbiter) {.cdecl, importc: "cpArbiterIgnore", dynlib: Lib.}

#/ Return the colliding shapes involved for this arbiter.
#/ The order of their cpSpace.collision_type values will match
#/ the order set when the collision handler was registered.
proc getShapes*(arb: PArbiter, a, b: var PShape) {.inline.} =
  if arb.swappedColl.bool:
    a = arb.b
    b = arb.a
  else:
    a = arb.a
    b = arb.b

#/ A macro shortcut for defining and retrieving the shapes from an arbiter.
#define CP_ARBITER_GET_SHAPES(arb, a, b) cpShape *a, *b; cpArbiterGetShapes(arb, &a, &b);
template getShapes*(arb: PArbiter, name1, name2: expr): stmt {.immediate.} =
  var name1, name2: PShape
  getShapes(arb, name1, name2)


#/ Return the colliding bodies involved for this arbiter.
#/ The order of the cpSpace.collision_type the bodies are associated with values will match
#/ the order set when the collision handler was registered.
#proc getBodies*(arb: PArbiter, a, b: var PBody) {.inline.} = 
#  getShapes(arb, shape1, shape2)
#  a = shape1.body
#  b = shape2.body

#/ A macro shortcut for defining and retrieving the bodies from an arbiter.
#define CP_ARBITER_GET_BODIES(arb, a, b) cpBody *a, *b; cpArbiterGetBodies(arb, &a, &b);
template getBodies*(arb: PArbiter, name1, name2: expr): stmt {.immediate.} =
  var name1, name2: PBOdy
  getBodies(arb, name1, name2)

proc isFirstContact*(arb: PArbiter): bool {.inline.} =
  result = arb.state == ArbiterStateFirstColl

proc getCount*(arb: PArbiter): cint {.inline.} =
  result = arb.numContacts

#/ Return a contact set from an arbiter.
proc getContactPointSet*(arb: PArbiter): TContactPointSet {.
  cdecl, importc: "cpArbiterGetContactPointSet", dynlib: Lib.}
#/ Get the normal of the @c ith contact point.
proc getNormal*(arb: PArbiter; i: cint): TVector {.
  cdecl, importc: "cpArbiterGetNormal", dynlib: Lib.}
#/ Get the position of the @c ith contact point.
proc getPoint*(arb: PArbiter; i: cint): TVector {.
  cdecl, importc: "cpArbiterGetPoint", dynlib: Lib.}
#/ Get the depth of the @c ith contact point.
proc getDepth*(arb: PArbiter; i: cint): CpFloat {.
  cdecl, importc: "cpArbiterGetDepth", dynlib: Lib.}

##Shapes
template defShapeSetter(memberType: typedesc, memberName: expr, procName: expr, activates: bool): stmt {.immediate.} =
  proc `set procName`*(obj: PShape, value: memberType) {.cdecl.} =
    if activates and obj.body != nil: obj.body.activate()
    obj.memberName = value
template defShapeProp(memberType: typedesc, memberName: expr, procName: expr, activates: bool): stmt {.immediate.} =
  defGetter(PShape, memberType, memberName, procName)
  defShapeSetter(memberType, memberName, procName, activates)

#/ Destroy a shape.
proc destroy*(shape: PShape) {.
  cdecl, importc: "cpShapeDestroy", dynlib: Lib.}
#/ Destroy and Free a shape.
proc free*(shape: PShape){.
  cdecl, importc: "cpShapeFree", dynlib: Lib.}
#/ Update, cache and return the bounding box of a shape based on the body it's attached to.
proc cacheBB*(shape: PShape): TBB{.
  cdecl, importc: "cpShapeCacheBB", dynlib: Lib.}
#/ Update, cache and return the bounding box of a shape with an explicit transformation.
proc update*(shape: PShape; pos: TVector; rot: TVector): TBB {.
  cdecl, importc: "cpShapeUpdate", dynlib: Lib.}
#/ Test if a point lies within a shape.
proc pointQuery*(shape: PShape; p: TVector): Bool32 {.
  cdecl, importc: "cpShapePointQuery", dynlib: Lib.}

#/ Perform a nearest point query. It finds the closest point on the surface of shape to a specific point.
#/ The value returned is the distance between the points. A negative distance means the point is inside the shape.
proc nearestPointQuery*(shape: PShape; p: TVector; res: PNearestPointQueryInfo): CpFloat {.
  cdecl, importc: "cpShapeNearestPointQuery", dynlib: Lib.}
#/ Perform a segment query against a shape. @c info must be a pointer to a valid cpSegmentQueryInfo structure.
proc segmentQuery*(shape: PShape, a, b: TVector, info: PSegmentQueryInfo): bool {.
  cdecl, importc: "cpShapeSegmentQuery", dynlib: Lib.}

#/ Get the hit point for a segment query.
## Possibly change; info to PSegmentQueryInfo 
proc queryHitPoint*(start, to: TVector, info: TSegmentQueryInfo): TVector {.inline.} =
  result = start.lerp(to, info.t)

#/ Get the hit distance for a segment query.
proc queryHitDist*(start, to: TVector, info: TSegmentQueryInfo): CpFloat {.inline.} =
  result = start.dist(to) * info.t

defGetter(PShape, PSpace, space, Space)

defGetter(PShape, PBody, body, Body)
proc setBody*(shape: PShape, value: PBody) {.
  cdecl, importc: "cpShapeSetBody", dynlib: Lib.}


defGetter(PShape, TBB, bb, BB)
defShapeProp(Bool32, sensor, Sensor, true)
defShapeProp(CpFloat, e, Elasticity, false)
defShapeProp(CpFloat, u, Friction, true)
defShapeProp(TVector, surface_v, SurfaceVelocity, true)
defShapeProp(pointer, data, UserData, false)
defShapeProp(TCollisionType, collision_type, CollisionType, true)
defShapeProp(TGroup, group, Group, true)
defShapeProp(TLayers, layers, Layers, true)

#/ When initializing a shape, it's hash value comes from a counter.
#/ Because the hash value may affect iteration order, you can reset the shape ID counter
#/ when recreating a space. This will make the simulation be deterministic.
proc resetShapeIdCounter*(): void {.cdecl, importc: "cpResetShapeIdCounter", dynlib: Lib.}
#/ Allocate a circle shape.
proc CircleShapeAlloc*(): PCircleShape {.cdecl, importc: "cpCircleShapeAlloc", dynlib: Lib.}
#/ Initialize a circle shape.
proc init*(circle: PCircleShape, body: PBody, radius: CpFloat, offset: TVector): PCircleShape {.
  cdecl, importc: "cpCircleShapeInit", dynlib: Lib.}
#/ Allocate and initialize a circle shape.
proc newCircleShape*(body: PBody, radius: CpFloat, offset: TVector): PShape {.
  cdecl, importc: "cpCircleShapeNew", dynlib: Lib.}

proc getCircleOffset*(shape: PShape): TVector {.
  cdecl, importc: "cpCircleShapeGetOffset", dynlib: Lib.}
proc getCircleRadius*(shape: PShape): CpFloat {.
  cdecl, importc: "cpCircleShapeGetRadius", dynlib: Lib.}


#/ Allocate a polygon shape.
proc allocPolyShape*(): PPolyShape {.
  cdecl, importc: "cpPolyShapeAlloc", dynlib: Lib.}
#/ Initialize a polygon shape.
#/ A convex hull will be created from the vertexes.
proc init*(poly: PPolyShape; body: PBody, numVerts: cint;
            verts: ptr TVector; offset: TVector): PPolyShape {.
  cdecl, importc: "cpPolyShapeInit", dynlib: Lib.}
#/ Allocate and initialize a polygon shape.
#/ A convex hull will be created from the vertexes.
proc newPolyShape*(body: PBody; numVerts: cint; verts: ptr TVector; 
                    offset: TVector): PShape {.
  cdecl, importc: "cpPolyShapeNew", dynlib: Lib.}
#/ Initialize a box shaped polygon shape.
proc init*(poly: PPolyShape; body: PBody; width, height: CpFloat): PPolyShape {.
  cdecl, importc: "cpBoxShapeInit", dynlib: Lib.}
#/ Initialize an offset box shaped polygon shape.
proc init*(poly: PPolyShape; body: PBody; box: TBB): PPolyShape {.
  cdecl, importc: "cpBoxShapeInit2", dynlib: Lib.}
#/ Allocate and initialize a box shaped polygon shape.
proc newBoxShape*(body: PBody; width, height: CpFloat): PShape {.
  cdecl, importc: "cpBoxShapeNew", dynlib: Lib.}
#/ Allocate and initialize an offset box shaped polygon shape.
proc newBoxShape*(body: PBody; box: TBB): PShape {.
  cdecl, importc: "cpBoxShapeNew2", dynlib: Lib.}

#/ Check that a set of vertexes is convex and has a clockwise winding.
#/ NOTE: Due to floating point precision issues, hulls created with cpQuickHull() are not guaranteed to validate!
proc validatePoly*(verts: ptr TVector; numVerts: cint): bool {.
  cdecl, importc: "cpPolyValidate", dynlib: Lib.}
#/ Get the number of verts in a polygon shape.
proc getNumVerts*(shape: PShape): cint {.
  cdecl, importc: "cpPolyShapeGetNumVerts", dynlib: Lib.}
#/ Get the @c ith vertex of a polygon shape.
proc getVert*(shape: PShape; index: cint): TVector {.
  cdecl, importc: "cpPolyShapeGetVert", dynlib: Lib.}

#/ Allocate a segment shape.
proc allocSegmentShape*(): PSegmentShape {.
  cdecl, importc: "cpSegmentShapeAlloc", dynlib: Lib.}
#/ Initialize a segment shape.
proc init*(seg: PSegmentShape, body: PBody, a, b: TVector, radius: CpFloat): PSegmentShape {.
  cdecl, importc: "cpSegmentShapeInit", dynlib: Lib.}
#/ Allocate and initialize a segment shape.
proc newSegmentShape*(body: PBody, a, b: TVector, radius: CpFloat): PShape {.
  cdecl, importc: "cpSegmentShapeNew", dynlib: Lib.}

proc setSegmentNeighbors*(shape: PShape, prev, next: TVector) {.
  cdecl, importc: "cpSegmentShapeSetNeighbors", dynlib: Lib.}
proc getSegmentA*(shape: PShape): TVector {.
  cdecl, importc: "cpSegmentShapeGetA", dynlib: Lib.}
proc getSegmentB*(shape: PShape): TVector {.
  cdecl, importc: "cpSegmentShapeGetB", dynlib: Lib.}
proc getSegmentNormal*(shape: PShape): TVector {.
  cdecl, importc: "cpSegmentShapeGetNormal", dynlib: Lib.}
proc getSegmentRadius*(shape: PShape): CpFloat {.
  cdecl, importc: "cpSegmentShapeGetRadius", dynlib: Lib.}


#/ Version string.
#var VersionString*{.importc: "cpVersionString", dynlib: Lib.}: cstring
#/ Calculate the moment of inertia for a circle.
#/ @c r1 and @c r2 are the inner and outer diameters. A solid circle has an inner diameter of 0.
when defined(MoreNim):
  proc momentForCircle*(m, r1, r2: CpFloat; offset: TVector): CpFloat {.cdecl.} =
    result = m * (0.5 * (r1 * r1 + r2 * r2) + lenSq(offset))
else:
  proc momentForCircle*(m, r1, r2: CpFloat; offset: TVector): CpFloat {.
    cdecl, importc: "cpMomentForCircle", dynlib: Lib.}

#/ Calculate area of a hollow circle.
#/ @c r1 and @c r2 are the inner and outer diameters. A solid circle has an inner diameter of 0.
proc AreaForCircle*(r1: CpFloat; r2: CpFloat): CpFloat {.
  cdecl, importc: "cpAreaForCircle", dynlib: Lib.}
#/ Calculate the moment of inertia for a line segment.
#/ Beveling radius is not supported.
proc MomentForSegment*(m: CpFloat; a, b: TVector): CpFloat {.
  cdecl, importc: "cpMomentForSegment", dynlib: Lib.}
#/ Calculate the area of a fattened (capsule shaped) line segment.
proc AreaForSegment*(a, b: TVector; r: CpFloat): CpFloat {.
  cdecl, importc: "cpAreaForSegment", dynlib: Lib.}
#/ Calculate the moment of inertia for a solid polygon shape assuming it's center of gravity is at it's centroid. The offset is added to each vertex.
proc MomentForPoly*(m: CpFloat; numVerts: cint; verts: ptr TVector; offset: TVector): CpFloat {.
  cdecl, importc: "cpMomentForPoly", dynlib: Lib.}
#/ Calculate the signed area of a polygon. A Clockwise winding gives positive area.
#/ This is probably backwards from what you expect, but matches Chipmunk's the winding for poly shapes.
proc AreaForPoly*(numVerts: cint; verts: ptr TVector): CpFloat {.
  cdecl, importc: "cpAreaForPoly", dynlib: Lib.}
#/ Calculate the natural centroid of a polygon.
proc CentroidForPoly*(numVerts: cint; verts: ptr TVector): TVector {.
  cdecl, importc: "cpCentroidForPoly", dynlib: Lib.}
#/ Center the polygon on the origin. (Subtracts the centroid of the polygon from each vertex)
proc RecenterPoly*(numVerts: cint; verts: ptr TVector) {.
  cdecl, importc: "cpRecenterPoly", dynlib: Lib.}
#/ Calculate the moment of inertia for a solid box.
proc MomentForBox*(m, width, height: CpFloat): CpFloat {.
  cdecl, importc: "cpMomentForBox", dynlib: Lib.}
#/ Calculate the moment of inertia for a solid box.
proc MomentForBox2*(m: CpFloat; box: TBB): CpFloat {.
  cdecl, importc: "cpMomentForBox2", dynlib: Lib.}



##constraints
type 
  #TODO: all these are private
  #TODO: defConstraintProp()
  PPinJoint = ptr TPinJoint
  TPinJoint{.pf.} = object 
    constraint: PConstraint
    anchr1: TVector
    anchr2: TVector
    dist: CpFloat
    r1: TVector
    r2: TVector
    n: TVector
    nMass: CpFloat
    jnAcc: CpFloat
    jnMax: CpFloat
    bias: CpFloat
  PSlideJoint = ptr TSlideJoint
  TSlideJoint{.pf.} = object 
    constraint: PConstraint
    anchr1: TVector
    anchr2: TVector
    min: CpFloat
    max: CpFloat
    r1: TVector
    r2: TVector
    n: TVector
    nMass: CpFloat
    jnAcc: CpFloat
    jnMax: CpFloat
    bias: CpFloat
  PPivotJoint = ptr TPivotJoint
  TPivotJoint{.pf.} = object 
    constraint: PConstraint
    anchr1: TVector
    anchr2: TVector
    r1: TVector
    r2: TVector
    k1: TVector
    k2: TVector
    jAcc: TVector
    jMaxLen: CpFloat
    bias: TVector
  PGrooveJoint = ptr TGrooveJoint
  TGrooveJoint{.pf.} = object 
    constraint: PConstraint
    grv_n: TVector
    grv_a: TVector
    grv_b: TVector
    anchr2: TVector
    grv_tn: TVector
    clamp: CpFloat
    r1: TVector
    r2: TVector
    k1: TVector
    k2: TVector
    jAcc: TVector
    jMaxLen: CpFloat
    bias: TVector
  PDampedSpring = ptr TDampedSpring
  TDampedSpring{.pf.} = object 
    constraint: PConstraint
    anchr1: TVector
    anchr2: TVector
    restLength: CpFloat
    stiffness: CpFloat
    damping: CpFloat
    springForceFunc: TDampedSpringForceFunc
    target_vrn: CpFloat
    v_coef: CpFloat
    r1: TVector
    r2: TVector
    nMass: CpFloat
    n: TVector
  PDampedRotarySpring = ptr TDampedRotarySpring
  TDampedRotarySpring{.pf.} = object 
    constraint: PConstraint
    restAngle: CpFloat
    stiffness: CpFloat
    damping: CpFloat
    springTorqueFunc: TDampedRotarySpringTorqueFunc
    target_wrn: CpFloat
    w_coef: CpFloat
    iSum: CpFloat
  PRotaryLimitJoint = ptr TRotaryLimitJoint
  TRotaryLimitJoint{.pf.} = object 
    constraint: PConstraint
    min: CpFloat
    max: CpFloat
    iSum: CpFloat
    bias: CpFloat
    jAcc: CpFloat
    jMax: CpFloat
  PRatchetJoint = ptr TRatchetJoint
  TRatchetJoint{.pf.} = object 
    constraint: PConstraint
    angle: CpFloat
    phase: CpFloat
    ratchet: CpFloat
    iSum: CpFloat
    bias: CpFloat
    jAcc: CpFloat
    jMax: CpFloat
  PGearJoint = ptr TGearJoint
  TGearJoint{.pf.} = object 
    constraint: PConstraint
    phase: CpFloat
    ratio: CpFloat
    ratio_inv: CpFloat
    iSum: CpFloat
    bias: CpFloat
    jAcc: CpFloat
    jMax: CpFloat
  PSimpleMotor = ptr TSimpleMotor
  TSimpleMotor{.pf.} = object 
    constraint: PConstraint
    rate: CpFloat
    iSum: CpFloat
    jAcc: CpFloat
    jMax: CpFloat
  TDampedSpringForceFunc* = proc (spring: PConstraint; dist: CpFloat): CpFloat{.
    cdecl.}
  TDampedRotarySpringTorqueFunc* = proc (spring: PConstraint; 
      relativeAngle: CpFloat): CpFloat {.cdecl.}
#/ Destroy a constraint.
proc destroy*(constraint: PConstraint){.
  cdecl, importc: "cpConstraintDestroy", dynlib: Lib.}
#/ Destroy and free a constraint.111
proc free*(constraint: PConstraint){.
  cdecl, importc: "cpConstraintFree", dynlib: Lib.}

#/ @private
proc activateBodies(constraint: PConstraint) {.inline.} = 
  if not constraint.a.isNil: constraint.a.activate()
  if not constraint.b.isNil: constraint.b.activate()

# /// @private
# #define CP_DefineConstraintStructGetter(type, member, name) \
# static inline type cpConstraint##Get##name(const cpConstraint *constraint){return constraint->member;}
# /// @private
# #define CP_DefineConstraintStructSetter(type, member, name) \
# static inline void cpConstraint##Set##name(cpConstraint *constraint, type value){ \
# 	cpConstraintActivateBodies(constraint); \
# 	constraint->member = value; \
# }
template defConstraintSetter(memberType: typedesc, member: expr, name: expr): stmt {.immediate.} =
  proc `set name`*(constraint: PConstraint, value: memberType) {.cdecl.} =
    activateBodies(constraint)
    constraint.member = value
template defConstraintProp(memberType: typedesc, member: expr, name: expr): stmt {.immediate.} =
  defGetter(PConstraint, memberType, member, name)
  defConstraintSetter(memberType, member, name)
# CP_DefineConstraintStructGetter(cpSpace*, CP_PRIVATE(space), Space)
defGetter(PConstraint, PSpace, space, Space)
defGetter(PConstraint, PBody, a, A)
defGetter(PConstraint, PBody, a, B)
defGetter(PConstraint, CpFloat, maxForce, MaxForce)
defGetter(PConstraint, CpFloat, errorBias, ErrorBias)
defGetter(PConstraint, CpFloat, maxBias, MaxBias)
defGetter(PConstraint, TConstraintPreSolveFunc, preSolve, PreSolveFunc)
defGetter(PConstraint, TConstraintPostSolveFunc, postSolve, PostSolveFunc)
defGetter(PConstraint, CpDataPointer, data, UserData)
# Get the last impulse applied by this constraint.
proc getImpulse*(constraint: PConstraint): CpFloat {.inline.} = 
  return constraint.klass.getImpulse(constraint)

# #define cpConstraintCheckCast(constraint, struct) \
# 	cpAssertHard(constraint->CP_PRIVATE(klass) == struct##GetClass(), "Constraint is not a "#struct)
# #define CP_DefineConstraintGetter(struct, type, member, name) \
# static inline type struct##Get##name(const cpConstraint *constraint){ \
# 	cpConstraintCheckCast(constraint, struct); \
# 	return ((struct *)constraint)->member; \
# }
# #define CP_DefineConstraintSetter(struct, type, member, name) \
# static inline void struct##Set##name(cpConstraint *constraint, type value){ \
# 	cpConstraintCheckCast(constraint, struct); \
# 	cpConstraintActivateBodies(constraint); \
# 	((struct *)constraint)->member = value; \
# }
template constraintCheckCast(constraint: PConstraint, ctype: expr): stmt {.immediate.} =
  assert(constraint.klass == `ctype getClass`(), "Constraint is the wrong class")
template defCGetter(ctype: expr, memberType: typedesc, member: expr, name: expr): stmt {.immediate.} = 
  proc `get ctype name`*(constraint: PConstraint): memberType {.cdecl.} =
    constraintCheckCast(constraint, ctype)
    result = cast[`P ctype`](constraint).member
template defCSetter(ctype: expr, memberType: typedesc, member: expr, name: expr): stmt {.immediate.} =
  proc `set ctype name`*(constraint: PConstraint, value: memberType) {.cdecl.} =
    constraintCheckCast(constraint, ctype)
    activateBodies(constraint)
    cast[`P ctype`](constraint).member = value
template defCProp(ctype: expr, memberType: typedesc, member: expr, name: expr): stmt {.immediate.} =
  defCGetter(ctype, memberType, member, name)
  defCSetter(ctype, memberType, member, name)

proc PinJointGetClass*(): PConstraintClass{.
  cdecl, importc: "cpPinJointGetClass", dynlib: Lib.}
#/ @private

#/ Allocate a pin joint.
proc AllocPinJoint*(): PPinJoint{.
  cdecl, importc: "cpPinJointAlloc", dynlib: Lib.}
#/ Initialize a pin joint.
proc PinJointInit*(joint: PPinJoint; a: PBody; b: PBody; anchr1: TVector; 
                   anchr2: TVector): PPinJoint{.
  cdecl, importc: "cpPinJointInit", dynlib: Lib.}
#/ Allocate and initialize a pin joint.
proc newPinJoint*(a: PBody; b: PBody; anchr1: TVector; anchr2: TVector): PConstraint{.
  cdecl, importc: "cpPinJointNew", dynlib: Lib.}
# CP_DefineConstraintProperty(cpPinJoint, cpVect, anchr1, Anchr1)
defCProp(PinJoint, TVector, anchr1, Anchr1)
defCProp(PinJoint, TVector, anchr2, Anchr2)
defCProp(PinJoint, CpFloat, dist, Dist)

proc SlideJointGetClass*(): PConstraintClass{.
  cdecl, importc: "cpSlideJointGetClass", dynlib: Lib.}
#/ Allocate a slide joint.
proc AllocSlideJoint*(): PSlideJoint{.
  cdecl, importc: "cpSlideJointAlloc", dynlib: Lib.}
#/ Initialize a slide joint.
proc init*(joint: PSlideJoint; a, b: PBody; anchr1, anchr2: TVector;
            min, max: CpFloat): PSlideJoint{.
  cdecl, importc: "cpSlideJointInit", dynlib: Lib.}
#/ Allocate and initialize a slide joint.
proc newSlideJoint*(a, b: PBody; anchr1, anchr2: TVector; min, max: CpFloat): PConstraint{.
  cdecl, importc: "cpSlideJointNew", dynlib: Lib.}

defCProp(SlideJoint, TVector, anchr1, Anchr1)
defCProp(SlideJoint, TVector, anchr2, Anchr2)
defCProp(SlideJoint, CpFloat, min, Min)
defCProp(SlideJoint, CpFloat, max, Max)

proc PivotJointGetClass*(): PConstraintClass {.
  cdecl, importc: "cpPivotJointGetClass", dynlib: Lib.}

#/ Allocate a pivot joint
proc allocPivotJoint*(): PPivotJoint{.
  cdecl, importc: "cpPivotJointAlloc", dynlib: Lib.}
#/ Initialize a pivot joint.
proc init*(joint: PPivotJoint; a, b: PBody; anchr1, anchr2: TVector): PPivotJoint{.
  cdecl, importc: "cpPivotJointInit", dynlib: Lib.}
#/ Allocate and initialize a pivot joint.
proc newPivotJoint*(a, b: PBody; pivot: TVector): PConstraint{.
  cdecl, importc: "cpPivotJointNew", dynlib: Lib.}
#/ Allocate and initialize a pivot joint with specific anchors.
proc newPivotJoint*(a, b: PBody; anchr1, anchr2: TVector): PConstraint{.
  cdecl, importc: "cpPivotJointNew2", dynlib: Lib.}

defCProp(PivotJoint, TVector, anchr1, Anchr1)
defCProp(PivotJoint, TVector, anchr2, Anchr2)


proc GrooveJointGetClass*(): PConstraintClass{.
  cdecl, importc: "cpGrooveJointGetClass", dynlib: Lib.}
#/ Allocate a groove joint.
proc GrooveJointAlloc*(): ptr TGrooveJoint{.
  cdecl, importc: "cpGrooveJointAlloc", dynlib: Lib.}
#/ Initialize a groove joint.
proc Init*(joint: PGrooveJoint; a, b: PBody; groove_a, groove_b, anchr2: TVector): PGrooveJoint{.
  cdecl, importc: "cpGrooveJointInit", dynlib: Lib.}
#/ Allocate and initialize a groove joint.
proc newGrooveJoint*(a, b: PBody; groove_a, groove_b, anchr2: TVector): PConstraint{.
  cdecl, importc: "cpGrooveJointNew", dynlib: Lib.}

defCGetter(GrooveJoint, TVector, grv_a, GrooveA)
defCGetter(GrooveJoint, TVector, grv_b, GrooveB)
# /// Set endpoint a of a groove joint's groove
proc SetGrooveA*(constraint: PConstraint, value: TVector) {.
  cdecl, importc: "cpGrooveJointSetGrooveA", dynlib: Lib.}
# /// Set endpoint b of a groove joint's groove
proc SetGrooveB*(constraint: PConstraint, value: TVector) {.
  cdecl, importc: "cpGrooveJointSetGrooveB", dynlib: Lib.}
defCProp(GrooveJoint, TVector, anchr2, Anchr2)

proc DampedSpringGetClass*(): PConstraintClass{.
  cdecl, importc: "cpDampedSpringGetClass", dynlib: Lib.}
#/ Allocate a damped spring.
proc AllocDampedSpring*(): PDampedSpring{.
  cdecl, importc: "cpDampedSpringAlloc", dynlib: Lib.}
#/ Initialize a damped spring.
proc init*(joint: PDampedSpring; a, b: PBody; anchr1, anchr2: TVector;
            restLength, stiffness, damping: CpFloat): PDampedSpring{.
  cdecl, importc: "cpDampedSpringInit", dynlib: Lib.}
#/ Allocate and initialize a damped spring.
proc newDampedSpring*(a, b: PBody; anchr1, anchr2: TVector; 
                      restLength, stiffness, damping: CpFloat): PConstraint{.
  cdecl, importc: "cpDampedSpringNew", dynlib: Lib.}

# CP_DefineConstraintProperty(cpDampedSpring, cpVect, anchr1, Anchr1)
defCProp(DampedSpring, TVector, anchr1, Anchr1)
defCProp(DampedSpring, TVector, anchr2, Anchr2)
defCProp(DampedSpring, CpFloat, restLength, RestLength)
defCProp(DampedSpring, CpFloat, stiffness, Stiffness)
defCProp(DampedSpring, CpFloat, damping, Damping)
defCProp(DampedSpring, TDampedSpringForceFunc, springForceFunc, SpringForceFunc)


proc DampedRotarySpringGetClass*(): PConstraintClass{.
  cdecl, importc: "cpDampedRotarySpringGetClass", dynlib: Lib.}

#/ Allocate a damped rotary spring.
proc DampedRotarySpringAlloc*(): PDampedRotarySpring{.
  cdecl, importc: "cpDampedRotarySpringAlloc", dynlib: Lib.}
#/ Initialize a damped rotary spring.
proc init*(joint: PDampedRotarySpring; a, b: PBody; 
            restAngle, stiffness, damping: CpFloat): PDampedRotarySpring{.
  cdecl, importc: "cpDampedRotarySpringInit", dynlib: Lib.}
#/ Allocate and initialize a damped rotary spring.
proc DampedRotarySpringNew*(a, b: PBody; restAngle, stiffness, damping: CpFloat): PConstraint{.
  cdecl, importc: "cpDampedRotarySpringNew", dynlib: Lib.}

defCProp(DampedRotarySpring, CpFloat, restAngle, RestAngle)
defCProp(DampedRotarySpring, CpFloat, stiffness, Stiffness)
defCProp(DampedRotarySpring, CpFloat, damping, Damping)
defCProp(DampedRotarySpring, TDampedRotarySpringTorqueFunc, springTorqueFunc, SpringTorqueFunc)


proc RotaryLimitJointGetClass*(): PConstraintClass{.
  cdecl, importc: "cpRotaryLimitJointGetClass", dynlib: Lib.}
#/ Allocate a damped rotary limit joint.
proc allocRotaryLimitJoint*(): PRotaryLimitJoint{.
  cdecl, importc: "cpRotaryLimitJointAlloc", dynlib: Lib.}
#/ Initialize a damped rotary limit joint.
proc init*(joint: PRotaryLimitJoint; a, b: PBody; min, max: CpFloat): PRotaryLimitJoint{.
  cdecl, importc: "cpRotaryLimitJointInit", dynlib: Lib.}
#/ Allocate and initialize a damped rotary limit joint.
proc newRotaryLimitJoint*(a, b: PBody; min, max: CpFloat): PConstraint{.
  cdecl, importc: "cpRotaryLimitJointNew", dynlib: Lib.}

defCProp(RotaryLimitJoint, CpFloat, min, Min)
defCProp(RotaryLimitJoint, CpFloat, max, Max)


proc RatchetJointGetClass*(): PConstraintClass{.
  cdecl, importc: "cpRatchetJointGetClass", dynlib: Lib.}
#/ Allocate a ratchet joint.
proc AllocRatchetJoint*(): PRatchetJoint{.
  cdecl, importc: "cpRatchetJointAlloc", dynlib: Lib.}
#/ Initialize a ratched joint.
proc init*(joint: PRatchetJoint; a, b: PBody; phase, ratchet: CpFloat): PRatchetJoint{.
  cdecl, importc: "cpRatchetJointInit", dynlib: Lib.}
#/ Allocate and initialize a ratchet joint.
proc NewRatchetJoint*(a, b: PBody; phase, ratchet: CpFloat): PConstraint{.
  cdecl, importc: "cpRatchetJointNew", dynlib: Lib.}

defCProp(RatchetJoint, CpFloat, angle, Angle)
defCProp(RatchetJoint, CpFloat, phase, Phase)
defCProp(RatchetJoint, CpFloat, ratchet, Ratchet)


proc GearJointGetClass*(): PConstraintClass{.cdecl, 
    importc: "cpGearJointGetClass", dynlib: Lib.}
#/ Allocate a gear joint.
proc AllocGearJoint*(): PGearJoint{.
  cdecl, importc: "cpGearJointAlloc", dynlib: Lib.}
#/ Initialize a gear joint.
proc init*(joint: PGearJoint; a, b: PBody, phase, ratio: CpFloat): PGearJoint{.
  cdecl, importc: "cpGearJointInit", dynlib: Lib.}
#/ Allocate and initialize a gear joint.
proc NewGearJoint*(a, b: PBody; phase, ratio: CpFloat): PConstraint{.
  cdecl, importc: "cpGearJointNew", dynlib: Lib.}

defCProp(GearJoint, CpFloat, phase, Phase)
defCGetter(GearJoint, CpFloat, ratio, Ratio)
#/ Set the ratio of a gear joint.
proc GearJointSetRatio*(constraint: PConstraint; value: CpFloat){.
  cdecl, importc: "cpGearJointSetRatio", dynlib: Lib.}


proc SimpleMotorGetClass*(): PConstraintClass{.
  cdecl, importc: "cpSimpleMotorGetClass", dynlib: Lib.}
#/ Allocate a simple motor.
proc AllocSimpleMotor*(): PSimpleMotor{.
  cdecl, importc: "cpSimpleMotorAlloc", dynlib: Lib.}
#/ initialize a simple motor.
proc init*(joint: PSimpleMotor; a, b: PBody; 
                      rate: CpFloat): PSimpleMotor{.
  cdecl, importc: "cpSimpleMotorInit", dynlib: Lib.}
#/ Allocate and initialize a simple motor.
proc newSimpleMotor*(a, b: PBody; rate: CpFloat): PConstraint{.
  cdecl, importc: "cpSimpleMotorNew", dynlib: Lib.}

defCProp(SimpleMotor, CpFloat, rate, Rate)