about summary refs log tree commit diff stats
path: root/event.c
blob: 86c48191b2d28ab12b5afdfba328d1be9c0ea1cd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/*
 * (C)opyright MMVI Anselm R. Garbe <garbeam at gmail dot com>
 * See LICENSE file for license details.
 */
#include "dwm.h"
#include <stdlib.h>
#include <X11/keysym.h>
#include <X11/Xatom.h>

/* static */

typedef struct {
	unsigned long mod;
	KeySym keysym;
	void (*func)(Arg *arg);
	Arg arg;
} Key;

KEYS

#define CLEANMASK(mask) (mask & ~(numlockmask | LockMask))

static void
synconfig(Client *c, int x, int y, int w, int h, unsigned int border) {
	XEvent synev;

	synev.type = ConfigureNotify;
	synev.xconfigure.display = dpy;
	synev.xconfigure.event = c->win;
	synev.xconfigure.window = c->win;
	synev.xconfigure.x = x;
	synev.xconfigure.y = y;
	synev.xconfigure.width = w;
	synev.xconfigure.height = h;
	synev.xconfigure.border_width = border;
	synev.xconfigure.above = None;
	XSendEvent(dpy, c->win, True, NoEventMask, &synev);
}

static void
movemouse(Client *c) {
	int x1, y1, ocx, ocy, di;
	unsigned int dui;
	Window dummy;
	XEvent ev;

	ocx = c->x;
	ocy = c->y;
	if(XGrabPointer(dpy, root, False, MOUSEMASK, GrabModeAsync, GrabModeAsync,
			None, cursor[CurMove], CurrentTime) != GrabSuccess)
		return;
	XQueryPointer(dpy, root, &dummy, &dummy, &x1, &y1, &di, &di, &dui);
	for(;;) {
		XMaskEvent(dpy, MOUSEMASK | ExposureMask | StructureNotifyMask, &ev);
		switch (ev.type) {
		default:
			break;
		case ConfigureRequest:
			synconfig(c, c->x, c->y, c->w, c->h, ev.xconfigure.border_width);
			XSync(dpy, False);
			break;
		case Expose:
			handler[Expose](&ev);
			break;
		case MotionNotify:
			XSync(dpy, False);
			c->x = ocx + (ev.xmotion.x - x1);
			c->y = ocy + (ev.xmotion.y - y1);
			resize(c, False, TopLeft);
			break;
		case ButtonRelease:
			XUngrabPointer(dpy, CurrentTime);
			return;
		case DestroyNotify:
		case UnmapNotify:
			XUngrabPointer(dpy, CurrentTime);
			handler[ev.type](&ev);
			return;
		}
	}
}

static void
resizemouse(Client *c) {
	int ocx, ocy;
	int nw, nh;
	Corner sticky;
	XEvent ev;

	ocx = c->x;
	ocy = c->y;
	if(XGrabPointer(dpy, root, False, MOUSEMASK, GrabModeAsync, GrabModeAsync,
				None, cursor[CurResize], CurrentTime) != GrabSuccess)
		return;
	XWarpPointer(dpy, None, c->win, 0, 0, 0, 0, c->w, c->h);
	for(;;) {
		XMaskEvent(dpy, MOUSEMASK | ExposureMask | StructureNotifyMask, &ev);
		switch(ev.type) {
		default:
			break;
		case ConfigureRequest:
			synconfig(c, c->x, c->y, c->w, c->h, ev.xconfigure.border_width);
			XSync(dpy, False);
			break;
		case Expose:
			handler[Expose](&ev);
			break;
		case MotionNotify:
			XSync(dpy, False);
			if((nw = abs(ocx - ev.xmotion.x)))
				c->w = nw;
			if((nh = abs(ocy - ev.xmotion.y)))
				c->h = nh;
			c->x = (ocx <= ev.xmotion.x) ? ocx : ocx - c->w;
			c->y = (ocy <= ev.xmotion.y) ? ocy : ocy - c->h;
			if(ocx <= ev.xmotion.x)
				sticky = (ocy <= ev.xmotion.y) ? TopLeft : BotLeft;
			else
				sticky = (ocy <= ev.xmotion.y) ? TopRight : BotRight;
			resize(c, True, sticky);
			break;
		case ButtonRelease:
			XUngrabPointer(dpy, CurrentTime);
			return;
		case DestroyNotify:
		case UnmapNotify:
			XUngrabPointer(dpy, CurrentTime);
			handler[ev.type](&ev);
			return;
		}
	}
}

static void
buttonpress(XEvent *e) {
	int x;
	Arg a;
	Client *c;
	XButtonPressedEvent *ev = &e->xbutton;

	if(barwin == ev->window) {
		x = 0;
		for(a.i = 0; a.i < ntags; a.i++) {
			x += textw(tags[a.i]);
			if(ev->x < x) {
				if(ev->button == Button1) {
					if(ev->state & MODKEY)
						tag(&a);
					else
						view(&a);
				}
				else if(ev->button == Button3) {
					if(ev->state & MODKEY)
						toggletag(&a);
					else
						toggleview(&a);
				}
				return;
			}
		}
		if(ev->x < x + bmw) {
			if(ev->button == Button1)
				togglemode(NULL);
		}
	}
	else if((c = getclient(ev->window))) {
		focus(c);
		if(CLEANMASK(ev->state) != MODKEY)
			return;
		if(ev->button == Button1 && (arrange == dofloat || c->isfloat)) {
			restack(c);
			movemouse(c);
		}
		else if(ev->button == Button2)
			zoom(NULL);
		else if(ev->button == Button3 && (arrange == dofloat || c->isfloat)) {
			restack(c);
			resizemouse(c);
		}
	}
}

static void
configurerequest(XEvent *e) {
	unsigned long newmask;
	Client *c;
	XConfigureRequestEvent *ev = &e->xconfigurerequest;
	XWindowChanges wc;

	if((c = getclient(ev->window))) {
		if((c == sel) && !c->isfloat && (arrange != dofloat)) {
			synconfig(c, sx, sy + bh, sw - 2, sh - 2 - bh, ev->border_width);
			XSync(dpy, False);
			return;
		}
		gravitate(c, True);
		if(ev->value_mask & CWX)
			c->x = ev->x;
		if(ev->value_mask & CWY)
			c->y = ev->y;
		if(ev->value_mask & CWWidth)
			c->w = ev->width;
		if(ev->value_mask & CWHeight)
			c->h = ev->height;
		if(ev->value_mask & CWBorderWidth)
			c->border = ev->border_width;
		gravitate(c, False);
		wc.x = c->x;
		wc.y = c->y;
		wc.width = c->w;
		wc.height = c->h;
		newmask = ev->value_mask & (~(CWSibling | CWStackMode | CWBorderWidth));
		if(newmask)
			XConfigureWindow(dpy, c->win, newmask, &wc);
		else
			synconfig(c, c->x, c->y, c->w, c->h, c->border);
		XSync(dpy, False);
		if(c->isfloat)
			resize(c, False, TopLeft);
		else
			arrange(NULL);
	}
	else {
		wc.x = ev->x;
		wc.y = ev->y;
		wc.width = ev->width;
		wc.height = ev->height;
		wc.border_width = ev->border_width;
		wc.sibling = ev->above;
		wc.stack_mode = ev->detail;
		XConfigureWindow(dpy, ev->window, ev->value_mask, &wc);
		XSync(dpy, False);
	}
}

static void
destroynotify(XEvent *e) {
	Client *c;
	XDestroyWindowEvent *ev = &e->xdestroywindow;

	if((c = getclient(ev->window)))
		unmanage(c);
}

static void
enternotify(XEvent *e) {
	Client *c;
	XCrossingEvent *ev = &e->xcrossing;

	if(ev->mode != NotifyNormal || ev->detail == NotifyInferior)
		return;

	if(((c = getclient(ev->window)) || (c = getctitle(ev->window))) && isvisible(c))
		focus(c);
	else if(ev->window == root) {
		issel = True;
		XSetInputFocus(dpy, root, RevertToPointerRoot, CurrentTime);
		drawall();
	}
}

static void
expose(XEvent *e) {
	Client *c;
	XExposeEvent *ev = &e->xexpose;

	if(ev->count == 0) {
		if(barwin == ev->window)
			drawstatus();
		else if((c = getctitle(ev->window)))
			drawtitle(c);
	}
}

static void
keypress(XEvent *e) {
	static unsigned int len = sizeof(key) / sizeof(key[0]);
	unsigned int i;
	KeySym keysym;
	XKeyEvent *ev = &e->xkey;

	keysym = XKeycodeToKeysym(dpy, (KeyCode)ev->keycode, 0);
	for(i = 0; i < len; i++) {
		if(keysym == key[i].keysym
			&& CLEANMASK(key[i].mod) == CLEANMASK(ev->state))
		{
			if(key[i].func)
				key[i].func(&key[i].arg);
			return;
		}
	}
}

static void
leavenotify(XEvent *e) {
	XCrossingEvent *ev = &e->xcrossing;

	if((ev->window == root) && !ev->same_screen) {
		issel = False;
		drawall();
	}
}

static void
mappingnotify(XEvent *e) {
	XMappingEvent *ev = &e->xmapping;

	XRefreshKeyboardMapping(ev);
	if(ev->request == MappingKeyboard)
		grabkeys();
}

static void
maprequest(XEvent *e) {
	static XWindowAttributes wa;
	XMapRequestEvent *ev = &e->xmaprequest;

	if(!XGetWindowAttributes(dpy, ev->window, &wa))
		return;

	if(wa.override_redirect) {
		XSelectInput(dpy, ev->window,
				(StructureNotifyMask | PropertyChangeMask));
		return;
	}

	if(!getclient(ev->window))
		manage(ev->window, &wa);
}

static void
propertynotify(XEvent *e) {
	Client *c;
	Window trans;
	XPropertyEvent *ev = &e->xproperty;

	if(ev->state == PropertyDelete)
		return; /* ignore */

	if((c = getclient(ev->window))) {
		if(ev->atom == wmatom[WMProtocols]) {
			c->proto = getproto(c->win);
			return;
		}
		switch (ev->atom) {
			default: break;
			case XA_WM_TRANSIENT_FOR:
				XGetTransientForHint(dpy, c->win, &trans);
				if(!c->isfloat && (c->isfloat = (trans != 0)))
					arrange(NULL);
				break;
			case XA_WM_NORMAL_HINTS:
				updatesize(c);
				break;
		}
		if(ev->atom == XA_WM_NAME || ev->atom == netatom[NetWMName]) {
			updatetitle(c);
			drawtitle(c);
		}
	}
}

static void
unmapnotify(XEvent *e) {
	Client *c;
	XUnmapEvent *ev = &e->xunmap;

	if((c = getclient(ev->window)))
		unmanage(c);
}

/* extern */

void (*handler[LASTEvent]) (XEvent *) = {
	[ButtonPress] = buttonpress,
	[ConfigureRequest] = configurerequest,
	[DestroyNotify] = destroynotify,
	[EnterNotify] = enternotify,
	[LeaveNotify] = leavenotify,
	[Expose] = expose,
	[KeyPress] = keypress,
	[MappingNotify] = mappingnotify,
	[MapRequest] = maprequest,
	[PropertyNotify] = propertynotify,
	[UnmapNotify] = unmapnotify
};

void
grabkeys() {
	static unsigned int len = sizeof(key) / sizeof(key[0]);
	unsigned int i;
	KeyCode code;

	XUngrabKey(dpy, AnyKey, AnyModifier, root);
	for(i = 0; i < len; i++) {
		code = XKeysymToKeycode(dpy, key[i].keysym);
		XGrabKey(dpy, code, key[i].mod, root, True,
				GrabModeAsync, GrabModeAsync);
		XGrabKey(dpy, code, key[i].mod | LockMask, root, True,
				GrabModeAsync, GrabModeAsync);
		XGrabKey(dpy, code, key[i].mod | numlockmask, root, True,
				GrabModeAsync, GrabModeAsync);
		XGrabKey(dpy, code, key[i].mod | numlockmask | LockMask, root, True,
				GrabModeAsync, GrabModeAsync);
	}
}

void
procevent() {
	XEvent ev;

	while(XPending(dpy)) {
		XNextEvent(dpy, &ev);
		if(handler[ev.type])
			(handler[ev.type])(&ev); /* call handler */
	}
}
ass="n">cs) if size > 8: var id = NodeTableTestOrSet(p.module.dataCache, n, gBackendId) result = con("TMP", toRope(id)) if id == gBackendId: # not found in cache: inc(gBackendId) appf(p.module.s[cfsData], "static NIM_CONST $1 $2 = $3;$n", [getTypeDesc(p.module, n.typ), result, genRawSetData(cs, size)]) else: result = genRawSetData(cs, size) proc getStorageLoc(n: PNode): TStorageLoc = case n.kind of nkSym: case n.sym.kind of skParam, skTemp: result = OnStack of skVar, skForVar, skResult, skLet: if sfGlobal in n.sym.flags: result = OnHeap else: result = OnStack of skConst: if sfGlobal in n.sym.flags: result = OnHeap else: result = OnUnknown else: result = OnUnknown of nkDerefExpr, nkHiddenDeref: case n.sons[0].typ.kind of tyVar: result = OnUnknown of tyPtr: result = OnStack of tyRef: result = OnHeap else: InternalError(n.info, "getStorageLoc") of nkBracketExpr, nkDotExpr, nkObjDownConv, nkObjUpConv: result = getStorageLoc(n.sons[0]) else: result = OnUnknown proc genRefAssign(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) = if dest.s == OnStack or optRefcGC notin gGlobalOptions: lineF(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)]) if needToKeepAlive in flags: keepAlive(p, dest) elif dest.s == OnHeap: # location is on heap # now the writer barrier is inlined for performance: # # if afSrcIsNotNil in flags: # UseMagic(p.module, 'nimGCref') # lineF(p, cpsStmts, 'nimGCref($1);$n', [rdLoc(src)]) # elif afSrcIsNil notin flags: # UseMagic(p.module, 'nimGCref') # lineF(p, cpsStmts, 'if ($1) nimGCref($1);$n', [rdLoc(src)]) # if afDestIsNotNil in flags: # UseMagic(p.module, 'nimGCunref') # lineF(p, cpsStmts, 'nimGCunref($1);$n', [rdLoc(dest)]) # elif afDestIsNil notin flags: # UseMagic(p.module, 'nimGCunref') # lineF(p, cpsStmts, 'if ($1) nimGCunref($1);$n', [rdLoc(dest)]) # lineF(p, cpsStmts, '$1 = $2;$n', [rdLoc(dest), rdLoc(src)]) if canFormAcycle(dest.t): lineCg(p, cpsStmts, "#asgnRef((void**) $1, $2);$n", [addrLoc(dest), rdLoc(src)]) else: lineCg(p, cpsStmts, "#asgnRefNoCycle((void**) $1, $2);$n", [addrLoc(dest), rdLoc(src)]) else: lineCg(p, cpsStmts, "#unsureAsgnRef((void**) $1, $2);$n", [addrLoc(dest), rdLoc(src)]) if needToKeepAlive in flags: keepAlive(p, dest) proc genGenericAsgn(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) = # Consider: # type TMyFastString {.shallow.} = string # Due to the implementation of pragmas this would end up to set the # tfShallow flag for the built-in string type too! So we check only # here for this flag, where it is reasonably safe to do so # (for objects, etc.): if needToCopy notin flags or tfShallow in skipTypes(dest.t, abstractVarRange).flags: if dest.s == OnStack or optRefcGC notin gGlobalOptions: lineCg(p, cpsStmts, "memcpy((void*)$1, (NIM_CONST void*)$2, sizeof($3));$n", [addrLoc(dest), addrLoc(src), rdLoc(dest)]) if needToKeepAlive in flags: keepAlive(p, dest) else: lineCg(p, cpsStmts, "#genericShallowAssign((void*)$1, (void*)$2, $3);$n", [addrLoc(dest), addrLoc(src), genTypeInfo(p.module, dest.t)]) else: lineCg(p, cpsStmts, "#genericAssign((void*)$1, (void*)$2, $3);$n", [addrLoc(dest), addrLoc(src), genTypeInfo(p.module, dest.t)]) proc genAssignment(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) = # This function replaces all other methods for generating # the assignment operation in C. if src.t != nil and src.t.kind == tyPtr: # little HACK to support the new 'var T' as return type: lineCg(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)]) return var ty = skipTypes(dest.t, abstractVarRange) case ty.kind of tyRef: genRefAssign(p, dest, src, flags) of tySequence: if needToCopy notin flags: genRefAssign(p, dest, src, flags) else: lineCg(p, cpsStmts, "#genericSeqAssign($1, $2, $3);$n", [addrLoc(dest), rdLoc(src), genTypeInfo(p.module, dest.t)]) of tyString: if needToCopy notin flags: genRefAssign(p, dest, src, flags) else: if dest.s == OnStack or optRefcGC notin gGlobalOptions: lineCg(p, cpsStmts, "$1 = #copyString($2);$n", [dest.rdLoc, src.rdLoc]) if needToKeepAlive in flags: keepAlive(p, dest) elif dest.s == OnHeap: # we use a temporary to care for the dreaded self assignment: var tmp: TLoc getTemp(p, ty, tmp) lineCg(p, cpsStmts, "$3 = $1; $1 = #copyStringRC1($2);$n", [dest.rdLoc, src.rdLoc, tmp.rdLoc]) lineCg(p, cpsStmts, "if ($1) #nimGCunrefNoCycle($1);$n", tmp.rdLoc) else: lineCg(p, cpsStmts, "#unsureAsgnRef((void**) $1, #copyString($2));$n", [addrLoc(dest), rdLoc(src)]) if needToKeepAlive in flags: keepAlive(p, dest) of tyTuple, tyObject, tyProc: # XXX: check for subtyping? if needsComplexAssignment(dest.t): genGenericAsgn(p, dest, src, flags) else: lineCg(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)]) of tyArray, tyArrayConstr: if needsComplexAssignment(dest.t): genGenericAsgn(p, dest, src, flags) else: lineCg(p, cpsStmts, "memcpy((void*)$1, (NIM_CONST void*)$2, sizeof($1));$n", [rdLoc(dest), rdLoc(src)]) of tyOpenArray: # open arrays are always on the stack - really? What if a sequence is # passed to an open array? if needsComplexAssignment(dest.t): lineCg(p, cpsStmts, # XXX: is this correct for arrays? "#genericAssignOpenArray((void*)$1, (void*)$2, $1Len0, $3);$n", [addrLoc(dest), addrLoc(src), genTypeInfo(p.module, dest.t)]) else: lineCg(p, cpsStmts, "memcpy((void*)$1, (NIM_CONST void*)$2, sizeof($1[0])*$1Len0);$n", [rdLoc(dest), rdLoc(src)]) of tySet: if mapType(ty) == ctArray: lineCg(p, cpsStmts, "memcpy((void*)$1, (NIM_CONST void*)$2, $3);$n", [rdLoc(dest), rdLoc(src), toRope(getSize(dest.t))]) else: lineCg(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)]) of tyPtr, tyPointer, tyChar, tyBool, tyEnum, tyCString, tyInt..tyUInt64, tyRange: lineCg(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)]) else: InternalError("genAssignment(" & $ty.kind & ')') proc expr(p: BProc, e: PNode, d: var TLoc) proc initLocExpr(p: BProc, e: PNode, result: var TLoc) = initLoc(result, locNone, e.typ, OnUnknown) expr(p, e, result) proc getDestLoc(p: BProc, d: var TLoc, typ: PType) = if d.k == locNone: getTemp(p, typ, d) proc putLocIntoDest(p: BProc, d: var TLoc, s: TLoc) = if d.k != locNone: if lfNoDeepCopy in d.flags: genAssignment(p, d, s, {}) else: genAssignment(p, d, s, {needToCopy}) else: d = s # ``d`` is free, so fill it with ``s`` proc putIntoDest(p: BProc, d: var TLoc, t: PType, r: PRope) = var a: TLoc if d.k != locNone: # need to generate an assignment here initLoc(a, locExpr, getUniqueType(t), OnUnknown) a.r = r if lfNoDeepCopy in d.flags: genAssignment(p, d, a, {}) else: genAssignment(p, d, a, {needToCopy}) else: # we cannot call initLoc() here as that would overwrite # the flags field! d.k = locExpr d.t = getUniqueType(t) d.r = r d.a = -1 proc binaryStmt(p: BProc, e: PNode, d: var TLoc, frmt: string) = var b: TLoc if d.k != locNone: InternalError(e.info, "binaryStmt") InitLocExpr(p, e.sons[1], d) InitLocExpr(p, e.sons[2], b) lineCg(p, cpsStmts, frmt, [rdLoc(d), rdLoc(b)]) proc unaryStmt(p: BProc, e: PNode, d: var TLoc, frmt: string) = var a: TLoc if (d.k != locNone): InternalError(e.info, "unaryStmt") InitLocExpr(p, e.sons[1], a) lineCg(p, cpsStmts, frmt, [rdLoc(a)]) proc binaryStmtChar(p: BProc, e: PNode, d: var TLoc, frmt: string) = var a, b: TLoc if (d.k != locNone): InternalError(e.info, "binaryStmtChar") InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) lineCg(p, cpsStmts, frmt, [rdCharLoc(a), rdCharLoc(b)]) proc binaryExpr(p: BProc, e: PNode, d: var TLoc, frmt: string) = var a, b: TLoc assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) putIntoDest(p, d, e.typ, ropecg(p.module, frmt, [rdLoc(a), rdLoc(b)])) proc binaryExprChar(p: BProc, e: PNode, d: var TLoc, frmt: string) = var a, b: TLoc assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) putIntoDest(p, d, e.typ, ropecg(p.module, frmt, [a.rdCharLoc, b.rdCharLoc])) proc unaryExpr(p: BProc, e: PNode, d: var TLoc, frmt: string) = var a: TLoc InitLocExpr(p, e.sons[1], a) putIntoDest(p, d, e.typ, ropecg(p.module, frmt, [rdLoc(a)])) proc unaryExprChar(p: BProc, e: PNode, d: var TLoc, frmt: string) = var a: TLoc InitLocExpr(p, e.sons[1], a) putIntoDest(p, d, e.typ, ropecg(p.module, frmt, [rdCharLoc(a)])) proc binaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) = const prc: array[mAddi..mModi64, string] = ["addInt", "subInt", "mulInt", "divInt", "modInt", "addInt64", "subInt64", "mulInt64", "divInt64", "modInt64"] opr: array[mAddi..mModi64, string] = ["+", "-", "*", "/", "%", "+", "-", "*", "/", "%"] var a, b: TLoc assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) var t = skipTypes(e.typ, abstractRange) if optOverflowCheck notin p.options: putIntoDest(p, d, e.typ, ropef("(NI$4)($2 $1 $3)", [toRope(opr[m]), rdLoc(a), rdLoc(b), toRope(getSize(t) * 8)])) else: var storage: PRope var size = getSize(t) if size < platform.IntSize: storage = toRope("NI") else: storage = getTypeDesc(p.module, t) var tmp = getTempName() lineCg(p, cpsLocals, "$1 $2;$n", [storage, tmp]) lineCg(p, cpsStmts, "$1 = #$2($3, $4);$n", [tmp, toRope(prc[m]), rdLoc(a), rdLoc(b)]) if size < platform.IntSize or t.kind in {tyRange, tyEnum, tySet}: lineCg(p, cpsStmts, "if ($1 < $2 || $1 > $3) #raiseOverflow();$n", [tmp, intLiteral(firstOrd(t)), intLiteral(lastOrd(t))]) putIntoDest(p, d, e.typ, ropef("(NI$1)($2)", [toRope(getSize(t)*8), tmp])) proc unaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) = const opr: array[mUnaryMinusI..mAbsI64, string] = [ mUnaryMinusI: "((NI$2)-($1))", mUnaryMinusI64: "-($1)", mAbsI: "(NI$2)abs($1)", mAbsI64: "($1 > 0? ($1) : -($1))"] var a: TLoc t: PType assert(e.sons[1].typ != nil) InitLocExpr(p, e.sons[1], a) t = skipTypes(e.typ, abstractRange) if optOverflowCheck in p.options: lineCg(p, cpsStmts, "if ($1 == $2) #raiseOverflow();$n", [rdLoc(a), intLiteral(firstOrd(t))]) putIntoDest(p, d, e.typ, ropef(opr[m], [rdLoc(a), toRope(getSize(t) * 8)])) proc binaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) = const binArithTab: array[mAddF64..mXor, string] = [ "($1 + $2)", # AddF64 "($1 - $2)", # SubF64 "($1 * $2)", # MulF64 "($1 / $2)", # DivF64 "($4)((NU$3)($1) >> (NU$3)($2))", # ShrI "($4)((NU$3)($1) << (NU$3)($2))", # ShlI "($4)($1 & $2)", # BitandI "($4)($1 | $2)", # BitorI "($4)($1 ^ $2)", # BitxorI "(($1 <= $2) ? $1 : $2)", # MinI "(($1 >= $2) ? $1 : $2)", # MaxI "($4)((NU64)($1) >> (NU64)($2))", # ShrI64 "($4)((NU64)($1) << (NU64)($2))", # ShlI64 "($4)($1 & $2)", # BitandI64 "($4)($1 | $2)", # BitorI64 "($4)($1 ^ $2)", # BitxorI64 "(($1 <= $2) ? $1 : $2)", # MinI64 "(($1 >= $2) ? $1 : $2)", # MaxI64 "(($1 <= $2) ? $1 : $2)", # MinF64 "(($1 >= $2) ? $1 : $2)", # MaxF64 "($4)((NU$3)($1) + (NU$3)($2))", # AddU "($4)((NU$3)($1) - (NU$3)($2))", # SubU "($4)((NU$3)($1) * (NU$3)($2))", # MulU "($4)((NU$3)($1) / (NU$3)($2))", # DivU "($4)((NU$3)($1) % (NU$3)($2))", # ModU "($1 == $2)", # EqI "($1 <= $2)", # LeI "($1 < $2)", # LtI "($1 == $2)", # EqI64 "($1 <= $2)", # LeI64 "($1 < $2)", # LtI64 "($1 == $2)", # EqF64 "($1 <= $2)", # LeF64 "($1 < $2)", # LtF64 "((NU$3)($1) <= (NU$3)($2))", # LeU "((NU$3)($1) < (NU$3)($2))", # LtU "((NU64)($1) <= (NU64)($2))", # LeU64 "((NU64)($1) < (NU64)($2))", # LtU64 "($1 == $2)", # EqEnum "($1 <= $2)", # LeEnum "($1 < $2)", # LtEnum "((NU8)($1) == (NU8)($2))", # EqCh "((NU8)($1) <= (NU8)($2))", # LeCh "((NU8)($1) < (NU8)($2))", # LtCh "($1 == $2)", # EqB "($1 <= $2)", # LeB "($1 < $2)", # LtB "($1 == $2)", # EqRef "($1 == $2)", # EqPtr "($1 <= $2)", # LePtr "($1 < $2)", # LtPtr "($1 == $2)", # EqCString "($1 != $2)"] # Xor var a, b: TLoc s: biggestInt assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) # BUGFIX: cannot use result-type here, as it may be a boolean s = max(getSize(a.t), getSize(b.t)) * 8 putIntoDest(p, d, e.typ, ropef(binArithTab[op], [rdLoc(a), rdLoc(b), toRope(s), getSimpleTypeDesc(p.module, e.typ)])) proc genEqProc(p: BProc, e: PNode, d: var TLoc) = var a, b: TLoc assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) if a.t.callConv == ccClosure: putIntoDest(p, d, e.typ, ropef("($1.ClPrc == $2.ClPrc && $1.ClEnv == $2.ClEnv)", [ rdLoc(a), rdLoc(b)])) else: putIntoDest(p, d, e.typ, ropef("($1 == $2)", [rdLoc(a), rdLoc(b)])) proc genIsNil(p: BProc, e: PNode, d: var TLoc) = let t = skipTypes(e.sons[1].typ, abstractRange) if t.kind == tyProc and t.callConv == ccClosure: unaryExpr(p, e, d, "$1.ClPrc == 0") else: unaryExpr(p, e, d, "$1 == 0") proc unaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) = const unArithTab: array[mNot..mToBiggestInt, string] = ["!($1)", # Not "$1", # UnaryPlusI "($3)((NU$2) ~($1))", # BitnotI "$1", # UnaryPlusI64 "($3)((NU$2) ~($1))", # BitnotI64 "$1", # UnaryPlusF64 "-($1)", # UnaryMinusF64 "($1 > 0? ($1) : -($1))", # AbsF64; BUGFIX: fabs() makes problems # for Tiny C, so we don't use it "(($3)(NU)(NU8)($1))", # mZe8ToI "(($3)(NU64)(NU8)($1))", # mZe8ToI64 "(($3)(NU)(NU16)($1))", # mZe16ToI "(($3)(NU64)(NU16)($1))", # mZe16ToI64 "(($3)(NU64)(NU32)($1))", # mZe32ToI64 "(($3)(NU64)(NU)($1))", # mZeIToI64 "(($3)(NU8)(NU)($1))", # ToU8 "(($3)(NU16)(NU)($1))", # ToU16 "(($3)(NU32)(NU64)($1))", # ToU32 "((double) ($1))", # ToFloat "((double) ($1))", # ToBiggestFloat "float64ToInt32($1)", # ToInt "float64ToInt64($1)"] # ToBiggestInt var a: TLoc t: PType assert(e.sons[1].typ != nil) InitLocExpr(p, e.sons[1], a) t = skipTypes(e.typ, abstractRange) putIntoDest(p, d, e.typ, ropef(unArithTab[op], [rdLoc(a), toRope(getSize(t) * 8), getSimpleTypeDesc(p.module, e.typ)])) proc genDeref(p: BProc, e: PNode, d: var TLoc) = var a: TLoc if mapType(e.sons[0].typ) == ctArray: # XXX the amount of hacks for C's arrays is incredible, maybe we should # simply wrap them in a struct? --> Losing auto vectorization then? expr(p, e.sons[0], d) else: initLocExpr(p, e.sons[0], a) case skipTypes(a.t, abstractInst).kind of tyRef: d.s = OnHeap of tyVar: d.s = OnUnknown of tyPtr: d.s = OnUnknown # BUGFIX! else: InternalError(e.info, "genDeref " & $a.t.kind) putIntoDest(p, d, a.t.sons[0], ropef("(*$1)", [rdLoc(a)])) proc genAddr(p: BProc, e: PNode, d: var TLoc) = var a: TLoc if mapType(e.sons[0].typ) == ctArray: expr(p, e.sons[0], d) else: InitLocExpr(p, e.sons[0], a) putIntoDest(p, d, e.typ, addrLoc(a)) proc genRecordFieldAux(p: BProc, e: PNode, d, a: var TLoc): PType = initLocExpr(p, e.sons[0], a) if e.sons[1].kind != nkSym: InternalError(e.info, "genRecordFieldAux") if d.k == locNone: d.s = a.s discard getTypeDesc(p.module, a.t) # fill the record's fields.loc result = a.t proc genRecordField(p: BProc, e: PNode, d: var TLoc) = var a: TLoc var ty = genRecordFieldAux(p, e, d, a) var r = rdLoc(a) var f = e.sons[1].sym if ty.kind == tyTuple: # we found a unique tuple type which lacks field information # so we use Field$i appf(r, ".Field$1", [toRope(f.position)]) putIntoDest(p, d, f.typ, r) else: var field: PSym = nil while ty != nil: if ty.kind notin {tyTuple, tyObject}: InternalError(e.info, "genRecordField") field = lookupInRecord(ty.n, f.name) if field != nil: break if gCmd != cmdCompileToCpp: app(r, ".Sup") ty = GetUniqueType(ty.sons[0]) if field == nil: InternalError(e.info, "genRecordField 2 ") if field.loc.r == nil: InternalError(e.info, "genRecordField 3") appf(r, ".$1", [field.loc.r]) putIntoDest(p, d, field.typ, r) proc genTupleElem(p: BProc, e: PNode, d: var TLoc) = var a: TLoc i: int initLocExpr(p, e.sons[0], a) if d.k == locNone: d.s = a.s discard getTypeDesc(p.module, a.t) # fill the record's fields.loc var ty = a.t var r = rdLoc(a) case e.sons[1].kind of nkIntLit..nkUInt64Lit: i = int(e.sons[1].intVal) else: internalError(e.info, "genTupleElem") when false: if ty.n != nil: var field = ty.n.sons[i].sym if field == nil: InternalError(e.info, "genTupleElem") if field.loc.r == nil: InternalError(e.info, "genTupleElem") appf(r, ".$1", [field.loc.r]) else: appf(r, ".Field$1", [toRope(i)]) putIntoDest(p, d, ty.sons[i], r) proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc) proc genCheckedRecordField(p: BProc, e: PNode, d: var TLoc) = var a, u, v, test: TLoc f, field, op: PSym ty: PType r, strLit: PRope id: int it: PNode if optFieldCheck in p.options: ty = genRecordFieldAux(p, e.sons[0], d, a) r = rdLoc(a) f = e.sons[0].sons[1].sym field = nil while ty != nil: assert(ty.kind in {tyTuple, tyObject}) field = lookupInRecord(ty.n, f.name) if field != nil: break if gCmd != cmdCompileToCpp: app(r, ".Sup") ty = getUniqueType(ty.sons[0]) if field == nil: InternalError(e.info, "genCheckedRecordField") if field.loc.r == nil: InternalError(e.info, "genCheckedRecordField") # generate the checks: for i in countup(1, sonsLen(e) - 1): it = e.sons[i] assert(it.kind in nkCallKinds) assert(it.sons[0].kind == nkSym) op = it.sons[0].sym if op.magic == mNot: it = it.sons[1] assert(it.sons[2].kind == nkSym) initLoc(test, locNone, it.typ, OnStack) InitLocExpr(p, it.sons[1], u) initLoc(v, locExpr, it.sons[2].typ, OnUnknown) v.r = ropef("$1.$2", [r, it.sons[2].sym.loc.r]) genInExprAux(p, it, u, v, test) id = NodeTableTestOrSet(p.module.dataCache, newStrNode(nkStrLit, field.name.s), gBackendId) if id == gBackendId: strLit = getStrLit(p.module, field.name.s) else: strLit = con("TMP", toRope(id)) if op.magic == mNot: lineCg(p, cpsStmts, "if ($1) #raiseFieldError(((#NimStringDesc*) &$2));$n", [rdLoc(test), strLit]) else: lineCg(p, cpsStmts, "if (!($1)) #raiseFieldError(((#NimStringDesc*) &$2));$n", [rdLoc(test), strLit]) appf(r, ".$1", [field.loc.r]) putIntoDest(p, d, field.typ, r) else: genRecordField(p, e.sons[0], d) proc genArrayElem(p: BProc, e: PNode, d: var TLoc) = var a, b: TLoc initLocExpr(p, e.sons[0], a) initLocExpr(p, e.sons[1], b) var ty = skipTypes(skipTypes(a.t, abstractVarRange), abstractPtrs) var first = intLiteral(firstOrd(ty)) # emit range check: if (optBoundsCheck in p.options): if not isConstExpr(e.sons[1]): # semantic pass has already checked for const index expressions if firstOrd(ty) == 0: if (firstOrd(b.t) < firstOrd(ty)) or (lastOrd(b.t) > lastOrd(ty)): lineCg(p, cpsStmts, "if ((NU)($1) > (NU)($2)) #raiseIndexError();$n", [rdCharLoc(b), intLiteral(lastOrd(ty))]) else: lineCg(p, cpsStmts, "if ($1 < $2 || $1 > $3) #raiseIndexError();$n", [rdCharLoc(b), first, intLiteral(lastOrd(ty))]) if d.k == locNone: d.s = a.s putIntoDest(p, d, elemType(skipTypes(ty, abstractVar)), ropef("$1[($2)- $3]", [rdLoc(a), rdCharLoc(b), first])) proc genCStringElem(p: BProc, e: PNode, d: var TLoc) = var a, b: TLoc initLocExpr(p, e.sons[0], a) initLocExpr(p, e.sons[1], b) var ty = skipTypes(a.t, abstractVarRange) if d.k == locNone: d.s = a.s putIntoDest(p, d, elemType(skipTypes(ty, abstractVar)), ropef("$1[$2]", [rdLoc(a), rdCharLoc(b)])) proc genOpenArrayElem(p: BProc, e: PNode, d: var TLoc) = var a, b: TLoc initLocExpr(p, e.sons[0], a) initLocExpr(p, e.sons[1], b) # emit range check: if optBoundsCheck in p.options: lineCg(p, cpsStmts, "if ((NU)($1) >= (NU)($2Len0)) #raiseIndexError();$n", [rdLoc(b), rdLoc(a)]) # BUGFIX: ``>=`` and not ``>``! if d.k == locNone: d.s = a.s putIntoDest(p, d, elemType(skipTypes(a.t, abstractVar)), ropef("$1[$2]", [rdLoc(a), rdCharLoc(b)])) proc genSeqElem(p: BPRoc, e: PNode, d: var TLoc) = var a, b: TLoc initLocExpr(p, e.sons[0], a) initLocExpr(p, e.sons[1], b) var ty = skipTypes(a.t, abstractVarRange) if ty.kind in {tyRef, tyPtr}: ty = skipTypes(ty.sons[0], abstractVarRange) # emit range check: if optBoundsCheck in p.options: if ty.kind == tyString: lineCg(p, cpsStmts, "if ((NU)($1) > (NU)($2->$3)) #raiseIndexError();$n", [rdLoc(b), rdLoc(a), lenField()]) else: lineCg(p, cpsStmts, "if ((NU)($1) >= (NU)($2->$3)) #raiseIndexError();$n", [rdLoc(b), rdLoc(a), lenField()]) if d.k == locNone: d.s = OnHeap if skipTypes(a.t, abstractVar).kind in {tyRef, tyPtr}: a.r = ropef("(*$1)", [a.r]) putIntoDest(p, d, elemType(skipTypes(a.t, abstractVar)), ropef("$1->data[$2]", [rdLoc(a), rdCharLoc(b)])) proc genAndOr(p: BProc, e: PNode, d: var TLoc, m: TMagic) = # how to generate code? # 'expr1 and expr2' becomes: # result = expr1 # fjmp result, end # result = expr2 # end: # ... (result computed) # BUGFIX: # a = b or a # used to generate: # a = b # if a: goto end # a = a # end: # now it generates: # tmp = b # if tmp: goto end # tmp = a # end: # a = tmp var L: TLabel tmp: TLoc getTemp(p, e.typ, tmp) # force it into a temp! expr(p, e.sons[1], tmp) L = getLabel(p) if m == mOr: lineF(p, cpsStmts, "if ($1) goto $2;$n", [rdLoc(tmp), L]) else: lineF(p, cpsStmts, "if (!($1)) goto $2;$n", [rdLoc(tmp), L]) expr(p, e.sons[2], tmp) fixLabel(p, L) if d.k == locNone: d = tmp else: genAssignment(p, d, tmp, {}) # no need for deep copying proc genIfExpr(p: BProc, n: PNode, d: var TLoc) = # # if (!expr1) goto L1; # thenPart # goto LEnd # L1: # if (!expr2) goto L2; # thenPart2 # goto LEnd # L2: # elsePart # Lend: # var it: PNode a, tmp: TLoc Lend, Lelse: TLabel getTemp(p, n.typ, tmp) # force it into a temp! Lend = getLabel(p) for i in countup(0, sonsLen(n) - 1): it = n.sons[i] case it.kind of nkElifExpr: initLocExpr(p, it.sons[0], a) Lelse = getLabel(p) lineF(p, cpsStmts, "if (!$1) goto $2;$n", [rdLoc(a), Lelse]) expr(p, it.sons[1], tmp) lineF(p, cpsStmts, "goto $1;$n", [Lend]) fixLabel(p, Lelse) of nkElseExpr: expr(p, it.sons[0], tmp) else: internalError(n.info, "genIfExpr()") fixLabel(p, Lend) if d.k == locNone: d = tmp else: genAssignment(p, d, tmp, {}) # no need for deep copying proc genEcho(p: BProc, n: PNode) = # this unusal way of implementing it ensures that e.g. ``echo("hallo", 45)`` # is threadsafe. var args: PRope = nil var a: TLoc for i in countup(1, n.len-1): initLocExpr(p, n.sons[i], a) appf(args, ", ($1)->data", [rdLoc(a)]) lineCg(p, cpsStmts, "printf($1$2);$n", [ makeCString(repeatStr(n.len-1, "%s") & tnl), args]) include ccgcalls proc genStrConcat(p: BProc, e: PNode, d: var TLoc) = # <Nimrod code> # s = 'Hello ' & name & ', how do you feel?' & 'z' # # <generated C code> # { # string tmp0; # ... # tmp0 = rawNewString(6 + 17 + 1 + s2->len); # // we cannot generate s = rawNewString(...) here, because # // ``s`` may be used on the right side of the expression # appendString(tmp0, strlit_1); # appendString(tmp0, name); # appendString(tmp0, strlit_2); # appendChar(tmp0, 'z'); # asgn(s, tmp0); # } var a, tmp: TLoc getTemp(p, e.typ, tmp) var L = 0 var appends: PRope = nil var lens: PRope = nil for i in countup(0, sonsLen(e) - 2): # compute the length expression: initLocExpr(p, e.sons[i + 1], a) if skipTypes(e.sons[i + 1].Typ, abstractVarRange).kind == tyChar: Inc(L) appLineCg(p, appends, "#appendChar($1, $2);$n", [tmp.r, rdLoc(a)]) else: if e.sons[i + 1].kind in {nkStrLit..nkTripleStrLit}: Inc(L, len(e.sons[i + 1].strVal)) else: appf(lens, "$1->$2 + ", [rdLoc(a), lenField()]) appLineCg(p, appends, "#appendString($1, $2);$n", [tmp.r, rdLoc(a)]) lineCg(p, cpsStmts, "$1 = #rawNewString($2$3);$n", [tmp.r, lens, toRope(L)]) app(p.s(cpsStmts), appends) if d.k == locNone: d = tmp keepAlive(p, tmp) else: genAssignment(p, d, tmp, {needToKeepAlive}) # no need for deep copying proc genStrAppend(p: BProc, e: PNode, d: var TLoc) = # <Nimrod code> # s &= 'Hello ' & name & ', how do you feel?' & 'z' # // BUG: what if s is on the left side too? # <generated C code> # { # s = resizeString(s, 6 + 17 + 1 + name->len); # appendString(s, strlit_1); # appendString(s, name); # appendString(s, strlit_2); # appendChar(s, 'z'); # } var a, dest: TLoc appends, lens: PRope assert(d.k == locNone) var L = 0 initLocExpr(p, e.sons[1], dest) for i in countup(0, sonsLen(e) - 3): # compute the length expression: initLocExpr(p, e.sons[i + 2], a) if skipTypes(e.sons[i + 2].Typ, abstractVarRange).kind == tyChar: Inc(L) appLineCg(p, appends, "#appendChar($1, $2);$n", [rdLoc(dest), rdLoc(a)]) else: if e.sons[i + 2].kind in {nkStrLit..nkTripleStrLit}: Inc(L, len(e.sons[i + 2].strVal)) else: appf(lens, "$1->$2 + ", [rdLoc(a), lenField()]) appLineCg(p, appends, "#appendString($1, $2);$n", [rdLoc(dest), rdLoc(a)]) lineCg(p, cpsStmts, "$1 = #resizeString($1, $2$3);$n", [rdLoc(dest), lens, toRope(L)]) keepAlive(p, dest) app(p.s(cpsStmts), appends) proc genSeqElemAppend(p: BProc, e: PNode, d: var TLoc) = # seq &= x --> # seq = (typeof seq) incrSeq(&seq->Sup, sizeof(x)); # seq->data[seq->len-1] = x; let seqAppendPattern = if gCmd != cmdCompileToCpp: "$1 = ($2) #incrSeq(&($1)->Sup, sizeof($3));$n" else: "$1 = ($2) #incrSeq($1, sizeof($3));$n" var a, b, dest: TLoc InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) lineCg(p, cpsStmts, seqAppendPattern, [ rdLoc(a), getTypeDesc(p.module, skipTypes(e.sons[1].typ, abstractVar)), getTypeDesc(p.module, skipTypes(e.sons[2].Typ, abstractVar))]) keepAlive(p, a) initLoc(dest, locExpr, b.t, OnHeap) dest.r = ropef("$1->data[$1->$2-1]", [rdLoc(a), lenField()]) genAssignment(p, dest, b, {needToCopy, afDestIsNil}) proc genReset(p: BProc, n: PNode) = var a: TLoc InitLocExpr(p, n.sons[1], a) lineCg(p, cpsStmts, "#genericReset((void*)$1, $2);$n", [addrLoc(a), genTypeInfo(p.module, skipTypes(a.t, abstractVarRange))]) proc genNew(p: BProc, e: PNode) = var a, b: TLoc reftype, bt: PType refType = skipTypes(e.sons[1].typ, abstractVarRange) InitLocExpr(p, e.sons[1], a) initLoc(b, locExpr, a.t, OnHeap) let args = [getTypeDesc(p.module, reftype), genTypeInfo(p.module, refType), getTypeDesc(p.module, skipTypes(reftype.sons[0], abstractRange))] if a.s == OnHeap and optRefcGc in gGlobalOptions: # use newObjRC1 as an optimization; and we don't need 'keepAlive' either if canFormAcycle(a.t): lineCg(p, cpsStmts, "if ($1) #nimGCunref($1);$n", a.rdLoc) else: lineCg(p, cpsStmts, "if ($1) #nimGCunrefNoCycle($1);$n", a.rdLoc) b.r = ropecg(p.module, "($1) #newObjRC1($2, sizeof($3))", args) lineCg(p, cpsStmts, "$1 = $2;$n", a.rdLoc, b.rdLoc) else: b.r = ropecg(p.module, "($1) #newObj($2, sizeof($3))", args) genAssignment(p, a, b, {needToKeepAlive}) # set the object type: bt = skipTypes(refType.sons[0], abstractRange) genObjectInit(p, cpsStmts, bt, a, false) proc genNewSeqAux(p: BProc, dest: TLoc, length: PRope) = let seqtype = skipTypes(dest.t, abstractVarRange) let args = [getTypeDesc(p.module, seqtype), genTypeInfo(p.module, seqType), length] var call: TLoc initLoc(call, locExpr, dest.t, OnHeap) if dest.s == OnHeap and optRefcGc in gGlobalOptions: lineCg(p, cpsStmts, "if ($1) #nimGCunrefNoCycle($1);$n", dest.rdLoc) call.r = ropecg(p.module, "($1) #newSeqRC1($2, $3)", args) lineCg(p, cpsStmts, "$1 = $2;$n", dest.rdLoc, call.rdLoc) else: call.r = ropecg(p.module, "($1) #newSeq($2, $3)", args) genAssignment(p, dest, call, {needToKeepAlive}) proc genNewSeq(p: BProc, e: PNode) = var a, b: TLoc InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) genNewSeqAux(p, a, b.rdLoc) proc genSeqConstr(p: BProc, t: PNode, d: var TLoc) = var arr: TLoc if d.k == locNone: getTemp(p, t.typ, d) # generate call to newSeq before adding the elements per hand: genNewSeqAux(p, d, intLiteral(sonsLen(t))) for i in countup(0, sonsLen(t) - 1): initLoc(arr, locExpr, elemType(skipTypes(t.typ, abstractInst)), OnHeap) arr.r = ropef("$1->data[$2]", [rdLoc(d), intLiteral(i)]) arr.s = OnHeap # we know that sequences are on the heap expr(p, t.sons[i], arr) proc genArrToSeq(p: BProc, t: PNode, d: var TLoc) = var elem, a, arr: TLoc if t.kind == nkBracket: t.sons[1].typ = t.typ genSeqConstr(p, t.sons[1], d) return if d.k == locNone: getTemp(p, t.typ, d) # generate call to newSeq before adding the elements per hand: var L = int(lengthOrd(t.sons[1].typ)) genNewSeqAux(p, d, intLiteral(L)) initLocExpr(p, t.sons[1], a) for i in countup(0, L - 1): initLoc(elem, locExpr, elemType(skipTypes(t.typ, abstractInst)), OnHeap) elem.r = ropef("$1->data[$2]", [rdLoc(d), intLiteral(i)]) elem.s = OnHeap # we know that sequences are on the heap initLoc(arr, locExpr, elemType(skipTypes(t.sons[1].typ, abstractInst)), a.s) arr.r = ropef("$1[$2]", [rdLoc(a), intLiteral(i)]) genAssignment(p, elem, arr, {afDestIsNil, needToCopy}) proc genNewFinalize(p: BProc, e: PNode) = var a, b, f: TLoc refType, bt: PType ti: PRope oldModule: BModule refType = skipTypes(e.sons[1].typ, abstractVarRange) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], f) initLoc(b, locExpr, a.t, OnHeap) ti = genTypeInfo(p.module, refType) appf(p.module.s[cfsTypeInit3], "$1->finalizer = (void*)$2;$n", [ti, rdLoc(f)]) b.r = ropecg(p.module, "($1) #newObj($2, sizeof($3))", [ getTypeDesc(p.module, refType), ti, getTypeDesc(p.module, skipTypes(reftype.sons[0], abstractRange))]) genAssignment(p, a, b, {needToKeepAlive}) # set the object type: bt = skipTypes(refType.sons[0], abstractRange) genObjectInit(p, cpsStmts, bt, a, false) proc genOf(p: BProc, x: PNode, typ: PType, d: var TLoc) = var a: TLoc initLocExpr(p, x, a) var dest = skipTypes(typ, typedescPtrs) var r = rdLoc(a) var nilCheck: PRope = nil var t = skipTypes(a.t, abstractInst) while t.kind in {tyVar, tyPtr, tyRef}: if t.kind != tyVar: nilCheck = r r = ropef("(*$1)", [r]) t = skipTypes(t.sons[0], typedescInst) if gCmd != cmdCompileToCpp: while (t.kind == tyObject) and (t.sons[0] != nil): app(r, ".Sup") t = skipTypes(t.sons[0], typedescInst) if nilCheck != nil: r = ropecg(p.module, "(($1) && #isObj($2.m_type, $3))", [nilCheck, r, genTypeInfo(p.module, dest)]) else: r = ropecg(p.module, "#isObj($1.m_type, $2)", [r, genTypeInfo(p.module, dest)]) putIntoDest(p, d, getSysType(tyBool), r) proc genOf(p: BProc, n: PNode, d: var TLoc) = genOf(p, n.sons[1], n.sons[2].typ, d) proc genRepr(p: BProc, e: PNode, d: var TLoc) = # XXX we don't generate keep alive info for now here var a: TLoc InitLocExpr(p, e.sons[1], a) var t = skipTypes(e.sons[1].typ, abstractVarRange) case t.kind of tyInt..tyInt64, tyUInt..tyUInt64: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprInt((NI64)$1)", [rdLoc(a)])) of tyFloat..tyFloat128: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprFloat($1)", [rdLoc(a)])) of tyBool: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprBool($1)", [rdLoc(a)])) of tyChar: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprChar($1)", [rdLoc(a)])) of tyEnum, tyOrdinal: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprEnum($1, $2)", [ rdLoc(a), genTypeInfo(p.module, t)])) of tyString: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprStr($1)", [rdLoc(a)])) of tySet: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprSet($1, $2)", [ addrLoc(a), genTypeInfo(p.module, t)])) of tyOpenArray: var b: TLoc case a.t.kind of tyOpenArray: putIntoDest(p, b, e.typ, ropef("$1, $1Len0", [rdLoc(a)])) of tyString, tySequence: putIntoDest(p, b, e.typ, ropef("$1->data, $1->$2", [rdLoc(a), lenField()])) of tyArray, tyArrayConstr: putIntoDest(p, b, e.typ, ropef("$1, $2", [rdLoc(a), toRope(lengthOrd(a.t))])) else: InternalError(e.sons[0].info, "genRepr()") putIntoDest(p, d, e.typ, ropecg(p.module, "#reprOpenArray($1, $2)", [rdLoc(b), genTypeInfo(p.module, elemType(t))])) of tyCString, tyArray, tyArrayConstr, tyRef, tyPtr, tyPointer, tyNil, tySequence: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprAny($1, $2)", [ rdLoc(a), genTypeInfo(p.module, t)])) else: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprAny($1, $2)", [addrLoc(a), genTypeInfo(p.module, t)])) proc genGetTypeInfo(p: BProc, e: PNode, d: var TLoc) = var t = skipTypes(e.sons[1].typ, abstractVarRange) putIntoDest(p, d, e.typ, genTypeInfo(p.module, t)) proc genDollar(p: BProc, n: PNode, d: var TLoc, frmt: string) = var a: TLoc InitLocExpr(p, n.sons[1], a) a.r = ropecg(p.module, frmt, [rdLoc(a)]) if d.k == locNone: getTemp(p, n.typ, d) genAssignment(p, d, a, {needToKeepAlive}) proc genArrayLen(p: BProc, e: PNode, d: var TLoc, op: TMagic) = var a = e.sons[1] if a.kind == nkHiddenAddr: a = a.sons[0] var typ = skipTypes(a.Typ, abstractVar) case typ.kind of tyOpenArray: if op == mHigh: unaryExpr(p, e, d, "($1Len0-1)") else: unaryExpr(p, e, d, "$1Len0") of tyCstring: if op == mHigh: unaryExpr(p, e, d, "(strlen($1)-1)") else: unaryExpr(p, e, d, "strlen($1)") of tyString, tySequence: if gCmd != cmdCompileToCpp: if op == mHigh: unaryExpr(p, e, d, "($1->Sup.len-1)") else: unaryExpr(p, e, d, "$1->Sup.len") else: if op == mHigh: unaryExpr(p, e, d, "($1->len-1)") else: unaryExpr(p, e, d, "$1->len") of tyArray, tyArrayConstr: # YYY: length(sideeffect) is optimized away incorrectly? if op == mHigh: putIntoDest(p, d, e.typ, toRope(lastOrd(Typ))) else: putIntoDest(p, d, e.typ, toRope(lengthOrd(typ))) else: InternalError(e.info, "genArrayLen()") proc genSetLengthSeq(p: BProc, e: PNode, d: var TLoc) = var a, b: TLoc assert(d.k == locNone) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) var t = skipTypes(e.sons[1].typ, abstractVar) let setLenPattern = if gCmd != cmdCompileToCpp: "$1 = ($3) #setLengthSeq(&($1)->Sup, sizeof($4), $2);$n" else: "$1 = ($3) #setLengthSeq($1, sizeof($4), $2);$n" lineCg(p, cpsStmts, setLenPattern, [ rdLoc(a), rdLoc(b), getTypeDesc(p.module, t), getTypeDesc(p.module, t.sons[0])]) keepAlive(p, a) proc genSetLengthStr(p: BProc, e: PNode, d: var TLoc) = binaryStmt(p, e, d, "$1 = #setLengthStr($1, $2);$n") keepAlive(P, d) proc genSwap(p: BProc, e: PNode, d: var TLoc) = # swap(a, b) --> # temp = a # a = b # b = temp var a, b, tmp: TLoc getTemp(p, skipTypes(e.sons[1].typ, abstractVar), tmp) InitLocExpr(p, e.sons[1], a) # eval a InitLocExpr(p, e.sons[2], b) # eval b genAssignment(p, tmp, a, {}) genAssignment(p, a, b, {}) genAssignment(p, b, tmp, {}) proc rdSetElemLoc(a: TLoc, setType: PType): PRope = # read a location of an set element; it may need a substraction operation # before the set operation result = rdCharLoc(a) assert(setType.kind == tySet) if firstOrd(setType) != 0: result = ropef("($1- $2)", [result, toRope(firstOrd(setType))]) proc fewCmps(s: PNode): bool = # this function estimates whether it is better to emit code # for constructing the set or generating a bunch of comparisons directly if s.kind != nkCurly: InternalError(s.info, "fewCmps") if (getSize(s.typ) <= platform.intSize) and (nfAllConst in s.flags): result = false # it is better to emit the set generation code elif elemType(s.typ).Kind in {tyInt, tyInt16..tyInt64}: result = true # better not emit the set if int is basetype! else: result = sonsLen(s) <= 8 # 8 seems to be a good value proc binaryExprIn(p: BProc, e: PNode, a, b, d: var TLoc, frmt: string) = putIntoDest(p, d, e.typ, ropef(frmt, [rdLoc(a), rdSetElemLoc(b, a.t)])) proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc) = case int(getSize(skipTypes(e.sons[1].typ, abstractVar))) of 1: binaryExprIn(p, e, a, b, d, "(($1 &(1<<(($2)&7)))!=0)") of 2: binaryExprIn(p, e, a, b, d, "(($1 &(1<<(($2)&15)))!=0)") of 4: binaryExprIn(p, e, a, b, d, "(($1 &(1<<(($2)&31)))!=0)") of 8: binaryExprIn(p, e, a, b, d, "(($1 &(IL64(1)<<(($2)&IL64(63))))!=0)") else: binaryExprIn(p, e, a, b, d, "(($1[$2/8] &(1<<($2%8)))!=0)") proc binaryStmtInExcl(p: BProc, e: PNode, d: var TLoc, frmt: string) = var a, b: TLoc assert(d.k == locNone) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) lineF(p, cpsStmts, frmt, [rdLoc(a), rdSetElemLoc(b, a.t)]) proc genInOp(p: BProc, e: PNode, d: var TLoc) = var a, b, x, y: TLoc if (e.sons[1].Kind == nkCurly) and fewCmps(e.sons[1]): # a set constructor but not a constant set: # do not emit the set, but generate a bunch of comparisons initLocExpr(p, e.sons[2], a) initLoc(b, locExpr, e.typ, OnUnknown) b.r = toRope("(") var length = sonsLen(e.sons[1]) for i in countup(0, length - 1): if e.sons[1].sons[i].Kind == nkRange: InitLocExpr(p, e.sons[1].sons[i].sons[0], x) InitLocExpr(p, e.sons[1].sons[i].sons[1], y) appf(b.r, "$1 >= $2 && $1 <= $3", [rdCharLoc(a), rdCharLoc(x), rdCharLoc(y)]) else: InitLocExpr(p, e.sons[1].sons[i], x) appf(b.r, "$1 == $2", [rdCharLoc(a), rdCharLoc(x)]) if i < length - 1: app(b.r, " || ") app(b.r, ")") putIntoDest(p, d, e.typ, b.r) else: assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) genInExprAux(p, e, a, b, d) proc genSetOp(p: BProc, e: PNode, d: var TLoc, op: TMagic) = const lookupOpr: array[mLeSet..mSymDiffSet, string] = [ "for ($1 = 0; $1 < $2; $1++) { $n" & " $3 = (($4[$1] & ~ $5[$1]) == 0);$n" & " if (!$3) break;}$n", "for ($1 = 0; $1 < $2; $1++) { $n" & " $3 = (($4[$1] & ~ $5[$1]) == 0);$n" & " if (!$3) break;}$n" & "if ($3) $3 = (memcmp($4, $5, $2) != 0);$n", "&", "|", "& ~", "^"] var a, b, i: TLoc var setType = skipTypes(e.sons[1].Typ, abstractVar) var size = int(getSize(setType)) case size of 1, 2, 4, 8: case op of mIncl: var ts = "NI" & $(size * 8) binaryStmtInExcl(p, e, d, "$1 |=(1<<((" & ts & ")($2)%(sizeof(" & ts & ")*8)));$n") of mExcl: var ts = "NI" & $(size * 8) binaryStmtInExcl(p, e, d, "$1 &= ~(1 << ((" & ts & ")($2) % (sizeof(" & ts & ")*8)));$n") of mCard: if size <= 4: unaryExprChar(p, e, d, "#countBits32($1)") else: unaryExprChar(p, e, d, "#countBits64($1)") of mLtSet: binaryExprChar(p, e, d, "(($1 & ~ $2 ==0)&&($1 != $2))") of mLeSet: binaryExprChar(p, e, d, "(($1 & ~ $2)==0)") of mEqSet: binaryExpr(p, e, d, "($1 == $2)") of mMulSet: binaryExpr(p, e, d, "($1 & $2)") of mPlusSet: binaryExpr(p, e, d, "($1 | $2)") of mMinusSet: binaryExpr(p, e, d, "($1 & ~ $2)") of mSymDiffSet: binaryExpr(p, e, d, "($1 ^ $2)") of mInSet: genInOp(p, e, d) else: internalError(e.info, "genSetOp()") else: case op of mIncl: binaryStmtInExcl(p, e, d, "$1[$2/8] |=(1<<($2%8));$n") of mExcl: binaryStmtInExcl(p, e, d, "$1[$2/8] &= ~(1<<($2%8));$n") of mCard: unaryExprChar(p, e, d, "#cardSet($1, " & $size & ')') of mLtSet, mLeSet: getTemp(p, getSysType(tyInt), i) # our counter initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) if d.k == locNone: getTemp(p, a.t, d) lineF(p, cpsStmts, lookupOpr[op], [rdLoc(i), toRope(size), rdLoc(d), rdLoc(a), rdLoc(b)]) of mEqSet: binaryExprChar(p, e, d, "(memcmp($1, $2, " & $(size) & ")==0)") of mMulSet, mPlusSet, mMinusSet, mSymDiffSet: # we inline the simple for loop for better code generation: getTemp(p, getSysType(tyInt), i) # our counter initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) if d.k == locNone: getTemp(p, a.t, d) lineF(p, cpsStmts, "for ($1 = 0; $1 < $2; $1++) $n" & " $3[$1] = $4[$1] $6 $5[$1];$n", [ rdLoc(i), toRope(size), rdLoc(d), rdLoc(a), rdLoc(b), toRope(lookupOpr[op])]) of mInSet: genInOp(p, e, d) else: internalError(e.info, "genSetOp") proc genOrd(p: BProc, e: PNode, d: var TLoc) = unaryExprChar(p, e, d, "$1") proc genCast(p: BProc, e: PNode, d: var TLoc) = const ValueTypes = {tyTuple, tyObject, tyArray, tyOpenArray, tyArrayConstr} # we use whatever C gives us. Except if we have a value-type, we need to go # through its address: var a: TLoc InitLocExpr(p, e.sons[1], a) let etyp = skipTypes(e.typ, abstractRange) if etyp.kind in ValueTypes and lfIndirect notin a.flags: putIntoDest(p, d, e.typ, ropef("(*($1*) ($2))", [getTypeDesc(p.module, e.typ), addrLoc(a)])) elif etyp.kind == tyProc and etyp.callConv == ccClosure: putIntoDest(p, d, e.typ, ropef("(($1) ($2))", [getClosureType(p.module, etyp, clHalfWithEnv), rdCharLoc(a)])) else: putIntoDest(p, d, e.typ, ropef("(($1) ($2))", [getTypeDesc(p.module, e.typ), rdCharLoc(a)])) proc genRangeChck(p: BProc, n: PNode, d: var TLoc, magic: string) = var a: TLoc var dest = skipTypes(n.typ, abstractVar) # range checks for unsigned turned out to be buggy and annoying: if optRangeCheck notin p.options or dest.kind in {tyUInt..tyUInt64}: InitLocExpr(p, n.sons[0], a) putIntoDest(p, d, n.typ, ropef("(($1) ($2))", [getTypeDesc(p.module, dest), rdCharLoc(a)])) else: InitLocExpr(p, n.sons[0], a) if leValue(n.sons[2], n.sons[1]): InternalError(n.info, "range check will always fail; empty range") putIntoDest(p, d, dest, ropecg(p.module, "(($1)#$5($2, $3, $4))", [ getTypeDesc(p.module, dest), rdCharLoc(a), genLiteral(p, n.sons[1], dest), genLiteral(p, n.sons[2], dest), toRope(magic)])) proc genConv(p: BProc, e: PNode, d: var TLoc) = if compareTypes(e.typ, e.sons[1].typ, dcEqIgnoreDistinct): expr(p, e.sons[1], d) else: genCast(p, e, d) proc convStrToCStr(p: BProc, n: PNode, d: var TLoc) = var a: TLoc initLocExpr(p, n.sons[0], a) putIntoDest(p, d, skipTypes(n.typ, abstractVar), ropef("$1->data", [rdLoc(a)])) proc convCStrToStr(p: BProc, n: PNode, d: var TLoc) = var a: TLoc initLocExpr(p, n.sons[0], a) putIntoDest(p, d, skipTypes(n.typ, abstractVar), ropecg(p.module, "#cstrToNimstr($1)", [rdLoc(a)])) proc genStrEquals(p: BProc, e: PNode, d: var TLoc) = var x: TLoc var a = e.sons[1] var b = e.sons[2] if (a.kind == nkNilLit) or (b.kind == nkNilLit): binaryExpr(p, e, d, "($1 == $2)") elif (a.kind in {nkStrLit..nkTripleStrLit}) and (a.strVal == ""): initLocExpr(p, e.sons[2], x) putIntoDest(p, d, e.typ, ropef("(($1) && ($1)->$2 == 0)", [rdLoc(x), lenField()])) elif (b.kind in {nkStrLit..nkTripleStrLit}) and (b.strVal == ""): initLocExpr(p, e.sons[1], x) putIntoDest(p, d, e.typ, ropef("(($1) && ($1)->$2 == 0)", [rdLoc(x), lenField()])) else: binaryExpr(p, e, d, "#eqStrings($1, $2)") proc binaryFloatArith(p: BProc, e: PNode, d: var TLoc, m: TMagic) = if {optNanCheck, optInfCheck} * p.options != {}: const opr: array[mAddF64..mDivF64, string] = ["+", "-", "*", "/"] var a, b: TLoc assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) InitLocExpr(p, e.sons[1], a) InitLocExpr(p, e.sons[2], b) putIntoDest(p, d, e.typ, ropef("($2 $1 $3)", [ toRope(opr[m]), rdLoc(a), rdLoc(b)])) if optNanCheck in p.options: lineCg(p, cpsStmts, "#nanCheck($1);$n", [rdLoc(d)]) if optInfCheck in p.options: lineCg(p, cpsStmts, "#infCheck($1);$n", [rdLoc(d)]) else: binaryArith(p, e, d, m) proc genMagicExpr(p: BProc, e: PNode, d: var TLoc, op: TMagic) = var line, filen: PRope case op of mOr, mAnd: genAndOr(p, e, d, op) of mNot..mToBiggestInt: unaryArith(p, e, d, op) of mUnaryMinusI..mAbsI64: unaryArithOverflow(p, e, d, op) of mAddF64..mDivF64: binaryFloatArith(p, e, d, op) of mShrI..mXor: binaryArith(p, e, d, op) of mEqProc: genEqProc(p, e, d) of mAddi..mModi64: binaryArithOverflow(p, e, d, op) of mRepr: genRepr(p, e, d) of mGetTypeInfo: genGetTypeInfo(p, e, d) of mSwap: genSwap(p, e, d) of mUnaryLt: if not (optOverflowCheck in p.Options): unaryExpr(p, e, d, "$1 - 1") else: unaryExpr(p, e, d, "#subInt($1, 1)") of mPred: # XXX: range checking? if not (optOverflowCheck in p.Options): binaryExpr(p, e, d, "$1 - $2") else: binaryExpr(p, e, d, "#subInt($1, $2)") of mSucc: # XXX: range checking? if not (optOverflowCheck in p.Options): binaryExpr(p, e, d, "$1 + $2") else: binaryExpr(p, e, d, "#addInt($1, $2)") of mInc: if not (optOverflowCheck in p.Options): binaryStmt(p, e, d, "$1 += $2;$n") elif skipTypes(e.sons[1].typ, abstractVar).kind == tyInt64: binaryStmt(p, e, d, "$1 = #addInt64($1, $2);$n") else: binaryStmt(p, e, d, "$1 = #addInt($1, $2);$n") of ast.mDec: if not (optOverflowCheck in p.Options): binaryStmt(p, e, d, "$1 -= $2;$n") elif skipTypes(e.sons[1].typ, abstractVar).kind == tyInt64: binaryStmt(p, e, d, "$1 = #subInt64($1, $2);$n") else: binaryStmt(p, e, d, "$1 = #subInt($1, $2);$n") of mConStrStr: genStrConcat(p, e, d) of mAppendStrCh: binaryStmt(p, e, d, "$1 = #addChar($1, $2);$n") # strictly speaking we need to generate "keepAlive" here too, but this # very likely not needed and would slow down the code too much I fear of mAppendStrStr: genStrAppend(p, e, d) of mAppendSeqElem: genSeqElemAppend(p, e, d) of mEqStr: genStrEquals(p, e, d) of mLeStr: binaryExpr(p, e, d, "(#cmpStrings($1, $2) <= 0)") of mLtStr: binaryExpr(p, e, d, "(#cmpStrings($1, $2) < 0)") of mIsNil: genIsNil(p, e, d) of mIntToStr: genDollar(p, e, d, "#nimIntToStr($1)") of mInt64ToStr: genDollar(p, e, d, "#nimInt64ToStr($1)") of mBoolToStr: genDollar(p, e, d, "#nimBoolToStr($1)") of mCharToStr: genDollar(p, e, d, "#nimCharToStr($1)") of mFloatToStr: genDollar(p, e, d, "#nimFloatToStr($1)") of mCStrToStr: genDollar(p, e, d, "#cstrToNimstr($1)") of mStrToStr: expr(p, e.sons[1], d) of mEnumToStr: genRepr(p, e, d) of mOf: genOf(p, e, d) of mNew: genNew(p, e) of mNewFinalize: genNewFinalize(p, e) of mNewSeq: genNewSeq(p, e) of mSizeOf: putIntoDest(p, d, e.typ, ropef("((NI)sizeof($1))", [getTypeDesc(p.module, e.sons[1].typ)])) of mChr: genCast(p, e, d) of mOrd: genOrd(p, e, d) of mLengthArray, mHigh, mLengthStr, mLengthSeq, mLengthOpenArray: genArrayLen(p, e, d, op) of mGCref: unaryStmt(p, e, d, "#nimGCref($1);$n") of mGCunref: unaryStmt(p, e, d, "#nimGCunref($1);$n") of mSetLengthStr: genSetLengthStr(p, e, d) of mSetLengthSeq: genSetLengthSeq(p, e, d) of mIncl, mExcl, mCard, mLtSet, mLeSet, mEqSet, mMulSet, mPlusSet, mMinusSet, mInSet: genSetOp(p, e, d, op) of mNewString, mNewStringOfCap, mCopyStr, mCopyStrLast, mExit, mRand: var opr = e.sons[0].sym if lfNoDecl notin opr.loc.flags: discard cgsym(p.module, opr.loc.r.ropeToStr) genCall(p, e, d) of mReset: genReset(p, e) of mEcho: genEcho(p, e) of mArrToSeq: genArrToSeq(p, e, d) of mNLen..mNError: localError(e.info, errCannotGenerateCodeForX, e.sons[0].sym.name.s) of mSlurp, mStaticExec: localError(e.info, errXMustBeCompileTime, e.sons[0].sym.name.s) else: internalError(e.info, "genMagicExpr: " & $op) proc genConstExpr(p: BProc, n: PNode): PRope proc handleConstExpr(p: BProc, n: PNode, d: var TLoc): bool = if (nfAllConst in n.flags) and (d.k == locNone) and (sonsLen(n) > 0): var t = getUniqueType(n.typ) discard getTypeDesc(p.module, t) # so that any fields are initialized var id = NodeTableTestOrSet(p.module.dataCache, n, gBackendId) fillLoc(d, locData, t, con("TMP", toRope(id)), OnHeap) if id == gBackendId: # expression not found in the cache: inc(gBackendId) appf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n", [getTypeDesc(p.module, t), d.r, genConstExpr(p, n)]) result = true else: result = false proc genSetConstr(p: BProc, e: PNode, d: var TLoc) = # example: { a..b, c, d, e, f..g } # we have to emit an expression of the form: # memset(tmp, 0, sizeof(tmp)); inclRange(tmp, a, b); incl(tmp, c); # incl(tmp, d); incl(tmp, e); inclRange(tmp, f, g); var a, b, idx: TLoc if nfAllConst in e.flags: putIntoDest(p, d, e.typ, genSetNode(p, e)) else: if d.k == locNone: getTemp(p, e.typ, d) if getSize(e.typ) > 8: # big set: lineF(p, cpsStmts, "memset($1, 0, sizeof($1));$n", [rdLoc(d)]) for i in countup(0, sonsLen(e) - 1): if e.sons[i].kind == nkRange: getTemp(p, getSysType(tyInt), idx) # our counter initLocExpr(p, e.sons[i].sons[0], a) initLocExpr(p, e.sons[i].sons[1], b) lineF(p, cpsStmts, "for ($1 = $3; $1 <= $4; $1++) $n" & "$2[$1/8] |=(1<<($1%8));$n", [rdLoc(idx), rdLoc(d), rdSetElemLoc(a, e.typ), rdSetElemLoc(b, e.typ)]) else: initLocExpr(p, e.sons[i], a) lineF(p, cpsStmts, "$1[$2/8] |=(1<<($2%8));$n", [rdLoc(d), rdSetElemLoc(a, e.typ)]) else: # small set var ts = "NI" & $(getSize(e.typ) * 8) lineF(p, cpsStmts, "$1 = 0;$n", [rdLoc(d)]) for i in countup(0, sonsLen(e) - 1): if e.sons[i].kind == nkRange: getTemp(p, getSysType(tyInt), idx) # our counter initLocExpr(p, e.sons[i].sons[0], a) initLocExpr(p, e.sons[i].sons[1], b) lineF(p, cpsStmts, "for ($1 = $3; $1 <= $4; $1++) $n" & "$2 |=(1<<((" & ts & ")($1)%(sizeof(" & ts & ")*8)));$n", [ rdLoc(idx), rdLoc(d), rdSetElemLoc(a, e.typ), rdSetElemLoc(b, e.typ)]) else: initLocExpr(p, e.sons[i], a) lineF(p, cpsStmts, "$1 |=(1<<((" & ts & ")($2)%(sizeof(" & ts & ")*8)));$n", [rdLoc(d), rdSetElemLoc(a, e.typ)]) proc genTupleConstr(p: BProc, n: PNode, d: var TLoc) = var rec: TLoc if not handleConstExpr(p, n, d): var t = getUniqueType(n.typ) discard getTypeDesc(p.module, t) # so that any fields are initialized if d.k == locNone: getTemp(p, t, d) for i in countup(0, sonsLen(n) - 1): var it = n.sons[i] if it.kind == nkExprColonExpr: it = it.sons[1] initLoc(rec, locExpr, it.typ, d.s) rec.r = ropef("$1.Field$2", [rdLoc(d), toRope(i)]) expr(p, it, rec) when false: initLoc(rec, locExpr, it.typ, d.s) if (t.n.sons[i].kind != nkSym): InternalError(n.info, "genTupleConstr") rec.r = ropef("$1.$2", [rdLoc(d), mangleRecFieldName(t.n.sons[i].sym, t)]) expr(p, it, rec) proc IsConstClosure(n: PNode): bool {.inline.} = result = n.sons[0].kind == nkSym and isRoutine(n.sons[0].sym) and n.sons[1].kind == nkNilLit proc genClosure(p: BProc, n: PNode, d: var TLoc) = assert n.kind == nkClosure if IsConstClosure(n): inc(p.labels) var tmp = con("LOC", toRope(p.labels)) appf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n", [getTypeDesc(p.module, n.typ), tmp, genConstExpr(p, n)]) putIntoDest(p, d, n.typ, tmp) else: var tmp, a, b: TLoc initLocExpr(p, n.sons[0], a) initLocExpr(p, n.sons[1], b) getTemp(p, n.typ, tmp) lineCg(p, cpsStmts, "$1.ClPrc = $2; $1.ClEnv = $3;$n", tmp.rdLoc, a.rdLoc, b.rdLoc) putLocIntoDest(p, d, tmp) proc genArrayConstr(p: BProc, n: PNode, d: var TLoc) = var arr: TLoc if not handleConstExpr(p, n, d): if d.k == locNone: getTemp(p, n.typ, d) for i in countup(0, sonsLen(n) - 1): initLoc(arr, locExpr, elemType(skipTypes(n.typ, abstractInst)), d.s) arr.r = ropef("$1[$2]", [rdLoc(d), intLiteral(i)]) expr(p, n.sons[i], arr) proc genComplexConst(p: BProc, sym: PSym, d: var TLoc) = requestConstImpl(p, sym) assert((sym.loc.r != nil) and (sym.loc.t != nil)) putLocIntoDest(p, d, sym.loc) proc genStmtListExpr(p: BProc, n: PNode, d: var TLoc) = var length = sonsLen(n) for i in countup(0, length - 2): genStmts(p, n.sons[i]) if length > 0: expr(p, n.sons[length - 1], d) proc upConv(p: BProc, n: PNode, d: var TLoc) = var a: TLoc initLocExpr(p, n.sons[0], a) var dest = skipTypes(n.typ, abstractPtrs) if optObjCheck in p.options and not isPureObject(dest): var r = rdLoc(a) var nilCheck: PRope = nil var t = skipTypes(a.t, abstractInst) while t.kind in {tyVar, tyPtr, tyRef}: if t.kind != tyVar: nilCheck = r r = ropef("(*$1)", [r]) t = skipTypes(t.sons[0], abstractInst) if gCmd != cmdCompileToCpp: while t.kind == tyObject and t.sons[0] != nil: app(r, ".Sup") t = skipTypes(t.sons[0], abstractInst) if nilCheck != nil: lineCg(p, cpsStmts, "if ($1) #chckObj($2.m_type, $3);$n", [nilCheck, r, genTypeInfo(p.module, dest)]) else: lineCg(p, cpsStmts, "#chckObj($1.m_type, $2);$n", [r, genTypeInfo(p.module, dest)]) if n.sons[0].typ.kind != tyObject: putIntoDest(p, d, n.typ, ropef("(($1) ($2))", [getTypeDesc(p.module, n.typ), rdLoc(a)])) else: putIntoDest(p, d, n.typ, ropef("(*($1*) ($2))", [getTypeDesc(p.module, dest), addrLoc(a)])) proc downConv(p: BProc, n: PNode, d: var TLoc) = if gCmd == cmdCompileToCpp: expr(p, n.sons[0], d) # downcast does C++ for us else: var dest = skipTypes(n.typ, abstractPtrs) var src = skipTypes(n.sons[0].typ, abstractPtrs) var a: TLoc initLocExpr(p, n.sons[0], a) var r = rdLoc(a) if skipTypes(n.sons[0].typ, abstractInst).kind in {tyRef, tyPtr, tyVar}: app(r, "->Sup") for i in countup(2, abs(inheritanceDiff(dest, src))): app(r, ".Sup") r = con("&", r) else: for i in countup(1, abs(inheritanceDiff(dest, src))): app(r, ".Sup") putIntoDest(p, d, n.typ, r) proc exprComplexConst(p: BProc, n: PNode, d: var TLoc) = var t = getUniqueType(n.typ) discard getTypeDesc(p.module, t) # so that any fields are initialized var id = NodeTableTestOrSet(p.module.dataCache, n, gBackendId) var tmp = con("TMP", toRope(id)) if id == gBackendId: # expression not found in the cache: inc(gBackendId) appf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n", [getTypeDesc(p.module, t), tmp, genConstExpr(p, n)]) if d.k == locNone: fillLoc(d, locData, t, tmp, OnHeap) else: putIntoDest(p, d, t, tmp) proc genBlock(p: BProc, t: PNode, d: var TLoc) proc expr(p: BProc, e: PNode, d: var TLoc) = case e.kind of nkSym: var sym = e.sym case sym.Kind of skMethod: if sym.getBody.kind == nkEmpty: # we cannot produce code for the dispatcher yet: fillProcLoc(sym) genProcPrototype(p.module, sym) else: genProc(p.module, sym) putLocIntoDest(p, d, sym.loc) of skProc, skConverter: genProc(p.module, sym) if sym.loc.r == nil or sym.loc.t == nil: InternalError(e.info, "expr: proc not init " & sym.name.s) putLocIntoDest(p, d, sym.loc) of skConst: if sfFakeConst in sym.flags: if sfGlobal in sym.flags: genVarPrototype(p.module, sym) putLocIntoDest(p, d, sym.loc) elif isSimpleConst(sym.typ): putIntoDest(p, d, e.typ, genLiteral(p, sym.ast, sym.typ)) else: genComplexConst(p, sym, d) of skEnumField: putIntoDest(p, d, e.typ, toRope(sym.position)) of skVar, skForVar, skResult, skLet: if sfGlobal in sym.flags: genVarPrototype(p.module, sym) if sym.loc.r == nil or sym.loc.t == nil: InternalError(e.info, "expr: var not init " & sym.name.s) if sfThread in sym.flags: AccessThreadLocalVar(p, sym) if emulatedThreadVars(): putIntoDest(p, d, sym.loc.t, con("NimTV->", sym.loc.r)) else: putLocIntoDest(p, d, sym.loc) else: putLocIntoDest(p, d, sym.loc) of skTemp: if sym.loc.r == nil or sym.loc.t == nil: InternalError(e.info, "expr: temp not init " & sym.name.s) putLocIntoDest(p, d, sym.loc) of skParam: if sym.loc.r == nil or sym.loc.t == nil: InternalError(e.info, "expr: param not init " & sym.name.s) putLocIntoDest(p, d, sym.loc) else: InternalError(e.info, "expr(" & $sym.kind & "); unknown symbol") of nkStrLit..nkTripleStrLit, nkIntLit..nkUInt64Lit, nkFloatLit..nkFloat128Lit, nkNilLit, nkCharLit: putIntoDest(p, d, e.typ, genLiteral(p, e)) of nkCall, nkHiddenCallConv, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit: if e.sons[0].kind == nkSym and e.sons[0].sym.magic != mNone: genMagicExpr(p, e, d, e.sons[0].sym.magic) else: genCall(p, e, d) of nkCurly: if isDeepConstExpr(e) and e.len != 0: putIntoDest(p, d, e.typ, genSetNode(p, e)) else: genSetConstr(p, e, d) of nkBracket: if isDeepConstExpr(e) and e.len != 0: exprComplexConst(p, e, d) elif skipTypes(e.typ, abstractVarRange).kind == tySequence: genSeqConstr(p, e, d) else: genArrayConstr(p, e, d) of nkPar: if isDeepConstExpr(e) and e.len != 0: exprComplexConst(p, e, d) else: genTupleConstr(p, e, d) of nkCast: genCast(p, e, d) of nkHiddenStdConv, nkHiddenSubConv, nkConv: genConv(p, e, d) of nkHiddenAddr, nkAddr: genAddr(p, e, d) of nkBracketExpr: var ty = skipTypes(e.sons[0].typ, abstractVarRange) if ty.kind in {tyRef, tyPtr}: ty = skipTypes(ty.sons[0], abstractVarRange) case ty.kind of tyArray, tyArrayConstr: genArrayElem(p, e, d) of tyOpenArray: genOpenArrayElem(p, e, d) of tySequence, tyString: genSeqElem(p, e, d) of tyCString: genCStringElem(p, e, d) of tyTuple: genTupleElem(p, e, d) else: InternalError(e.info, "expr(nkBracketExpr, " & $ty.kind & ')') of nkDerefExpr, nkHiddenDeref: genDeref(p, e, d) of nkDotExpr: genRecordField(p, e, d) of nkCheckedFieldExpr: genCheckedRecordField(p, e, d) of nkBlockExpr: genBlock(p, e, d) of nkStmtListExpr: genStmtListExpr(p, e, d) of nkIfExpr: genIfExpr(p, e, d) of nkObjDownConv: downConv(p, e, d) of nkObjUpConv: upConv(p, e, d) of nkChckRangeF: genRangeChck(p, e, d, "chckRangeF") of nkChckRange64: genRangeChck(p, e, d, "chckRange64") of nkChckRange: genRangeChck(p, e, d, "chckRange") of nkStringToCString: convStrToCStr(p, e, d) of nkCStringToString: convCStrToStr(p, e, d) of nkLambdaKinds: var sym = e.sons[namePos].sym genProc(p.module, sym) if sym.loc.r == nil or sym.loc.t == nil: InternalError(e.info, "expr: proc not init " & sym.name.s) putLocIntoDest(p, d, sym.loc) of nkClosure: genClosure(p, e, d) of nkMetaNode: expr(p, e.sons[0], d) else: InternalError(e.info, "expr(" & $e.kind & "); unknown node kind") proc genNamedConstExpr(p: BProc, n: PNode): PRope = if n.kind == nkExprColonExpr: result = genConstExpr(p, n.sons[1]) else: result = genConstExpr(p, n) proc genConstSimpleList(p: BProc, n: PNode): PRope = var length = sonsLen(n) result = toRope("{") for i in countup(0, length - 2): appf(result, "$1,$n", [genNamedConstExpr(p, n.sons[i])]) if length > 0: app(result, genNamedConstExpr(p, n.sons[length - 1])) appf(result, "}$n") proc genConstSeq(p: BProc, n: PNode, t: PType): PRope = var data = ropef("{{$1, $1}", n.len.toRope) if n.len > 0: # array part needs extra curlies: data.app(", {") for i in countup(0, n.len - 1): if i > 0: data.appf(",$n") data.app genConstExpr(p, n.sons[i]) data.app("}") data.app("}") inc(gBackendId) result = con("CNSTSEQ", gBackendId.toRope) appcg(p.module, cfsData, "NIM_CONST struct {$n" & " #TGenericSeq Sup;$n" & " $1 data[$2];$n" & "} $3 = $4;$n", [ getTypeDesc(p.module, t.sons[0]), n.len.toRope, result, data]) result = ropef("(($1)&$2)", [getTypeDesc(p.module, t), result]) proc genConstExpr(p: BProc, n: PNode): PRope = case n.Kind of nkHiddenStdConv, nkHiddenSubConv: result = genConstExpr(p, n.sons[1]) of nkCurly: var cs: TBitSet toBitSet(n, cs) result = genRawSetData(cs, int(getSize(n.typ))) of nkBracket, nkPar, nkClosure: var t = skipTypes(n.typ, abstractInst) if t.kind == tySequence: result = genConstSeq(p, n, t) else: result = genConstSimpleList(p, n) else: var d: TLoc initLocExpr(p, n, d) result = rdLoc(d)