about summary refs log tree commit diff stats
path: root/dwm.1
blob: 5402be3baf574625306f17318e7d8c406bebedb0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
.TH DWM 1 dwm-VERSION
.SH NAME
dwm \- dynamic window manager
.SH SYNOPSIS
.B dwm
.RB [ \-v ]
.SH DESCRIPTION
.B dwm
is a dynamic window manager for X. It manages windows in tiling and floating
modes. Either mode can be applied dynamically, optimizing the environment for
the application in use and the task performed.
.P
In tiling mode windows are managed in a master and stacking column. The master
column contains the window which currently needs most attention, whereas the
stacking column contains all other windows. In floating mode windows can be
resized and moved freely. Dialog windows are always managed floating,
regardless of the mode selected.
.P
Windows are grouped by tags. Each window can be tagged with one or multiple
tags. Selecting a certain tag for viewing will display all windows with that
tag.
.P
.B dwm
contains a small status bar which displays all available tags, the mode, the
title of the focused window, and the text read from standard input. The tags of
the focused window are highlighted with a small point.
.P
.B dwm
draws a 1-pixel border around windows to indicate the focus state.
Unfocused windows contain a small bar in front of them displaying their title.
.SH OPTIONS
.TP
.B \-v
prints version information to standard output, then exits.
.SH USAGE
.SS Status bar
.TP
.B Standard input
is read and displayed in the status text area.
.TP
.B Button1
click on a tag label views all windows with that
.BR tag ,
click on the mode label toggles between
.B tiled
and
.B floating
mode.
.TP
.B Button3
click on a tag label adds/removes all windows with that
.B tag
to/from the view.
.TP
.B Mod1-Button1
click on a tag label applies that
.B tag
to the focused
.BR window .
.TP
.B Mod1-Button3
click on a tag label adds/removes that
.B tag
to/from the focused
.BR window .
.SS Keyboard commands
.TP
.B Mod1-Shift-Return
Start
.BR xterm (1).
.TP
.B Mod1-Tab
Focus next
.BR window .
.TP
.B Mod1-Shift-Tab
Focus previous
.BR window .
.TP
.B Mod1-Return
Zoom current
.B window
to the 
.B master
column
.RB ( tiling
mode only).
.TP
.B Mod1-m
Maximize current
.BR window .
.TP
.B Mod1-g
Grow current
.BR column
.RB ( tiling
mode only).
.TP
.B Mod1-s
Shrink current
.BR column
.RB ( tiling
mode only).
.TP
.B Mod1-Shift-[1..n]
Apply
.B nth tag
to current
.BR window .
.TP
.B Mod1-Control-Shift-[1..n]
Add/remove
.B nth tag
to/from current
.BR window .
.TP
.B Mod1-Shift-c
Close focused
.B window.
.TP
.B Mod1-space
Toggle between
.B tiled
and
.B floating
mode (affects
.BR "all windows" ).
.TP
.B Mod1-[1..n]
View all windows with
.BR "tag n" .
.TP
.B Mod1-0
View all windows with any
.BR "tag" .
.TP
.B Mod1-Control-[1..n]
Add/remove all windows with
.B tag n
to/from the view.
.TP
.B Mod1-Shift-q
Quit
.B dwm.
.SS Mouse commands
.TP
.B Mod1-Button1
Move current
.B window
while dragging
.RB ( floating
mode only).
.TP
.B Mod1-Button2
Zoom current
.B window
to the 
.B master
column
.RB ( tiling
mode only).
.TP
.B Mod1-Button3
Resize current
.B window
while dragging
.RB ( floating
mode only).
.SH CUSTOMIZATION
.B dwm
is customized by creating a custom config.h and (re)compiling the source
code. This keeps it fast, secure and simple.
.SH CAVEATS
The status bar may display
.B broken pipe
when
.B dwm
has been started by
.BR xdm (1),
because it closes standard output before executing
.BR dwm .
.SH SEE ALSO
.BR dmenu (1)
* Generic.Emph */ .highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ .highlight .gr { color: #aa0000 } /* Generic.Error */ .highlight .gh { color: #333333 } /* Generic.Heading */ .highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */ .highlight .go { color: #888888 } /* Generic.Output */ .highlight .gp { color: #555555 } /* Generic.Prompt */ .highlight .gs { font-weight: bold } /* Generic.Strong */ .highlight .gu { color: #666666 } /* Generic.Subheading */ .highlight .gt { color: #aa0000 } /* Generic.Traceback */ .highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #008800 } /* Keyword.Pseudo */ .highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */ .highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */ .highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */ .highlight .na { color: #336699 } /* Name.Attribute */ .highlight .nb { color: #003388 } /* Name.Builtin */ .highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */ .highlight .no { color: #003366; font-weight: bold } /* Name.Constant */ .highlight .nd { color: #555555 } /* Name.Decorator */ .highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */ .highlight .nl { color: #336699; font-style: italic } /* Name.Label */ .highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */ .highlight .py { color: #336699; font-weight: bold } /* Name.Property */ .highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #336699 } /* Name.Variable */ .highlight .ow { color: #008800 } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */ .highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */ .highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */ .highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */ .highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
//: Since we're tagging operands with their types, let's start checking these
//: operand types for each instruction.

:(scenario check_missing_imm8_operand)
% Hide_errors = true;
== 0x1
cd  # int ??
+error: 'cd' (software interrupt): missing imm8 operand

:(before "Pack Operands(segment code)")
check_operands(code);
if (trace_contains_errors()) return;

:(code)
void check_operands(const segment& code) {
  trace(99, "transform") << "-- check operands" << end();
  for (int i = 0;  i < SIZE(code.lines);  ++i) {
    check_operands(code.lines.at(i));
    if (trace_contains_errors()) return;  // stop at the first mal-formed instruction
  }
}

void check_operands(const line& inst) {
  word op = preprocess_op(inst.words.at(0));
  if (op.data == "0f") {
    check_operands_0f(inst);
    return;
  }
  if (op.data == "f3") {
    check_operands_f3(inst);
    return;
  }
  check_operands(inst, op);
}

word preprocess_op(word/*copy*/ op) {
  op.data = tolower(op.data.c_str());
  // opcodes can't be negative
  if (starts_with(op.data, "0x"))
    op.data = op.data.substr(2);
  if (SIZE(op.data) == 1)
    op.data = string("0")+op.data;
  return op;
}

void test_preprocess_op() {
  word w1;  w1.data = "0xf";
  word w2;  w2.data = "0f";
  CHECK_EQ(preprocess_op(w1).data, preprocess_op(w2).data);
}

//: To check the operands for an opcode, we'll track the permitted operands
//: for each supported opcode in a bitvector. That way we can often compute the
//: bitvector for each instruction's operands and compare it with the expected.

:(before "End Types")
enum operand_type {
  // start from the least significant bit
  MODRM,  // more complex, may also involve disp8 or disp32
  SUBOP,
  DISP8,
  DISP16,
  DISP32,
  IMM8,
  IMM32,
  NUM_OPERAND_TYPES
};
:(before "End Globals")
vector<string> Operand_type_name;
map<string, operand_type> Operand_type;
:(before "End One-time Setup")
init_op_types();
:(code)
void init_op_types() {
  assert(NUM_OPERAND_TYPES <= /*bits in a uint8_t*/8);
  Operand_type_name.resize(NUM_OPERAND_TYPES);
  #define DEF(type) Operand_type_name.at(type) = tolower(#type), put(Operand_type, tolower(#type), type);
  DEF(MODRM);
  DEF(SUBOP);
  DEF(DISP8);
  DEF(DISP16);
  DEF(DISP32);
  DEF(IMM8);
  DEF(IMM32);
  #undef DEF
}

:(before "End Globals")
map</*op*/string, /*bitvector*/uint8_t> Permitted_operands;
const uint8_t INVALID_OPERANDS = 0xff;  // no instruction uses all the operand types
:(before "End One-time Setup")
init_permitted_operands();
:(code)
void init_permitted_operands() {
  //// Class A: just op, no operands
  // halt
  put(Permitted_operands, "f4", 0x00);
  // inc
  put(Permitted_operands, "40", 0x00);
  put(Permitted_operands, "41", 0x00);
  put(Permitted_operands, "42", 0x00);
  put(Permitted_operands, "43", 0x00);
  put(Permitted_operands, "44", 0x00);
  put(Permitted_operands, "45", 0x00);
  put(Permitted_operands, "46", 0x00);
  put(Permitted_operands, "47", 0x00);
  // dec
  put(Permitted_operands, "48", 0x00);
  put(Permitted_operands, "49", 0x00);
  put(Permitted_operands, "4a", 0x00);
  put(Permitted_operands, "4b", 0x00);
  put(Permitted_operands, "4c", 0x00);
  put(Permitted_operands, "4d", 0x00);
  put(Permitted_operands, "4e", 0x00);
  put(Permitted_operands, "4f", 0x00);
  // push
  put(Permitted_operands, "50", 0x00);
  put(Permitted_operands, "51", 0x00);
  put(Permitted_operands, "52", 0x00);
  put(Permitted_operands, "53", 0x00);
  put(Permitted_operands, "54", 0x00);
  put(Permitted_operands, "55", 0x00);
  put(Permitted_operands, "56", 0x00);
  put(Permitted_operands, "57", 0x00);
  // pop
  put(Permitted_operands, "58", 0x00);
  put(Permitted_operands, "59", 0x00);
  put(Permitted_operands, "5a", 0x00);
  put(Permitted_operands, "5b", 0x00);
  put(Permitted_operands, "5c", 0x00);
  put(Permitted_operands, "5d", 0x00);
  put(Permitted_operands, "5e", 0x00);
  put(Permitted_operands, "5f", 0x00);
  // return
  put(Permitted_operands, "c3", 0x00);

  //// Class B: just op and disp8
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     0     0      |0       1     0     0

  // jump
  put(Permitted_operands, "eb", 0x04);
  put(Permitted_operands, "74", 0x04);
  put(Permitted_operands, "75", 0x04);
  put(Permitted_operands, "7c", 0x04);
  put(Permitted_operands, "7d", 0x04);
  put(Permitted_operands, "7e", 0x04);
  put(Permitted_operands, "7f", 0x04);

  //// Class D: just op and disp32
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     0     1      |0       0     0     0
  put(Permitted_operands, "e8", 0x10);  // call
  put(Permitted_operands, "e9", 0x10);  // jump

  //// Class E: just op and imm8
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     1     0      |0       0     0     0
  put(Permitted_operands, "cd", 0x20);  // software interrupt

  //// Class F: just op and imm32
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  1     0     0      |0       0     0     0
  put(Permitted_operands, "05", 0x40);  // add
  put(Permitted_operands, "2d", 0x40);  // subtract
  put(Permitted_operands, "25", 0x40);  // and
  put(Permitted_operands, "0d", 0x40);  // or
  put(Permitted_operands, "35", 0x40);  // xor
  put(Permitted_operands, "3d", 0x40);  // compare
  put(Permitted_operands, "68", 0x40);  // push
  // copy
  put(Permitted_operands, "b8", 0x40);
  put(Permitted_operands, "b9", 0x40);
  put(Permitted_operands, "ba", 0x40);
  put(Permitted_operands, "bb", 0x40);
  put(Permitted_operands, "bc", 0x40);
  put(Permitted_operands, "bd", 0x40);
  put(Permitted_operands, "be", 0x40);
  put(Permitted_operands, "bf", 0x40);

  //// Class M: using ModR/M byte
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     0     0      |0       0     0     1

  // add
  put(Permitted_operands, "01", 0x01);
  put(Permitted_operands, "03", 0x01);
  // subtract
  put(Permitted_operands, "29", 0x01);
  put(Permitted_operands, "2b", 0x01);
  // and
  put(Permitted_operands, "21", 0x01);
  put(Permitted_operands, "23", 0x01);
  // or
  put(Permitted_operands, "09", 0x01);
  put(Permitted_operands, "0b", 0x01);
  // xor
  put(Permitted_operands, "31", 0x01);
  put(Permitted_operands, "33", 0x01);
  // compare
  put(Permitted_operands, "39", 0x01);
  put(Permitted_operands, "3b", 0x01);
  // copy
  put(Permitted_operands, "88", 0x01);
  put(Permitted_operands, "89", 0x01);
  put(Permitted_operands, "8a", 0x01);
  put(Permitted_operands, "8b", 0x01);
  // swap
  put(Permitted_operands, "87", 0x01);
  // copy address (lea)
  put(Permitted_operands, "8d", 0x01);
  // pop
  put(Permitted_operands, "8f", 0x01);

  //// Class O: op, ModR/M and subop (not r32)
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     0     0      |0       0     1     1
  put(Permitted_operands, "f7", 0x03);  // test/not/mul/div
  put(Permitted_operands, "ff", 0x03);  // jump/push/call

  //// Class N: op, ModR/M and imm32
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  1     0     0      |0       0     0     1
  put(Permitted_operands, "c7", 0x41);  // copy

  //// Class P: op, ModR/M, subop (not r32) and imm32
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  1     0     0      |0       0     1     1
  put(Permitted_operands, "81", 0x43);  // combine

  // End Init Permitted Operands
}

:(code)
#define HAS(bitvector, bit)  ((bitvector) & (1 << (bit)))
#define SET(bitvector, bit)  ((bitvector) | (1 << (bit)))
#define CLEAR(bitvector, bit)  ((bitvector) & (~(1 << (bit))))

void check_operands(const line& inst, const word& op) {
  if (!is_hex_byte(op)) return;
  uint8_t expected_bitvector = get(Permitted_operands, op.data);
  if (HAS(expected_bitvector, MODRM)) {
    check_operands_modrm(inst, op);
    compare_bitvector_modrm(inst, expected_bitvector, op);
  }
  else {
    compare_bitvector(inst, expected_bitvector, op);
  }
}

//: Many instructions can be checked just by comparing bitvectors.

void compare_bitvector(const line& inst, uint8_t expected, const word& op) {
  if (all_hex_bytes(inst) && has_operands(inst)) return;  // deliberately programming in raw hex; we'll raise a warning elsewhere
  uint8_t bitvector = compute_operand_bitvector(inst);
  if (trace_contains_errors()) return;  // duplicate operand type
  if (bitvector == expected) return;  // all good with this instruction
  for (int i = 0;  i < NUM_OPERAND_TYPES;  ++i, bitvector >>= 1, expected >>= 1) {
//?     cerr << "comparing " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n';
    if ((bitvector & 0x1) == (expected & 0x1)) continue;  // all good with this operand
    const string& optype = Operand_type_name.at(i);
    if ((bitvector & 0x1) > (expected & 0x1))
      raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << optype << " operand\n" << end();
    else
      raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << optype << " operand\n" << end();
    // continue giving all errors for a single instruction
  }
  // ignore settings in any unused bits
}

string maybe_name(const word& op) {
  if (!is_hex_byte(op)) return "";
  if (!contains_key(Name, op.data)) return "";
  // strip stuff in parens from the name
  const string& s = get(Name, op.data);
  return " ("+s.substr(0, s.find(" ("))+')';
}

uint32_t compute_operand_bitvector(const line& inst) {
  uint32_t bitvector = 0;
  for (int i = /*skip op*/1;  i < SIZE(inst.words);  ++i) {
    bitvector = bitvector | bitvector_for_operand(inst.words.at(i));
    if (trace_contains_errors()) return INVALID_OPERANDS;  // duplicate operand type
  }
  return bitvector;
}

bool has_operands(const line& inst) {
  return SIZE(inst.words) > first_operand(inst);
}

int first_operand(const line& inst) {
  if (inst.words.at(0).data == "0f") return 2;
  if (inst.words.at(0).data == "f2" || inst.words.at(0).data == "f3") {
    if (inst.words.at(1).data == "0f")
      return 3;
    else
      return 2;
  }
  return 1;
}

// Scan the metadata of 'w' and return the bit corresponding to any operand type.
// Also raise an error if metadata contains multiple operand types.
uint32_t bitvector_for_operand(const word& w) {
  uint32_t bv = 0;
  bool found = false;
  for (int i = 0;  i < SIZE(w.metadata);  ++i) {
    const string& curr = w.metadata.at(i);
    if (!contains_key(Operand_type, curr)) continue;  // ignore unrecognized metadata
    if (found) {
      raise << "'" << w.original << "' has conflicting operand types; it should have only one\n" << end();
      return INVALID_OPERANDS;
    }
    bv = (1 << get(Operand_type, curr));
    found = true;
  }
  return bv;
}

:(scenario conflicting_operand_type)
% Hide_errors = true;
== 0x1
cd/software-interrupt 80/imm8/imm32
+error: '80/imm8/imm32' has conflicting operand types; it should have only one

//: Instructions computing effective addresses have more complex rules, so
//: we'll hard-code a common set of instruction-decoding rules.

:(scenario check_missing_mod_operand)
% Hide_errors = true;
== 0x1
81 0/add/subop       3/rm32/ebx 1/imm32
+error: '81 0/add/subop 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing mod operand

:(code)
void check_operands_modrm(const line& inst, const word& op) {
  if (all_hex_bytes(inst)) return;  // deliberately programming in raw hex; we'll raise a warning elsewhere
  check_operand_metadata_present(inst, "mod", op);
  check_operand_metadata_present(inst, "rm32", op);
  // no check for r32; some instructions don't use it; just assume it's 0 if missing
  if (op.data == "81" || op.data == "8f" || op.data == "ff") {  // keep sync'd with 'help subop'
    check_operand_metadata_present(inst, "subop", op);
    check_operand_metadata_absent(inst, "r32", op, "should be replaced by subop");
  }
  if (trace_contains_errors()) return;
  if (metadata(inst, "rm32").data != "4") return;
  // SIB byte checks
  uint8_t mod = hex_byte(metadata(inst, "mod").data);
  if (mod != /*direct*/3) {
    check_operand_metadata_present(inst, "base", op);
    check_operand_metadata_present(inst, "index", op);  // otherwise why go to SIB?
  }
  else {
    check_operand_metadata_absent(inst, "base", op, "direct mode");
    check_operand_metadata_absent(inst, "index", op, "direct mode");
  }
  // no check for scale; 0 (2**0 = 1) by default
}

// same as compare_bitvector, with a couple of exceptions for modrm-based instructions
//   exception 1: ignore modrm bit since we already checked it above
//   exception 2: modrm instructions can use a displacement on occasion
void compare_bitvector_modrm(const line& inst, uint8_t expected, const word& op) {
  if (all_hex_bytes(inst) && has_operands(inst)) return;  // deliberately programming in raw hex; we'll raise a warning elsewhere
  uint8_t bitvector = compute_operand_bitvector(inst);
  if (trace_contains_errors()) return;  // duplicate operand type
  expected = CLEAR(expected, MODRM);  // exception 1
  if (bitvector == expected) return;  // all good with this instruction
  for (int i = 0;  i < NUM_OPERAND_TYPES;  ++i, bitvector >>= 1, expected >>= 1) {
//?     cerr << "comparing for modrm " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n';
    if ((bitvector & 0x1) == (expected & 0x1)) continue;  // all good with this operand
    const string& optype = Operand_type_name.at(i);
    if (i == DISP8) {
      int32_t mod = parse_int(metadata(inst, "mod").data);
      if (mod != 1)
        raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << optype << " operand\n" << end();
      continue;  // exception 2
    }
    if (i == DISP32) {
      int32_t mod = parse_int(metadata(inst, "mod").data);
      int32_t rm32 = parse_int(metadata(inst, "rm32").data);
      if (mod == 0 && rm32 == 5)
        ;  // ok: special-case for loading address from disp32
      else if (mod != 2)
        raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << optype << " operand\n" << end();
      continue;  // exception 2
    }
    if ((bitvector & 0x1) > (expected & 0x1))
      raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << optype << " operand\n" << end();
    else
      raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << optype << " operand\n" << end();
    // continue giving all errors for a single instruction
  }
  // ignore settings in any unused bits
}

void check_operand_metadata_present(const line& inst, const string& type, const word& op) {
  if (!has_operand_metadata(inst, type))
    raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << type << " operand\n" << end();
}

void check_operand_metadata_absent(const line& inst, const string& type, const word& op, const string& msg) {
  if (has_operand_metadata(inst, type))
    raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << type << " operand (" << msg << ")\n" << end();
}

:(scenarios transform)
:(scenario modrm_with_displacement)
% Reg[EAX].u = 0x1;
== 0x1
# just avoid null pointer
8b/copy 1/mod/lookup+disp8 0/rm32/EAX 2/r32/EDX 4/disp8  # copy *(EAX+4) to EDX
$error: 0
:(scenarios run)

:(scenario conflicting_operands_in_modrm_instruction)
% Hide_errors = true;
== 0x1
01/add 0/mod 3/mod
+error: '01/add 0/mod 3/mod' has conflicting mod operands

:(scenario conflicting_operand_type_modrm)
% Hide_errors = true;
== 0x1
01/add 0/mod 3/rm32/r32
+error: '3/rm32/r32' has conflicting operand types; it should have only one

:(scenario check_missing_rm32_operand)
% Hide_errors = true;
== 0x1
81 0/add/subop 0/mod            1/imm32
+error: '81 0/add/subop 0/mod 1/imm32' (combine rm32 with imm32 based on subop): missing rm32 operand

:(scenario check_missing_subop_operand)
% Hide_errors = true;
== 0x1
81             0/mod 3/rm32/ebx 1/imm32
+error: '81 0/mod 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing subop operand

:(scenario check_missing_base_operand)
% Hide_errors = true;
== 0x1
81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32
+error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32' (combine rm32 with imm32 based on subop): missing base operand

:(scenario check_missing_index_operand)
% Hide_errors = true;
== 0x1
81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32
+error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32' (combine rm32 with imm32 based on subop): missing index operand

:(scenario check_missing_base_operand_2)
% Hide_errors = true;
== 0x1
81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32
+error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32' (combine rm32 with imm32 based on subop): missing base operand

:(scenario check_extra_displacement)
% Hide_errors = true;
== 0x1
89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 4/disp8
+error: '89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 4/disp8' (copy r32 to rm32): unexpected disp8 operand

:(scenario check_base_operand_not_needed_in_direct_mode)
== 0x1
81 0/add/subop 3/mod/indirect 4/rm32/use-sib 1/imm32
$error: 0

//:: similarly handle multi-byte opcodes

:(code)
void check_operands_0f(const line& inst) {
  assert(inst.words.at(0).data == "0f");
  if (SIZE(inst.words) == 1) {
    raise << "opcode '0f' requires a second opcode\n" << end();
    return;
  }
  word op = preprocess_op(inst.words.at(1));
  if (!contains_key(Name_0f, op.data)) {
    raise << "unknown 2-byte opcode '0f " << op.data << "'\n" << end();
    return;
  }
  check_operands_0f(inst, op);
}

void check_operands_f3(const line& /*unused*/) {
  raise << "no supported opcodes starting with f3\n" << end();
}

:(scenario check_missing_disp32_operand)
% Hide_errors = true;
== 0x1
# instruction                     effective address                                                   operand     displacement    immediate
# op          subop               mod             rm32          base        index         scale       r32
# 1-3 bytes   3 bits              2 bits          3 bits        3 bits      3 bits        2 bits      2 bits      0/1/2/4 bytes   0/1/2/4 bytes
  0f 84                                                                                                                                             # jmp if ZF to ??
+error: '0f 84' (jump disp32 bytes away if equal, if ZF is set): missing disp32 operand

:(before "End Globals")
map</*op*/string, /*bitvector*/uint8_t> Permitted_operands_0f;
:(before "End Init Permitted Operands")
//// Class D: just op and disp32
//  imm32 imm8  disp32 |disp16  disp8 subop modrm
//  0     0     1      |0       0     0     0
put_new(Permitted_operands_0f, "84", 0x10);
put_new(Permitted_operands_0f, "85", 0x10);
put_new(Permitted_operands_0f, "8c", 0x10);
put_new(Permitted_operands_0f, "8d", 0x10);
put_new(Permitted_operands_0f, "8e", 0x10);
put_new(Permitted_operands_0f, "8f", 0x10);

//// Class M: using ModR/M byte
//  imm32 imm8  disp32 |disp16  disp8 subop modrm
//  0     0     0      |0       0     0     1
put_new(Permitted_operands_0f, "af", 0x01);

:(code)
void check_operands_0f(const line& inst, const word& op) {
  uint8_t expected_bitvector = get(Permitted_operands_0f, op.data);
  if (HAS(expected_bitvector, MODRM))
    check_operands_modrm(inst, op);
  compare_bitvector_0f(inst, CLEAR(expected_bitvector, MODRM), op);
}

void compare_bitvector_0f(const line& inst, uint8_t expected, const word& op) {
  if (all_hex_bytes(inst) && has_operands(inst)) return;  // deliberately programming in raw hex; we'll raise a warning elsewhere
  uint8_t bitvector = compute_operand_bitvector(inst);
  if (trace_contains_errors()) return;  // duplicate operand type
  if (bitvector == expected) return;  // all good with this instruction
  for (int i = 0;  i < NUM_OPERAND_TYPES;  ++i, bitvector >>= 1, expected >>= 1) {
//?     cerr << "comparing " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n';
    if ((bitvector & 0x1) == (expected & 0x1)) continue;  // all good with this operand
    const string& optype = Operand_type_name.at(i);
    if ((bitvector & 0x1) > (expected & 0x1))
      raise << "'" << to_string(inst) << "'" << maybe_name_0f(op) << ": unexpected " << optype << " operand\n" << end();
    else
      raise << "'" << to_string(inst) << "'" << maybe_name_0f(op) << ": missing " << optype << " operand\n" << end();
    // continue giving all errors for a single instruction
  }
  // ignore settings in any unused bits
}

string maybe_name_0f(const word& op) {
  if (!is_hex_byte(op)) return "";
  if (!contains_key(Name_0f, op.data)) return "";
  // strip stuff in parens from the name
  const string& s = get(Name_0f, op.data);
  return " ("+s.substr(0, s.find(" ("))+')';
}

string tolower(const char* s) {
  ostringstream out;
  for (/*nada*/;  *s;  ++s)
    out << static_cast<char>(tolower(*s));
  return out.str();
}

#undef HAS
#undef SET
#undef CLEAR

:(before "End Includes")
#include<cctype>