about summary refs log tree commit diff stats
path: root/client.c
blob: 24d38c38f3b7d5aba4dce869972b92420a282bfc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
/*
 * (C)opyright MMVI Anselm R. Garbe <garbeam at gmail dot com>
 * See LICENSE file for license details.
 */
#include "dwm.h"
#include <stdlib.h>
#include <string.h>
#include <X11/Xatom.h>
#include <X11/Xutil.h>

/* static functions */

static void
resizetitle(Client *c)
{
	int i;

	c->tw = 0;
	for(i = 0; i < ntags; i++)
		if(c->tags[i])
			c->tw += textw(tags[i]);
	c->tw += textw(c->name);
	if(c->tw > c->w)
		c->tw = c->w + 2;
	c->tx = c->x + c->w - c->tw + 2;
	c->ty = c->y;
	if(isvisible(c))
		XMoveResizeWindow(dpy, c->title, c->tx, c->ty, c->tw, c->th);
	else
		XMoveResizeWindow(dpy, c->title, c->tx + 2 * sw, c->ty, c->tw, c->th);

}

static int
xerrordummy(Display *dsply, XErrorEvent *ee)
{
	return 0;
}

/* extern functions */

void
ban(Client *c)
{
	XMoveWindow(dpy, c->win, c->x + 2 * sw, c->y);
	XMoveWindow(dpy, c->title, c->tx + 2 * sw, c->ty);
}

void
focus(Client *c)
{
	Client *old = sel;

	if (!issel)
		return;
	if(sel && sel->ismax)
		togglemax(NULL);
	sel = c;
	if(old && old != c)
		drawtitle(old);
	drawtitle(c);
	XSetInputFocus(dpy, c->win, RevertToPointerRoot, CurrentTime);
}

void
focusnext(Arg *arg)
{
	Client *c;
   
	if(!sel)
		return;

	if(!(c = getnext(sel->next)))
		c = getnext(clients);
	if(c) {
		focus(c);
		restack();
	}
}

void
focusprev(Arg *arg)
{
	Client *c;

	if(!sel)
		return;

	if(!(c = getprev(sel->prev))) {
		for(c = clients; c && c->next; c = c->next);
		c = getprev(c);
	}
	if(c) {
		focus(c);
		restack();
	}
}

Client *
getclient(Window w)
{
	Client *c;

	for(c = clients; c; c = c->next)
		if(c->win == w)
			return c;
	return NULL;
}

Client *
getctitle(Window w)
{
	Client *c;

	for(c = clients; c; c = c->next)
		if(c->title == w)
			return c;
	return NULL;
}

void
gravitate(Client *c, Bool invert)
{
	int dx = 0, dy = 0;

	switch(c->grav) {
	default:
		break;
	case StaticGravity:
	case NorthWestGravity:
	case NorthGravity:
	case NorthEastGravity:
		dy = c->border;
		break;
	case EastGravity:
	case CenterGravity:
	case WestGravity:
		dy = -(c->h / 2) + c->border;
		break;
	case SouthEastGravity:
	case SouthGravity:
	case SouthWestGravity:
		dy = -(c->h);
		break;
	}

	switch (c->grav) {
	default:
		break;
	case StaticGravity:
	case NorthWestGravity:
	case WestGravity:
	case SouthWestGravity:
		dx = c->border;
		break;
	case NorthGravity:
	case CenterGravity:
	case SouthGravity:
		dx = -(c->w / 2) + c->border;
		break;
	case NorthEastGravity:
	case EastGravity:
	case SouthEastGravity:
		dx = -(c->w + c->border);
		break;
	}

	if(invert) {
		dx = -dx;
		dy = -dy;
	}
	c->x += dx;
	c->y += dy;
}

void
killclient(Arg *arg)
{
	if(!sel)
		return;
	if(sel->proto & PROTODELWIN)
		sendevent(sel->win, wmatom[WMProtocols], wmatom[WMDelete]);
	else
		XKillClient(dpy, sel->win);
}

void
manage(Window w, XWindowAttributes *wa)
{
	Client *c;
	Window trans;
	XSetWindowAttributes twa;

	c = emallocz(sizeof(Client));
	c->tags = emallocz(ntags * sizeof(Bool));
	c->win = w;
	c->x = c->tx = wa->x;
	c->y = c->ty = wa->y;
	c->w = c->tw = wa->width;
	c->h = wa->height;
	c->th = bh;

	c->border = 0;
	setsize(c);

	if(c->h != sh && c->y < bh)
		c->y = c->ty = bh;

	c->proto = getproto(c->win);
	XSelectInput(dpy, c->win,
		StructureNotifyMask | PropertyChangeMask | EnterWindowMask);
	XGetTransientForHint(dpy, c->win, &trans);
	twa.override_redirect = 1;
	twa.background_pixmap = ParentRelative;
	twa.event_mask = ExposureMask | EnterWindowMask;

	c->title = XCreateWindow(dpy, root, c->tx, c->ty, c->tw, c->th,
			0, DefaultDepth(dpy, screen), CopyFromParent,
			DefaultVisual(dpy, screen),
			CWOverrideRedirect | CWBackPixmap | CWEventMask, &twa);

	if(clients)
		clients->prev = c;
	c->next = clients;
	clients = c;

	XGrabButton(dpy, Button1, MODKEY, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);
	XGrabButton(dpy, Button1, MODKEY | LockMask, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);
	XGrabButton(dpy, Button1, MODKEY | numlockmask, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);
	XGrabButton(dpy, Button1, MODKEY | numlockmask | LockMask, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);

	XGrabButton(dpy, Button2, MODKEY, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);
	XGrabButton(dpy, Button2, MODKEY | LockMask, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);
	XGrabButton(dpy, Button2, MODKEY | numlockmask, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);
	XGrabButton(dpy, Button2, MODKEY | numlockmask | LockMask, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);

	XGrabButton(dpy, Button3, MODKEY, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);
	XGrabButton(dpy, Button3, MODKEY | LockMask, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);
	XGrabButton(dpy, Button3, MODKEY | numlockmask, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);
	XGrabButton(dpy, Button3, MODKEY | numlockmask | LockMask, c->win, False, BUTTONMASK,
			GrabModeAsync, GrabModeSync, None, None);

	settags(c);
	if(!c->isfloat)
		c->isfloat = trans
			|| (c->maxw && c->minw &&
				c->maxw == c->minw && c->maxh == c->minh);
	settitle(c);

	if(isvisible(c))
		sel = c;
	arrange(NULL);
	XMapWindow(dpy, c->win);
	XMapWindow(dpy, c->title);
	if(isvisible(c))
		focus(c);
}

void
resize(Client *c, Bool sizehints, Corner sticky)
{
	int bottom = c->y + c->h;
	int right = c->x + c->w;
	/*XConfigureEvent e;*/
	XWindowChanges wc;

	if(sizehints) {
		if(c->incw)
			c->w -= (c->w - c->basew) % c->incw;
		if(c->inch)
			c->h -= (c->h - c->baseh) % c->inch;
		if(c->minw && c->w < c->minw)
			c->w = c->minw;
		if(c->minh && c->h < c->minh)
			c->h = c->minh;
		if(c->maxw && c->w > c->maxw)
			c->w = c->maxw;
		if(c->maxh && c->h > c->maxh)
			c->h = c->maxh;
	}
	if(c->x > right) /* might happen on restart */
		c->x = right - c->w;
	if(c->y > bottom)
		c->y = bottom - c->h;
	if(sticky == TopRight || sticky == BotRight)
		c->x = right - c->w;
	if(sticky == BotLeft || sticky == BotRight)
		c->y = bottom - c->h;

	resizetitle(c);
	wc.x = c->x;
	wc.y = c->y;
	wc.width = c->w;
	wc.height = c->h;
	if(c->w == sw && c->h == sh)
		wc.border_width = 0;
	else
		wc.border_width = 1;
	XConfigureWindow(dpy, c->win, CWX|CWY|CWWidth|CWHeight|CWBorderWidth, &wc);
	XSync(dpy, False);
}

void
setsize(Client *c)
{
	long msize;
	XSizeHints size;

	if(!XGetWMNormalHints(dpy, c->win, &size, &msize) || !size.flags)
		size.flags = PSize;
	c->flags = size.flags;
	if(c->flags & PBaseSize) {
		c->basew = size.base_width;
		c->baseh = size.base_height;
	}
	else
		c->basew = c->baseh = 0;
	if(c->flags & PResizeInc) {
		c->incw = size.width_inc;
		c->inch = size.height_inc;
	}
	else
		c->incw = c->inch = 0;
	if(c->flags & PMaxSize) {
		c->maxw = size.max_width;
		c->maxh = size.max_height;
	}
	else
		c->maxw = c->maxh = 0;
	if(c->flags & PMinSize) {
		c->minw = size.min_width;
		c->minh = size.min_height;
	}
	else
		c->minw = c->minh = 0;
	if(c->flags & PWinGravity)
		c->grav = size.win_gravity;
	else
		c->grav = NorthWestGravity;
}

void
settitle(Client *c)
{
	char **list = NULL;
	int n;
	XTextProperty name;

	name.nitems = 0;
	c->name[0] = 0;
	XGetTextProperty(dpy, c->win, &name, netatom[NetWMName]);
	if(!name.nitems)
		XGetWMName(dpy, c->win, &name);
	if(!name.nitems)
		return;
	if(name.encoding == XA_STRING)
		strncpy(c->name, (char *)name.value, sizeof(c->name));
	else {
		if(XmbTextPropertyToTextList(dpy, &name, &list, &n) >= Success
				&& n > 0 && *list)
		{
			strncpy(c->name, *list, sizeof(c->name));
			XFreeStringList(list);
		}
	}
	XFree(name.value);
	resizetitle(c);
}

void
togglemax(Arg *arg)
{
	int ox, oy, ow, oh;
	XEvent ev;

	if(!sel)
		return;

	if((sel->ismax = !sel->ismax)) {
		ox = sel->x;
		oy = sel->y;
		ow = sel->w;
		oh = sel->h;
		sel->x = sx;
		sel->y = sy + bh;
		sel->w = sw - 2;
		sel->h = sh - 2 - bh;

		restack();
		resize(sel, arrange == dofloat, TopLeft);

		sel->x = ox;
		sel->y = oy;
		sel->w = ow;
		sel->h = oh;
	}
	else
		resize(sel, False, TopLeft);
	while(XCheckMaskEvent(dpy, EnterWindowMask, &ev));
}

void
unmanage(Client *c)
{
	XGrabServer(dpy);
	XSetErrorHandler(xerrordummy);

	XUngrabButton(dpy, AnyButton, AnyModifier, c->win);
	XDestroyWindow(dpy, c->title);

	if(c->prev)
		c->prev->next = c->next;
	if(c->next)
		c->next->prev = c->prev;
	if(c == clients)
		clients = c->next;
	if(sel == c)
		sel = getnext(clients);
	free(c->tags);
	free(c);

	XSync(dpy, False);
	XSetErrorHandler(xerror);
	XUngrabServer(dpy);
	if(sel)
		focus(sel);
	arrange(NULL);
}

void
zoom(Arg *arg)
{
	Client *c;

	if(!sel || (arrange != dotile) || sel->isfloat || sel->ismax)
		return;

	if(sel == getnext(clients))  {
		if((c = getnext(sel->next)))
			sel = c;
		else
			return;
	}

	/* pop */
	sel->prev->next = sel->next;
	if(sel->next)
		sel->next->prev = sel->prev;
	sel->prev = NULL;
	clients->prev = sel;
	sel->next = clients;
	clients = sel;
	focus(sel);
	arrange(NULL);
}
i) * (*arg2); OF = (result != full_result); CF = OF; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); Reg[arg1].i = result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); break; } //:: negate :(code) void test_negate_r32() { Reg[EBX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 db \n" // negate EBX // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: negate\n" "run: storing 0xffffffff\n" ); } :(before "End Op f7 Subops") case 3: { // negate r/m32 trace(Callstack_depth+1, "run") << "subop: negate" << end(); // one case that can overflow if (static_cast<uint32_t>(*arg1) == 0x80000000) { trace(Callstack_depth+1, "run") << "overflow" << end(); SF = true; ZF = false; OF = true; break; } int32_t result = -(*arg1); SF = (result >> 31); ZF = (result == 0); OF = false; CF = (*arg1 != 0); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); *arg1 = result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) // negate can overflow in exactly one situation void test_negate_can_overflow() { Reg[EBX].i = 0x80000000; // INT_MIN run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 db \n" // negate EBX // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: negate\n" "run: overflow\n" ); } //:: divide with remainder void test_divide_EAX_by_rm32() { Reg[EAX].u = 7; Reg[EDX].u = 0; Reg[ECX].i = 3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0x00000002\n" "run: remainder: 0x00000001\n" ); } :(before "End Op f7 Subops") case 7: { // divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX trace(Callstack_depth+1, "run") << "subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX" << end(); int64_t dividend = static_cast<int64_t>((static_cast<uint64_t>(Reg[EDX].u) << 32) | Reg[EAX].u); int32_t divisor = *arg1; assert(divisor != 0); Reg[EAX].i = dividend/divisor; // quotient Reg[EDX].i = dividend%divisor; // remainder // flag state undefined trace(Callstack_depth+1, "run") << "quotient: 0x" << HEXWORD << Reg[EAX].i << end(); trace(Callstack_depth+1, "run") << "remainder: 0x" << HEXWORD << Reg[EDX].i << end(); break; } :(code) void test_divide_EAX_by_negative_rm32() { Reg[EAX].u = 7; Reg[EDX].u = 0; Reg[ECX].i = -3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0xfffffffe\n" // -2 "run: remainder: 0x00000001\n" ); } void test_divide_negative_EAX_by_rm32() { Reg[EAX].i = -7; Reg[EDX].i = -1; // sign extend Reg[ECX].i = 3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0xfffffffe\n" // -2 "run: remainder: 0xffffffff\n" // -1, same sign as divident (EDX:EAX) ); } void test_divide_negative_EDX_EAX_by_rm32() { Reg[EAX].i = 0; // lower 32 bits are clear Reg[EDX].i = -7; Reg[ECX].i = 0x40000000; // 2^30 (largest positive power of 2) run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0xffffffe4\n" // (-7 << 32) / (1 << 30) = -7 << 2 = -28 "run: remainder: 0x00000000\n" ); } //:: shift left :(before "End Initialize Op Names") put_new(Name, "d3", "shift rm32 by CL bits depending on subop (sal/sar/shl/shr)"); :(code) void test_shift_left_r32_with_cl() { Reg[EBX].i = 13; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 e3 \n" // shift EBX left by CL bits // ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift left by CL bits\n" "run: storing 0x0000001a\n" ); } :(before "End Single-Byte Opcodes") case 0xd3: { const uint8_t modrm = next(); trace(Callstack_depth+1, "run") << "operate on r/m32" << end(); int32_t* arg1 = effective_address(modrm); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 4: { // shift left r/m32 by CL trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end(); uint8_t count = Reg[ECX].u & 0x1f; // OF is only defined if count is 1 if (count == 1) { bool msb = (*arg1 & 0x80000000) >> 1; bool pnsb = (*arg1 & 0x40000000); OF = (msb != pnsb); } int32_t result = (*arg1 << count); ZF = (result == 0); SF = (result < 0); CF = (*arg1 << (count-1)) & 0x80000000; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); *arg1 = result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } // End Op d3 Subops default: cerr << "unrecognized subop for opcode d3: " << NUM(subop) << '\n'; exit(1); } break; } //:: shift right arithmetic :(code) void test_shift_right_arithmetic_r32_with_cl() { Reg[EBX].i = 26; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 fb \n" // shift EBX right by CL bits, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" "run: storing 0x0000000d\n" ); } :(before "End Op d3 Subops") case 7: { // shift right r/m32 by CL, preserving sign trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end(); uint8_t count = Reg[ECX].u & 0x1f; *arg1 = (*arg1 >> count); ZF = (*arg1 == 0); SF = (*arg1 < 0); // OF is only defined if count is 1 if (count == 1) OF = false; // CF undefined trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) void test_shift_right_arithmetic_odd_r32_with_cl() { Reg[EBX].i = 27; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 fb \n" // shift EBX right by CL bits, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" // result: 13 "run: storing 0x0000000d\n" ); } void test_shift_right_arithmetic_negative_r32_with_cl() { Reg[EBX].i = 0xfffffffd; // -3 Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 fb \n" // shift EBX right by CL bits, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" // result: -2 "run: storing 0xfffffffe\n" ); } //:: shift right logical :(code) void test_shift_right_logical_r32_with_cl() { Reg[EBX].i = 26; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 eb \n" // shift EBX right by CL bits, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" // result: 13 "run: storing 0x0000000d\n" ); } :(before "End Op d3 Subops") case 5: { // shift right r/m32 by CL, padding zeroes trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end(); uint8_t count = Reg[ECX].u & 0x1f; // OF is only defined if count is 1 if (count == 1) { bool msb = (*arg1 & 0x80000000) >> 1; bool pnsb = (*arg1 & 0x40000000); OF = (msb != pnsb); } uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1); *uarg1 = (*uarg1 >> count); ZF = (*uarg1 == 0); // result is always positive by definition SF = false; // CF undefined trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) void test_shift_right_logical_odd_r32_with_cl() { Reg[EBX].i = 27; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 eb \n" // shift EBX right by CL bits, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" // result: 13 "run: storing 0x0000000d\n" ); } void test_shift_right_logical_negative_r32_with_cl() { Reg[EBX].i = 0xfffffffd; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 eb \n" // shift EBX right by CL bits, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" "run: storing 0x7ffffffe\n" ); } //:: and :(before "End Initialize Op Names") put_new(Name, "21", "rm32 = bitwise AND of r32 with rm32 (and)"); :(code) void test_and_r32_with_r32() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0x000000ff; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 21 d8 \n" // and EBX with destination EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: and EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x0000000d\n" ); } :(before "End Single-Byte Opcodes") case 0x21: { // and r32 with r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "and " << rname(arg2) << " with r/m32" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference int32_t* signed_arg1 = effective_address(modrm); *signed_arg1 &= Reg[arg2].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: or :(before "End Initialize Op Names") put_new(Name, "09", "rm32 = bitwise OR of r32 with rm32 (or)"); :(code) void test_or_r32_with_r32() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0xa0b0c0d0; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 09 d8 \n" // or EBX with destination EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: or EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0xaabbccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x09: { // or r32 with r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "or " << rname(arg2) << " with r/m32" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference int32_t* signed_arg1 = effective_address(modrm); *signed_arg1 |= Reg[arg2].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: xor :(before "End Initialize Op Names") put_new(Name, "31", "rm32 = bitwise XOR of r32 with rm32 (xor)"); :(code) void test_xor_r32_with_r32() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0xaabbc0d0; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 31 d8 \n" // xor EBX with destination EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: xor EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0xa0b0ccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x31: { // xor r32 with r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "xor " << rname(arg2) << " with r/m32" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference int32_t* signed_arg1 = effective_address(modrm); *signed_arg1 ^= Reg[arg2].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: not :(code) void test_not_r32() { Reg[EBX].i = 0x0f0f00ff; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 d3 \n" // not EBX // ModR/M in binary: 11 (direct mode) 010 (subop not) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: not\n" "run: storing 0xf0f0ff00\n" ); } :(before "End Op f7 Subops") case 2: { // not r/m32 trace(Callstack_depth+1, "run") << "subop: not" << end(); *arg1 = ~(*arg1); trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); // no flags affected break; } //:: compare (cmp) :(before "End Initialize Op Names") put_new(Name, "39", "compare: set SF if rm32 < r32 (cmp)"); :(code) void test_compare_r32_with_r32_greater() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0x0a0b0c07; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Single-Byte Opcodes") case 0x39: { // set SF if r/m32 < r32 const uint8_t modrm = next(); const uint8_t reg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "compare r/m32 with " << rname(reg2) << end(); const int32_t* signed_arg1 = effective_address(modrm); const int32_t signed_difference = *signed_arg1 - Reg[reg2].i; SF = (signed_difference < 0); ZF = (signed_difference == 0); const int64_t signed_full_difference = static_cast<int64_t>(*signed_arg1) - Reg[reg2].i; OF = (signed_difference != signed_full_difference); // set CF const uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1); const uint32_t unsigned_difference = unsigned_arg1 - Reg[reg2].u; const uint64_t unsigned_full_difference = static_cast<uint64_t>(unsigned_arg1) - Reg[reg2].u; CF = (unsigned_difference != unsigned_full_difference); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(code) void test_compare_r32_with_r32_lesser_unsigned_and_signed() { Reg[EAX].i = 0x0a0b0c07; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=0\n" ); } void test_compare_r32_with_r32_lesser_unsigned_and_signed_due_to_overflow() { Reg[EAX].i = 0x7fffffff; // largest positive signed integer Reg[EBX].i = 0x80000000; // smallest negative signed integer run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=1\n" ); } void test_compare_r32_with_r32_lesser_signed() { Reg[EAX].i = 0xffffffff; // -1 Reg[EBX].i = 0x00000001; // 1 run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=0; OF=0\n" ); } void test_compare_r32_with_r32_lesser_unsigned() { Reg[EAX].i = 0x00000001; // 1 Reg[EBX].i = 0xffffffff; // -1 run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=0; CF=1; OF=0\n" ); } void test_compare_r32_with_r32_equal() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX and EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //:: copy (mov) :(before "End Initialize Op Names") put_new(Name, "89", "copy r32 to rm32 (mov)"); :(code) void test_copy_r32_to_r32() { Reg[EBX].i = 0xaf; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 89 d8 \n" // copy EBX to EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: copy EBX to r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x000000af\n" ); } :(before "End Single-Byte Opcodes") case 0x89: { // copy r32 to r/m32 const uint8_t modrm = next(); const uint8_t rsrc = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "copy " << rname(rsrc) << " to r/m32" << end(); int32_t* dest = effective_address(modrm); *dest = Reg[rsrc].i; // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(int) == 4 on the host as well. trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *dest << end(); break; } //:: xchg :(before "End Initialize Op Names") put_new(Name, "87", "swap the contents of r32 and rm32 (xchg)"); :(code) void test_xchg_r32_with_r32() { Reg[EBX].i = 0xaf; Reg[EAX].i = 0x2e; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 87 d8 \n" // exchange EBX with EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: exchange EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x000000af in r/m32\n" "run: storing 0x0000002e in EBX\n" ); } :(before "End Single-Byte Opcodes") case 0x87: { // exchange r32 with r/m32 const uint8_t modrm = next(); const uint8_t reg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "exchange " << rname(reg2) << " with r/m32" << end(); int32_t* arg1 = effective_address(modrm); const int32_t tmp = *arg1; *arg1 = Reg[reg2].i; Reg[reg2].i = tmp; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end(); trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end(); break; } //:: increment :(before "End Initialize Op Names") put_new(Name, "40", "increment EAX (inc)"); put_new(Name, "41", "increment ECX (inc)"); put_new(Name, "42", "increment EDX (inc)"); put_new(Name, "43", "increment EBX (inc)"); put_new(Name, "44", "increment ESP (inc)"); put_new(Name, "45", "increment EBP (inc)"); put_new(Name, "46", "increment ESI (inc)"); put_new(Name, "47", "increment EDI (inc)"); :(code) void test_increment_r32() { Reg[ECX].u = 0x1f; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 41 \n" // increment ECX ); CHECK_TRACE_CONTENTS( "run: increment ECX\n" "run: storing value 0x00000020\n" ); } :(before "End Single-Byte Opcodes") case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: { // increment r32 const uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "increment " << rname(reg) << end(); ++Reg[reg].u; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end(); break; } :(before "End Initialize Op Names") put_new(Name, "ff", "increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)"); :(code) void test_increment_rm32() { Reg[EAX].u = 0x20; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " ff c0 \n" // increment EAX // ModR/M in binary: 11 (direct mode) 000 (subop inc) 000 (EAX) ); CHECK_TRACE_CONTENTS( "run: increment r/m32\n" "run: r/m32 is EAX\n" "run: storing value 0x00000021\n" ); } :(before "End Single-Byte Opcodes") case 0xff: { const uint8_t modrm = next(); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 0: { // increment r/m32 trace(Callstack_depth+1, "run") << "increment r/m32" << end(); int32_t* arg = effective_address(modrm); ++*arg; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end(); break; } default: cerr << "unrecognized subop for ff: " << HEXBYTE << NUM(subop) << '\n'; exit(1); // End Op ff Subops } break; } //:: decrement :(before "End Initialize Op Names") put_new(Name, "48", "decrement EAX (dec)"); put_new(Name, "49", "decrement ECX (dec)"); put_new(Name, "4a", "decrement EDX (dec)"); put_new(Name, "4b", "decrement EBX (dec)"); put_new(Name, "4c", "decrement ESP (dec)"); put_new(Name, "4d", "decrement EBP (dec)"); put_new(Name, "4e", "decrement ESI (dec)"); put_new(Name, "4f", "decrement EDI (dec)"); :(code) void test_decrement_r32() { Reg[ECX].u = 0x1f; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 49 \n" // decrement ECX ); CHECK_TRACE_CONTENTS( "run: decrement ECX\n" "run: storing value 0x0000001e\n" ); } :(before "End Single-Byte Opcodes") case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: { // decrement r32 const uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "decrement " << rname(reg) << end(); --Reg[reg].u; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end(); break; } :(code) void test_decrement_rm32() { Reg[EAX].u = 0x20; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " ff c8 \n" // decrement EAX // ModR/M in binary: 11 (direct mode) 001 (subop inc) 000 (EAX) ); CHECK_TRACE_CONTENTS( "run: decrement r/m32\n" "run: r/m32 is EAX\n" "run: storing value 0x0000001f\n" ); } :(before "End Op ff Subops") case 1: { // decrement r/m32 trace(Callstack_depth+1, "run") << "decrement r/m32" << end(); int32_t* arg = effective_address(modrm); --*arg; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end(); break; } //:: push :(before "End Initialize Op Names") put_new(Name, "50", "push EAX to stack (push)"); put_new(Name, "51", "push ECX to stack (push)"); put_new(Name, "52", "push EDX to stack (push)"); put_new(Name, "53", "push EBX to stack (push)"); put_new(Name, "54", "push ESP to stack (push)"); put_new(Name, "55", "push EBP to stack (push)"); put_new(Name, "56", "push ESI to stack (push)"); put_new(Name, "57", "push EDI to stack (push)"); :(code) void test_push_r32() { Mem.push_back(vma(0xbd000000)); // manually allocate memory Reg[ESP].u = 0xbd000008; Reg[EBX].i = 0x0000000a; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 53 \n" // push EBX to stack ); CHECK_TRACE_CONTENTS( "run: push EBX\n" "run: decrementing ESP to 0xbd000004\n" "run: pushing value 0x0000000a\n" ); } :(before "End Single-Byte Opcodes") case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: { // push r32 to stack uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "push " << rname(reg) << end(); //? cerr << "push: " << NUM(reg) << ": " << Reg[reg].u << " => " << Reg[ESP].u << '\n'; push(Reg[reg].u); break; } //:: pop :(before "End Initialize Op Names") put_new(Name, "58", "pop top of stack to EAX (pop)"); put_new(Name, "59", "pop top of stack to ECX (pop)"); put_new(Name, "5a", "pop top of stack to EDX (pop)"); put_new(Name, "5b", "pop top of stack to EBX (pop)"); put_new(Name, "5c", "pop top of stack to ESP (pop)"); put_new(Name, "5d", "pop top of stack to EBP (pop)"); put_new(Name, "5e", "pop top of stack to ESI (pop)"); put_new(Name, "5f", "pop top of stack to EDI (pop)"); :(code) void test_pop_r32() { Mem.push_back(vma(0xbd000000)); // manually allocate memory Reg[ESP].u = 0xbd000008; write_mem_i32(0xbd000008, 0x0000000a); // ..before this write run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 5b \n" // pop stack to EBX "== data 0x2000\n" // data segment "0a 00 00 00\n" // 0x0000000a ); CHECK_TRACE_CONTENTS( "run: pop into EBX\n" "run: popping value 0x0000000a\n" "run: incrementing ESP to 0xbd00000c\n" ); } :(before "End Single-Byte Opcodes") case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: { // pop stack into r32 const uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "pop into " << rname(reg) << end(); //? cerr << "pop from " << Reg[ESP].u << '\n'; Reg[reg].u = pop(); //? cerr << "=> " << NUM(reg) << ": " << Reg[reg].u << '\n'; break; } :(code) uint32_t pop() { const uint32_t result = read_mem_u32(Reg[ESP].u); trace(Callstack_depth+1, "run") << "popping value 0x" << HEXWORD << result << end(); Reg[ESP].u += 4; trace(Callstack_depth+1, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end(); assert(Reg[ESP].u < AFTER_STACK); return result; }