about summary refs log tree commit diff stats
path: root/draw.c
blob: 3fbc85c7426b8e551d8a4f8b938b5701eeb51c24 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
 * (C)opyright MMIV-MMVI Anselm R. Garbe <garbeam at gmail dot com>
 * See LICENSE file for license details.
 */

#include <stdio.h>
#include <string.h>

#include <X11/Xlocale.h>

#include "dwm.h"

static void
drawborder(void)
{
	XPoint points[5];
	XSetLineAttributes(dpy, dc.gc, 1, LineSolid, CapButt, JoinMiter);
	XSetForeground(dpy, dc.gc, dc.border);
	points[0].x = dc.x;
	points[0].y = dc.y;
	points[1].x = dc.w - 1;
	points[1].y = 0;
	points[2].x = 0;
	points[2].y = dc.h - 1;
	points[3].x = -(dc.w - 1);
	points[3].y = 0;
	points[4].x = 0;
	points[4].y = -(dc.h - 1);
	XDrawLines(dpy, dc.drawable, dc.gc, points, 5, CoordModePrevious);
}

void
drawtext(const char *text, Bool invert, Bool border)
{
	int x, y, w, h;
	unsigned int len;
	static char buf[256];
	XGCValues gcv;
	XRectangle r = { dc.x, dc.y, dc.w, dc.h };

	XSetForeground(dpy, dc.gc, invert ? dc.fg : dc.bg);
	XFillRectangles(dpy, dc.drawable, dc.gc, &r, 1);

	w = 0;
	if(border)
		drawborder();

	if(!text)
		return;

	len = strlen(text);
	if(len >= sizeof(buf))
		len = sizeof(buf) - 1;
	memcpy(buf, text, len);
	buf[len] = 0;

	h = dc.font.ascent + dc.font.descent;
	y = dc.y + (dc.h / 2) - (h / 2) + dc.font.ascent;
	x = dc.x + (h / 2);

	/* shorten text if necessary */
	while(len && (w = textnw(buf, len)) > dc.w - h)
		buf[--len] = 0;

	if(w > dc.w)
		return; /* too long */

	gcv.foreground = invert ? dc.bg : dc.fg;
	gcv.background = invert ? dc.fg : dc.bg;
	if(dc.font.set) {
		XChangeGC(dpy, dc.gc, GCForeground | GCBackground, &gcv);
		XmbDrawImageString(dpy, dc.drawable, dc.font.set, dc.gc,
				x, y, buf, len);
	}
	else {
		gcv.font = dc.font.xfont->fid;
		XChangeGC(dpy, dc.gc, GCForeground | GCBackground | GCFont, &gcv);
		XDrawImageString(dpy, dc.drawable, dc.gc, x, y, buf, len);
	}
}

unsigned long
initcolor(const char *colstr)
{
	XColor color;
	Colormap cmap = DefaultColormap(dpy, screen);

	XAllocNamedColor(dpy, cmap, colstr, &color, &color);
	return color.pixel;
}

unsigned int
textnw(char *text, unsigned int len)
{
	XRectangle r;
	if(dc.font.set) {
		XmbTextExtents(dc.font.set, text, len, NULL, &r);
		return r.width;
	}
	return XTextWidth(dc.font.xfont, text, len);
}

unsigned int
textw(char *text)
{
	return textnw(text, strlen(text));
}

void
initfont(const char *fontstr)
{
	char **missing, *def;
	int i, n;

	missing = NULL;
	setlocale(LC_ALL, "");
	if(dc.font.set)
		XFreeFontSet(dpy, dc.font.set);
	dc.font.set = XCreateFontSet(dpy, fontstr, &missing, &n, &def);
	if(missing) {
		while(n--)
			fprintf(stderr, "missing fontset: %s\n", missing[n]);
		XFreeStringList(missing);
		if(dc.font.set) {
			XFreeFontSet(dpy, dc.font.set);
			dc.font.set = NULL;
		}
	}
	if(dc.font.set) {
		XFontSetExtents *font_extents;
		XFontStruct **xfonts;
		char **font_names;

		dc.font.ascent = dc.font.descent = 0;
		font_extents = XExtentsOfFontSet(dc.font.set);
		n = XFontsOfFontSet(dc.font.set, &xfonts, &font_names);
		for(i = 0, dc.font.ascent = 0, dc.font.descent = 0; i < n; i++) {
			if(dc.font.ascent < (*xfonts)->ascent)
				dc.font.ascent = (*xfonts)->ascent;
			if(dc.font.descent < (*xfonts)->descent)
				dc.font.descent = (*xfonts)->descent;
			xfonts++;
		}
	}
	else {
		if(dc.font.xfont)
			XFreeFont(dpy, dc.font.xfont);
		dc.font.xfont = NULL;
		dc.font.xfont = XLoadQueryFont(dpy, fontstr);
		if (!dc.font.xfont)
			dc.font.xfont = XLoadQueryFont(dpy, "fixed");
		if (!dc.font.xfont)
			error("error, cannot init 'fixed' font\n");
		dc.font.ascent = dc.font.xfont->ascent;
		dc.font.descent = dc.font.xfont->descent;
	}
	dc.font.height = dc.font.ascent + dc.font.descent;
}
Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
//: operating directly on a register

:(before "End Initialize Op Names")
put_new(Name, "01", "add r32 to rm32 (add)");

:(code)
void test_add_r32_to_r32() {
  Reg[EAX].i = 0x10;
  Reg[EBX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  01     d8                                    \n" // add EBX to EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing 0x00000011\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x01: {  // add r32 to r/m32
  uint8_t modrm = next();
  uint8_t arg2 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "add " << rname(arg2) << " to r/m32" << end();
  int32_t* signed_arg1 = effective_address(modrm);
  int32_t signed_result = *signed_arg1 + Reg[arg2].i;
  SF = (signed_result < 0);
  ZF = (signed_result == 0);
  int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) + Reg[arg2].i;
  OF = (signed_result != signed_full_result);
  // set CF
  uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
  uint32_t unsigned_result = unsigned_arg1 + Reg[arg2].u;
  uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) + Reg[arg2].u;
  CF = (unsigned_result != unsigned_full_result);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  *signed_arg1 = signed_result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
  break;
}

:(code)
void test_add_r32_to_r32_signed_overflow() {
  Reg[EAX].i = INT32_MAX;
  Reg[EBX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  01     d8                                    \n" // add EBX to EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: r/m32 is EAX\n"
      "run: SF=1; ZF=0; CF=0; OF=1\n"
      "run: storing 0x80000000\n"
  );
}

void test_add_r32_to_r32_unsigned_overflow() {
  Reg[EAX].u = UINT32_MAX;
  Reg[EBX].u = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  01     d8                                    \n" // add EBX to EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: r/m32 is EAX\n"
      "run: SF=0; ZF=1; CF=1; OF=0\n"
      "run: storing 0x00000000\n"
  );
}

void test_add_r32_to_r32_unsigned_and_signed_overflow() {
  Reg[EAX].i = Reg[EBX].i = INT32_MIN;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  01     d8                                    \n" // add EBX to EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: r/m32 is EAX\n"
      "run: SF=0; ZF=1; CF=1; OF=1\n"
      "run: storing 0x00000000\n"
  );
}

:(code)
// Implement tables 2-2 and 2-3 in the Intel manual, Volume 2.
// We return a pointer so that instructions can write to multiple bytes in
// 'Mem' at once.
// beware: will eventually have side-effects
int32_t* effective_address(uint8_t modrm) {
  const uint8_t mod = (modrm>>6);
  // ignore middle 3 'reg opcode' bits
  const uint8_t rm = modrm & 0x7;
  if (mod == 3) {
    // mod 3 is just register direct addressing
    trace(Callstack_depth+1, "run") << "r/m32 is " << rname(rm) << end();
    return &Reg[rm].i;
  }
  uint32_t addr = effective_address_number(modrm);
  trace(Callstack_depth+1, "run") << "effective address contains 0x" << HEXWORD << read_mem_i32(addr) << end();
  return mem_addr_i32(addr);
}

// beware: will eventually have side-effects
uint32_t effective_address_number(uint8_t modrm) {
  const uint8_t mod = (modrm>>6);
  // ignore middle 3 'reg opcode' bits
  const uint8_t rm = modrm & 0x7;
  uint32_t addr = 0;
  switch (mod) {
  case 3:
    // mod 3 is just register direct addressing
    raise << "unexpected direct addressing mode\n" << end();
    return 0;
  // End Mod Special-cases(addr)
  default:
    cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
    exit(1);
  }
  //: other mods are indirect, and they'll set addr appropriately
  // Found effective_address(addr)
  return addr;
}

string rname(uint8_t r) {
  switch (r) {
  case 0: return "EAX";
  case 1: return "ECX";
  case 2: return "EDX";
  case 3: return "EBX";
  case 4: return "ESP";
  case 5: return "EBP";
  case 6: return "ESI";
  case 7: return "EDI";
  default: raise << "invalid register " << r << '\n' << end();  return "";
  }
}

//:: subtract

:(before "End Initialize Op Names")
put_new(Name, "29", "subtract r32 from rm32 (sub)");

:(code)
void test_subtract_r32_from_r32() {
  Reg[EAX].i = 10;
  Reg[EBX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  29     d8                                    \n"  // subtract EBX from EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract EBX from r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing 0x00000009\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x29: {  // subtract r32 from r/m32
  const uint8_t modrm = next();
  const uint8_t arg2 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "subtract " << rname(arg2) << " from r/m32" << end();
  int32_t* signed_arg1 = effective_address(modrm);
  int32_t signed_result = *signed_arg1 - Reg[arg2].i;
  SF = (signed_result < 0);
  ZF = (signed_result == 0);
  int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) - Reg[arg2].i;
  OF = (signed_result != signed_full_result);
  // set CF
  uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
  uint32_t unsigned_result = unsigned_arg1 - Reg[arg2].u;
  uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) - Reg[arg2].u;
  CF = (unsigned_result != unsigned_full_result);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  *signed_arg1 = signed_result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
  break;
}

:(code)
void test_subtract_r32_from_r32_signed_overflow() {
  Reg[EAX].i = INT32_MIN;
  Reg[EBX].i = INT32_MAX;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  29     d8                                    \n"  // subtract EBX from EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract EBX from r/m32\n"
      "run: r/m32 is EAX\n"
      "run: SF=0; ZF=0; CF=0; OF=1\n"
      "run: storing 0x00000001\n"
  );
}

void test_subtract_r32_from_r32_unsigned_overflow() {
  Reg[EAX].i = 0;
  Reg[EBX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  29     d8                                    \n"  // subtract EBX from EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract EBX from r/m32\n"
      "run: r/m32 is EAX\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
      "run: storing 0xffffffff\n"
  );
}

void test_subtract_r32_from_r32_signed_and_unsigned_overflow() {
  Reg[EAX].i = 0;
  Reg[EBX].i = INT32_MIN;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  29     d8                                    \n"  // subtract EBX from EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract EBX from r/m32\n"
      "run: r/m32 is EAX\n"
      "run: SF=1; ZF=0; CF=1; OF=1\n"
      "run: storing 0x80000000\n"
  );
}

//:: multiply

:(before "End Initialize Op Names")
put_new(Name, "f7", "negate/multiply/divide rm32 (with EAX and EDX if necessary) depending on subop (neg/mul/idiv)");

:(code)
void test_multiply_EAX_by_r32() {
  Reg[EAX].i = 4;
  Reg[ECX].i = 3;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  f7     e1                                    \n"  // multiply EAX by ECX
      // ModR/M in binary: 11 (direct mode) 100 (subop mul) 001 (src ECX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is ECX\n"
      "run: subop: multiply EAX by r/m32\n"
      "run: storing 0x0000000c\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0xf7: {
  const uint8_t modrm = next();
  trace(Callstack_depth+1, "run") << "operate on r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  const uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
  case 4: {  // mul unsigned EAX by r/m32
    trace(Callstack_depth+1, "run") << "subop: multiply EAX by r/m32" << end();
    const uint64_t result = static_cast<uint64_t>(Reg[EAX].u) * static_cast<uint32_t>(*arg1);
    Reg[EAX].u = result & 0xffffffff;
    Reg[EDX].u = result >> 32;
    OF = (Reg[EDX].u != 0);
    CF = OF;
    trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
    trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].u << end();
    break;
  }
  // End Op f7 Subops
  default:
    cerr << "unrecognized subop for opcode f7: " << NUM(subop) << '\n';
    exit(1);
  }
  break;
}

//:

:(before "End Initialize Op Names")
put_new(Name_0f, "af", "multiply rm32 into r32 (imul)");

:(code)
void test_multiply_r32_into_r32() {
  Reg[EAX].i = 4;
  Reg[EBX].i = 2;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  0f af  d8                                    \n"  // subtract EBX into EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: multiply EBX by r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing 0x00000008\n"
  );
}

:(before "End Two-Byte Opcodes Starting With 0f")
case 0xaf: {  // multiply r32 by r/m32
  const uint8_t modrm = next();
  const uint8_t arg1 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "multiply " << rname(arg1) << " by r/m32" << end();
  const int32_t* arg2 = effective_address(modrm);
  int32_t result = Reg[arg1].i * (*arg2);
  int64_t full_result = static_cast<int64_t>(Reg[arg1].i) * (*arg2);
  OF = (result != full_result);
  CF = OF;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  Reg[arg1].i = result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end();
  break;
}

//:: negate

:(code)
void test_negate_r32() {
  Reg[EBX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  f7     db                                    \n"  // negate EBX
      // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: negate\n"
      "run: storing 0xffffffff\n"
  );
}

:(before "End Op f7 Subops")
case 3: {  // negate r/m32
  trace(Callstack_depth+1, "run") << "subop: negate" << end();
  // one case that can overflow
  if (static_cast<uint32_t>(*arg1) == 0x80000000) {
    trace(Callstack_depth+1, "run") << "overflow" << end();
    SF = true;
    ZF = false;
    OF = true;
    break;
  }
  int32_t result = -(*arg1);
  SF = (result >> 31);
  ZF = (result == 0);
  OF = false;
  CF = (*arg1 != 0);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  *arg1 = result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  break;
}

:(code)
// negate can overflow in exactly one situation
void test_negate_can_overflow() {
  Reg[EBX].i = INT32_MIN;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  f7     db                                    \n"  // negate EBX
      // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: negate\n"
      "run: overflow\n"
  );
}

//:: divide with remainder

void test_divide_EAX_by_rm32() {
  Reg[EAX].u = 7;
  Reg[EDX].u = 0;
  Reg[ECX].i = 3;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  f7     f9                                    \n"  // multiply EAX by ECX
      // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is ECX\n"
      "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n"
      "run: quotient: 0x00000002\n"
      "run: remainder: 0x00000001\n"
  );
}

:(before "End Op f7 Subops")
case 7: {  // divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX
  trace(Callstack_depth+1, "run") << "subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX" << end();
  int64_t dividend = static_cast<int64_t>((static_cast<uint64_t>(Reg[EDX].u) << 32) | Reg[EAX].u);
  int32_t divisor = *arg1;
  assert(divisor != 0);
  Reg[EAX].i = dividend/divisor;  // quotient
  Reg[EDX].i = dividend%divisor;  // remainder
  // flag state undefined
  trace(Callstack_depth+1, "run") << "quotient: 0x" << HEXWORD << Reg[EAX].i << end();
  trace(Callstack_depth+1, "run") << "remainder: 0x" << HEXWORD << Reg[EDX].i << end();
  break;
}

:(code)
void test_divide_EAX_by_negative_rm32() {
  Reg[EAX].u = 7;
  Reg[EDX].u = 0;
  Reg[ECX].i = -3;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  f7     f9                                    \n"  // multiply EAX by ECX
      // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is ECX\n"
      "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n"
      "run: quotient: 0xfffffffe\n"  // -2
      "run: remainder: 0x00000001\n"
  );
}

void test_divide_negative_EAX_by_rm32() {
  Reg[EAX].i = -7;
  Reg[EDX].i = -1;  // sign extend
  Reg[ECX].i = 3;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  f7     f9                                    \n"  // multiply EAX by ECX
      // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is ECX\n"
      "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n"
      "run: quotient: 0xfffffffe\n"  // -2
      "run: remainder: 0xffffffff\n"  // -1, same sign as divident (EDX:EAX)
  );
}

void test_divide_negative_EDX_EAX_by_rm32() {
  Reg[EAX].i = 0;  // lower 32 bits are clear
  Reg[EDX].i = -7;
  Reg[ECX].i = 0x40000000;  // 2^30 (largest positive power of 2)
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  f7     f9                                    \n"  // multiply EAX by ECX
      // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is ECX\n"
      "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n"
      "run: quotient: 0xffffffe4\n"  // (-7 << 32) / (1 << 30) = -7 << 2 = -28
      "run: remainder: 0x00000000\n"
  );
}

//:: shift left

:(before "End Initialize Op Names")
put_new(Name, "d3", "shift rm32 by CL bits depending on subop (sal/sar/shl/shr)");

:(code)
void test_shift_left_r32_with_cl() {
  Reg[EBX].i = 13;
  Reg[ECX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  d3     e3                                    \n"  // shift EBX left by CL bits
      // ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift left by CL bits\n"
      "run: storing 0x0000001a\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0xd3: {
  const uint8_t modrm = next();
  trace(Callstack_depth+1, "run") << "operate on r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  const uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
  case 4: {  // shift left r/m32 by CL
    trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end();
    uint8_t count = Reg[ECX].u & 0x1f;
    // OF is only defined if count is 1
    if (count == 1) {
      bool msb = (*arg1 & 0x80000000) >> 1;
      bool pnsb = (*arg1 & 0x40000000);
      OF = (msb != pnsb);
    }
    int32_t result = (*arg1 << count);
    ZF = (result == 0);
    SF = (result < 0);
    CF = (*arg1 << (count-1)) & 0x80000000;
    trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
    *arg1 = result;
    trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
    break;
  }
  // End Op d3 Subops
  default:
    cerr << "unrecognized subop for opcode d3: " << NUM(subop) << '\n';
    exit(1);
  }
  break;
}

//:: shift right arithmetic

:(code)
void test_shift_right_arithmetic_r32_with_cl() {
  Reg[EBX].i = 26;
  Reg[ECX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  d3     fb                                    \n"  // shift EBX right by CL bits, while preserving sign
      // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while preserving sign\n"
      "run: storing 0x0000000d\n"
  );
}

:(before "End Op d3 Subops")
case 7: {  // shift right r/m32 by CL, preserving sign
  trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end();
  uint8_t count = Reg[ECX].u & 0x1f;
  *arg1 = (*arg1 >> count);
  ZF = (*arg1 == 0);
  SF = (*arg1 < 0);
  // OF is only defined if count is 1
  if (count == 1) OF = false;
  // CF undefined
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  break;
}

:(code)
void test_shift_right_arithmetic_odd_r32_with_cl() {
  Reg[EBX].i = 27;
  Reg[ECX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  d3     fb                                    \n"  // shift EBX right by CL bits, while preserving sign
      // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while preserving sign\n"
      // result: 13
      "run: storing 0x0000000d\n"
  );
}

void test_shift_right_arithmetic_negative_r32_with_cl() {
  Reg[EBX].i = 0xfffffffd;  // -3
  Reg[ECX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  d3     fb                                    \n"  // shift EBX right by CL bits, while preserving sign
      // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while preserving sign\n"
      // result: -2
      "run: storing 0xfffffffe\n"
  );
}

//:: shift right logical

:(code)
void test_shift_right_logical_r32_with_cl() {
  Reg[EBX].i = 26;
  Reg[ECX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  d3     eb                                    \n"  // shift EBX right by CL bits, while padding zeroes
      // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while padding zeroes\n"
      // result: 13
      "run: storing 0x0000000d\n"
  );
}

:(before "End Op d3 Subops")
case 5: {  // shift right r/m32 by CL, padding zeroes
  trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end();
  uint8_t count = Reg[ECX].u & 0x1f;
  // OF is only defined if count is 1
  if (count == 1) {
    bool msb = (*arg1 & 0x80000000) >> 1;
    bool pnsb = (*arg1 & 0x40000000);
    OF = (msb != pnsb);
  }
  uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1);
  *uarg1 = (*uarg1 >> count);
  ZF = (*uarg1 == 0);
  // result is always positive by definition
  SF = false;
  // CF undefined
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  break;
}

:(code)
void test_shift_right_logical_odd_r32_with_cl() {
  Reg[EBX].i = 27;
  Reg[ECX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  d3     eb                                    \n"  // shift EBX right by CL bits, while padding zeroes
      // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while padding zeroes\n"
      // result: 13
      "run: storing 0x0000000d\n"
  );
}

void test_shift_right_logical_negative_r32_with_cl() {
  Reg[EBX].i = 0xfffffffd;
  Reg[ECX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  d3     eb                                    \n"  // shift EBX right by CL bits, while padding zeroes
      // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while padding zeroes\n"
      "run: storing 0x7ffffffe\n"
  );
}

//:: and

:(before "End Initialize Op Names")
put_new(Name, "21", "rm32 = bitwise AND of r32 with rm32 (and)");

:(code)
void test_and_r32_with_r32() {
  Reg[EAX].i = 0x0a0b0c0d;
  Reg[EBX].i = 0x000000ff;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  21     d8                                    \n"  // and EBX with destination EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: and EBX with r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing 0x0000000d\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x21: {  // and r32 with r/m32
  const uint8_t modrm = next();
  const uint8_t arg2 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "and " << rname(arg2) << " with r/m32" << end();
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  int32_t* signed_arg1 = effective_address(modrm);
  *signed_arg1 &= Reg[arg2].i;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
  SF = (*signed_arg1 >> 31);
  ZF = (*signed_arg1 == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:: or

:(before "End Initialize Op Names")
put_new(Name, "09", "rm32 = bitwise OR of r32 with rm32 (or)");

:(code)
void test_or_r32_with_r32() {
  Reg[EAX].i = 0x0a0b0c0d;
  Reg[EBX].i = 0xa0b0c0d0;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  09     d8                                    \n"  // or EBX with destination EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: or EBX with r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing 0xaabbccdd\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x09: {  // or r32 with r/m32
  const uint8_t modrm = next();
  const uint8_t arg2 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "or " << rname(arg2) << " with r/m32" << end();
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  int32_t* signed_arg1 = effective_address(modrm);
  *signed_arg1 |= Reg[arg2].i;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
  SF = (*signed_arg1 >> 31);
  ZF = (*signed_arg1 == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:: xor

:(before "End Initialize Op Names")
put_new(Name, "31", "rm32 = bitwise XOR of r32 with rm32 (xor)");

:(code)
void test_xor_r32_with_r32() {
  Reg[EAX].i = 0x0a0b0c0d;
  Reg[EBX].i = 0xaabbc0d0;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  31     d8                                    \n"  // xor EBX with destination EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: xor EBX with r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing 0xa0b0ccdd\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x31: {  // xor r32 with r/m32
  const uint8_t modrm = next();
  const uint8_t arg2 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "xor " << rname(arg2) << " with r/m32" << end();
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  int32_t* signed_arg1 = effective_address(modrm);
  *signed_arg1 ^= Reg[arg2].i;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
  SF = (*signed_arg1 >> 31);
  ZF = (*signed_arg1 == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:: not

:(code)
void test_not_r32() {
  Reg[EBX].i = 0x0f0f00ff;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  f7     d3                                    \n"  // not EBX
      // ModR/M in binary: 11 (direct mode) 010 (subop not) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: not\n"
      "run: storing 0xf0f0ff00\n"
  );
}

:(before "End Op f7 Subops")
case 2: {  // not r/m32
  trace(Callstack_depth+1, "run") << "subop: not" << end();
  *arg1 = ~(*arg1);
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  // no flags affected
  break;
}

//:: compare (cmp)

:(before "End Initialize Op Names")
put_new(Name, "39", "compare: set SF if rm32 < r32 (cmp)");

:(code)
void test_compare_r32_with_r32_greater() {
  Reg[EAX].i = 0x0a0b0c0d;
  Reg[EBX].i = 0x0a0b0c07;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  39     d8                                    \n"  // compare EAX with EBX
      // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: compare r/m32 with EBX\n"
      "run: r/m32 is EAX\n"
      "run: SF=0; ZF=0; CF=0; OF=0\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x39: {  // set SF if r/m32 < r32
  const uint8_t modrm = next();
  const uint8_t reg2 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "compare r/m32 with " << rname(reg2) << end();
  const int32_t* signed_arg1 = effective_address(modrm);
  const int32_t signed_difference = *signed_arg1 - Reg[reg2].i;
  SF = (signed_difference < 0);
  ZF = (signed_difference == 0);
  const int64_t signed_full_difference = static_cast<int64_t>(*signed_arg1) - Reg[reg2].i;
  OF = (signed_difference != signed_full_difference);
  // set CF
  const uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
  const uint32_t unsigned_difference = unsigned_arg1 - Reg[reg2].u;
  const uint64_t unsigned_full_difference = static_cast<uint64_t>(unsigned_arg1) - Reg[reg2].u;
  CF = (unsigned_difference != unsigned_full_difference);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

:(code)
void test_compare_r32_with_r32_lesser_unsigned_and_signed() {
  Reg[EAX].i = 0x0a0b0c07;
  Reg[EBX].i = 0x0a0b0c0d;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  39     d8                                    \n"  // compare EAX with EBX
      // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: compare r/m32 with EBX\n"
      "run: r/m32 is EAX\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
  );
}

void test_compare_r32_with_r32_lesser_unsigned_and_signed_due_to_overflow() {
  Reg[EAX].i = INT32_MAX;
  Reg[EBX].i = INT32_MIN;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  39     d8                                    \n"  // compare EAX with EBX
      // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: compare r/m32 with EBX\n"
      "run: r/m32 is EAX\n"
      "run: SF=1; ZF=0; CF=1; OF=1\n"
  );
}

void test_compare_r32_with_r32_lesser_signed() {
  Reg[EAX].i = -1;
  Reg[EBX].i = 1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  39     d8                                    \n"  // compare EAX with EBX
      // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: compare r/m32 with EBX\n"
      "run: r/m32 is EAX\n"
      "run: SF=1; ZF=0; CF=0; OF=0\n"
  );
}

void test_compare_r32_with_r32_lesser_unsigned() {
  Reg[EAX].i = 1;
  Reg[EBX].i = -1;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  39     d8                                    \n"  // compare EAX with EBX
      // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: compare r/m32 with EBX\n"
      "run: r/m32 is EAX\n"
      "run: SF=0; ZF=0; CF=1; OF=0\n"
  );
}

void test_compare_r32_with_r32_equal() {
  Reg[EAX].i = 0x0a0b0c0d;
  Reg[EBX].i = 0x0a0b0c0d;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  39     d8                                    \n"  // compare EAX and EBX
      // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: compare r/m32 with EBX\n"
      "run: r/m32 is EAX\n"
      "run: SF=0; ZF=1; CF=0; OF=0\n"
  );
}

//:: copy (mov)

:(before "End Initialize Op Names")
put_new(Name, "89", "copy r32 to rm32 (mov)");

:(code)
void test_copy_r32_to_r32() {
  Reg[EBX].i = 0xaf;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  89     d8                                    \n"  // copy EBX to EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: copy EBX to r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing 0x000000af\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x89: {  // copy r32 to r/m32
  const uint8_t modrm = next();
  const uint8_t rsrc = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "copy " << rname(rsrc) << " to r/m32" << end();
  int32_t* dest = effective_address(modrm);
  *dest = Reg[rsrc].i;  // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(int) == 4 on the host as well.
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *dest << end();
  break;
}

//:: xchg

:(before "End Initialize Op Names")
put_new(Name, "87", "swap the contents of r32 and rm32 (xchg)");

:(code)
void test_xchg_r32_with_r32() {
  Reg[EBX].i = 0xaf;
  Reg[EAX].i = 0x2e;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  87     d8                                    \n"  // exchange EBX with EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: exchange EBX with r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing 0x000000af in r/m32\n"
      "run: storing 0x0000002e in EBX\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x87: {  // exchange r32 with r/m32
  const uint8_t modrm = next();
  const uint8_t reg2 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "exchange " << rname(reg2) << " with r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  const int32_t tmp = *arg1;
  *arg1 = Reg[reg2].i;
  Reg[reg2].i = tmp;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end();
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end();
  break;
}

//:: increment

:(before "End Initialize Op Names")
put_new(Name, "40", "increment EAX (inc)");
put_new(Name, "41", "increment ECX (inc)");
put_new(Name, "42", "increment EDX (inc)");
put_new(Name, "43", "increment EBX (inc)");
put_new(Name, "44", "increment ESP (inc)");
put_new(Name, "45", "increment EBP (inc)");
put_new(Name, "46", "increment ESI (inc)");
put_new(Name, "47", "increment EDI (inc)");

:(code)
void test_increment_r32() {
  Reg[ECX].u = 0x1f;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  41                                           \n"  // increment ECX
  );
  CHECK_TRACE_CONTENTS(
      "run: increment ECX\n"
      "run: storing value 0x00000020\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x40:
case 0x41:
case 0x42:
case 0x43:
case 0x44:
case 0x45:
case 0x46:
case 0x47: {  // increment r32
  const uint8_t reg = op & 0x7;
  trace(Callstack_depth+1, "run") << "increment " << rname(reg) << end();
  ++Reg[reg].u;
  trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
  break;
}

:(before "End Initialize Op Names")
put_new(Name, "ff", "increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)");

:(code)
void test_increment_rm32() {
  Reg[EAX].u = 0x20;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  ff     c0                                    \n"  // increment EAX
      // ModR/M in binary: 11 (direct mode) 000 (subop inc) 000 (EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: increment r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing value 0x00000021\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0xff: {
  const uint8_t modrm = next();
  const uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
    case 0: {  // increment r/m32
      trace(Callstack_depth+1, "run") << "increment r/m32" << end();
      int32_t* arg = effective_address(modrm);
      ++*arg;
      trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end();
      break;
    }
    default:
      cerr << "unrecognized subop for ff: " << HEXBYTE << NUM(subop) << '\n';
      exit(1);
    // End Op ff Subops
  }
  break;
}

//:: decrement

:(before "End Initialize Op Names")
put_new(Name, "48", "decrement EAX (dec)");
put_new(Name, "49", "decrement ECX (dec)");
put_new(Name, "4a", "decrement EDX (dec)");
put_new(Name, "4b", "decrement EBX (dec)");
put_new(Name, "4c", "decrement ESP (dec)");
put_new(Name, "4d", "decrement EBP (dec)");
put_new(Name, "4e", "decrement ESI (dec)");
put_new(Name, "4f", "decrement EDI (dec)");

:(code)
void test_decrement_r32() {
  Reg[ECX].u = 0x1f;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  49                                           \n"  // decrement ECX
  );
  CHECK_TRACE_CONTENTS(
      "run: decrement ECX\n"
      "run: storing value 0x0000001e\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x48:
case 0x49:
case 0x4a:
case 0x4b:
case 0x4c:
case 0x4d:
case 0x4e:
case 0x4f: {  // decrement r32
  const uint8_t reg = op & 0x7;
  trace(Callstack_depth+1, "run") << "decrement " << rname(reg) << end();
  --Reg[reg].u;
  trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
  break;
}

:(code)
void test_decrement_rm32() {
  Reg[EAX].u = 0x20;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  ff     c8                                    \n"  // decrement EAX
      // ModR/M in binary: 11 (direct mode) 001 (subop inc) 000 (EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: decrement r/m32\n"
      "run: r/m32 is EAX\n"
      "run: storing value 0x0000001f\n"
  );
}

:(before "End Op ff Subops")
case 1: {  // decrement r/m32
  trace(Callstack_depth+1, "run") << "decrement r/m32" << end();
  int32_t* arg = effective_address(modrm);
  --*arg;
  trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end();
  break;
}

//:: push

:(before "End Initialize Op Names")
put_new(Name, "50", "push EAX to stack (push)");
put_new(Name, "51", "push ECX to stack (push)");
put_new(Name, "52", "push EDX to stack (push)");
put_new(Name, "53", "push EBX to stack (push)");
put_new(Name, "54", "push ESP to stack (push)");
put_new(Name, "55", "push EBP to stack (push)");
put_new(Name, "56", "push ESI to stack (push)");
put_new(Name, "57", "push EDI to stack (push)");

:(code)
void test_push_r32() {
  Mem.push_back(vma(0xbd000000));  // manually allocate memory
  Reg[ESP].u = 0xbd000008;
  Reg[EBX].i = 0x0000000a;
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  53                                           \n"  // push EBX to stack
  );
  CHECK_TRACE_CONTENTS(
      "run: push EBX\n"
      "run: decrementing ESP to 0xbd000004\n"
      "run: pushing value 0x0000000a\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57: {  // push r32 to stack
  uint8_t reg = op & 0x7;
  trace(Callstack_depth+1, "run") << "push " << rname(reg) << end();
//?   cerr << "push: " << NUM(reg) << ": " << Reg[reg].u << " => " << Reg[ESP].u << '\n';
  push(Reg[reg].u);
  break;
}

//:: pop

:(before "End Initialize Op Names")
put_new(Name, "58", "pop top of stack to EAX (pop)");
put_new(Name, "59", "pop top of stack to ECX (pop)");
put_new(Name, "5a", "pop top of stack to EDX (pop)");
put_new(Name, "5b", "pop top of stack to EBX (pop)");
put_new(Name, "5c", "pop top of stack to ESP (pop)");
put_new(Name, "5d", "pop top of stack to EBP (pop)");
put_new(Name, "5e", "pop top of stack to ESI (pop)");
put_new(Name, "5f", "pop top of stack to EDI (pop)");

:(code)
void test_pop_r32() {
  Mem.push_back(vma(0xbd000000));  // manually allocate memory
  Reg[ESP].u = 0xbd000008;
  write_mem_i32(0xbd000008, 0x0000000a);  // ..before this write
  run(
      "== code 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  5b                                           \n"  // pop stack to EBX
      "== data 0x2000\n"  // data segment
      "0a 00 00 00\n"  // 0xa
  );
  CHECK_TRACE_CONTENTS(
      "run: pop into EBX\n"
      "run: popping value 0x0000000a\n"
      "run: incrementing ESP to 0xbd00000c\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x58:
case 0x59:
case 0x5a:
case 0x5b:
case 0x5c:
case 0x5d:
case 0x5e:
case 0x5f: {  // pop stack into r32
  const uint8_t reg = op & 0x7;
  trace(Callstack_depth+1, "run") << "pop into " << rname(reg) << end();
//?   cerr << "pop from " << Reg[ESP].u << '\n';
  Reg[reg].u = pop();
//?   cerr << "=> " << NUM(reg) << ": " << Reg[reg].u << '\n';
  break;
}
:(code)
uint32_t pop() {
  const uint32_t result = read_mem_u32(Reg[ESP].u);
  trace(Callstack_depth+1, "run") << "popping value 0x" << HEXWORD << result << end();
  Reg[ESP].u += 4;
  trace(Callstack_depth+1, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
  assert(Reg[ESP].u < AFTER_STACK);
  return result;
}

:(before "End Includes")
#include <climits>