about summary refs log tree commit diff stats
path: root/util.c
blob: 8b36a3f21d34d49e658c847baa727fb0972f255c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/* (C)opyright MMVI-MMVII Anselm R. Garbe <garbeam at gmail dot com>
 * See LICENSE file for license details.
 */
#include "dwm.h"
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>

/* extern */

void *
emallocz(unsigned int size) {
	void *res = calloc(1, size);

	if(!res)
		eprint("fatal: could not malloc() %u bytes\n", size);
	return res;
}

void
eprint(const char *errstr, ...) {
	va_list ap;

	va_start(ap, errstr);
	vfprintf(stderr, errstr, ap);
	va_end(ap);
	exit(EXIT_FAILURE);
}

void
spawn(Arg *arg) {
	static char *shell = NULL;

	if(!shell && !(shell = getenv("SHELL")))
		shell = "/bin/sh";
	if(!arg->cmd)
		return;
	/* The double-fork construct avoids zombie processes and keeps the code
	 * clean from stupid signal handlers. */
	if(fork() == 0) {
		if(fork() == 0) {
			if(dpy)
				close(ConnectionNumber(dpy));
			setsid();
			execl(shell, shell, "-c", arg->cmd, (char *)NULL);
			fprintf(stderr, "dwm: execl '%s -c %s'", shell, arg->cmd);
			perror(" failed");
		}
		exit(0);
	}
	wait(0);
}
44' href='#n444'>444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
//: operating on memory at the address provided by some register
//: we'll now start providing data in a separate segment

:(scenario add_r32_to_mem_at_r32)
% Reg[EBX].i = 0x10;
% Reg[EAX].i = 0x60;
== 0x01  # code segment
# op  ModR/M  SIB   displacement  immediate
  01  18                                     # add EBX to *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
== 0x60  # data segment
01 00 00 00  # 1
+run: add EBX to r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x00000011

:(before "End Mod Special-cases(addr)")
case 0:  // indirect addressing
  switch (rm) {
  default:  // address in register
    trace(2, "run") << "effective address is 0x" << std::hex << Reg[rm].u << " (" << rname(rm) << ")" << end();
    addr = Reg[rm].u;
    break;
  // End Mod 0 Special-cases(addr)
  }
  break;

//:

:(scenario add_mem_at_r32_to_r32)
% Reg[EAX].i = 0x60;
% Reg[EBX].i = 0x10;
% write_mem_i32(0x60, 1);
# op  ModR/M  SIB   displacement  immediate
  03  18                                      # add *EAX to EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: add r/m32 to EBX
+run: effective address is 0x60 (EAX)
+run: storing 0x00000011

:(before "End Single-Byte Opcodes")
case 0x03: {  // add r/m32 to r32
  uint8_t modrm = next();
  uint8_t arg1 = (modrm>>3)&0x7;
  trace(2, "run") << "add r/m32 to " << rname(arg1) << end();
  const int32_t* arg2 = effective_address(modrm);
  BINARY_ARITHMETIC_OP(+, Reg[arg1].i, *arg2);
  break;
}

//:: subtract

:(scenario subtract_r32_from_mem_at_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 10);
% Reg[EBX].i = 1;
# op  ModR/M  SIB   displacement  immediate
  29  18                                      # subtract EBX from *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: subtract EBX from r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x00000009

//:

:(scenario subtract_mem_at_r32_from_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 1);
% Reg[EBX].i = 10;
# op  ModR/M  SIB   displacement  immediate
  2b  18                                      # subtract *EAX from EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: subtract r/m32 from EBX
+run: effective address is 0x60 (EAX)
+run: storing 0x00000009

:(before "End Single-Byte Opcodes")
case 0x2b: {  // subtract r/m32 from r32
  uint8_t modrm = next();
  uint8_t arg1 = (modrm>>3)&0x7;
  trace(2, "run") << "subtract r/m32 from " << rname(arg1) << end();
  const int32_t* arg2 = effective_address(modrm);
  BINARY_ARITHMETIC_OP(-, Reg[arg1].i, *arg2);
  break;
}

//:: and

:(scenario and_r32_with_mem_at_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c0d);
% Reg[EBX].i = 0xff;
# op  ModR/M  SIB   displacement  immediate
  21  18                                      # and EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: and EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x0000000d

//:

:(scenario and_mem_at_r32_with_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x000000ff);
% Reg[EBX].i = 0x0a0b0c0d;
# op  ModR/M  SIB   displacement  immediate
  23  18                                      # and *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: and r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: storing 0x0000000d

:(before "End Single-Byte Opcodes")
case 0x23: {  // and r/m32 with r32
  uint8_t modrm = next();
  uint8_t arg1 = (modrm>>3)&0x7;
  trace(2, "run") << "and r/m32 with " << rname(arg1) << end();
  const int32_t* arg2 = effective_address(modrm);
  BINARY_BITWISE_OP(&, Reg[arg1].u, *arg2);
  break;
}

//:: or

:(scenario or_r32_with_mem_at_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c0d);
% Reg[EBX].i = 0xa0b0c0d0;
# op  ModR/M  SIB   displacement  immediate
  09  18                                      # or EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: or EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0xaabbccdd

//:

:(scenario or_mem_at_r32_with_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c0d);
% Reg[EBX].i = 0xa0b0c0d0;
# op  ModR/M  SIB   displacement  immediate
  0b  18                                      # or *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: or r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: storing 0xaabbccdd

:(before "End Single-Byte Opcodes")
case 0x0b: {  // or r/m32 with r32
  uint8_t modrm = next();
  uint8_t arg1 = (modrm>>3)&0x7;
  trace(2, "run") << "or r/m32 with " << rname(arg1) << end();
  const int32_t* arg2 = effective_address(modrm);
  BINARY_BITWISE_OP(|, Reg[arg1].u, *arg2);
  break;
}

//:: xor

:(scenario xor_r32_with_mem_at_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0xaabb0c0d);
% Reg[EBX].i = 0xa0b0c0d0;
# op  ModR/M  SIB   displacement  immediate
  31  18                                      # xor EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: xor EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x0a0bccdd

//:

:(scenario xor_mem_at_r32_with_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c0d);
% Reg[EBX].i = 0xa0b0c0d0;
# op  ModR/M  SIB   displacement  immediate
  33  18                                      # xor *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: xor r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: storing 0xaabbccdd

:(before "End Single-Byte Opcodes")
case 0x33: {  // xor r/m32 with r32
  uint8_t modrm = next();
  uint8_t arg1 = (modrm>>3)&0x7;
  trace(2, "run") << "xor r/m32 with " << rname(arg1) << end();
  const int32_t* arg2 = effective_address(modrm);
  BINARY_BITWISE_OP(|, Reg[arg1].u, *arg2);
  break;
}

//:: not

:(scenario not_r32_with_mem_at_r32)
% Reg[EBX].i = 0x60;
# word at 0x60 is 0x0f0f00ff
% write_mem_i32(0x60, 0x0f0f00ff);
# op  ModR/M  SIB   displacement  immediate
  f7  03                                      # negate *EBX
# ModR/M in binary: 00 (indirect mode) 000 (unused) 011 (dest EBX)
+run: 'not' of r/m32
+run: effective address is 0x60 (EBX)
+run: storing 0xf0f0ff00

//:: compare (cmp)

:(scenario compare_mem_at_r32_with_r32_greater)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c0d);
% Reg[EBX].i = 0x0a0b0c07;
# op  ModR/M  SIB   displacement  immediate
  39  18                                      # compare EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: SF=0; ZF=0; OF=0

:(scenario compare_mem_at_r32_with_r32_lesser)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c07);
% Reg[EBX].i = 0x0a0b0c0d;
# op  ModR/M  SIB   displacement  immediate
  39  18                                      # compare EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: SF=1; ZF=0; OF=0

:(scenario compare_mem_at_r32_with_r32_equal)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c0d);
% Reg[EBX].i = 0x0a0b0c0d;
# op  ModR/M  SIB   displacement  immediate
  39  18                                      # compare EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: SF=0; ZF=1; OF=0

//:

:(scenario compare_r32_with_mem_at_r32_greater)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c07);
% Reg[EBX].i = 0x0a0b0c0d;
# op  ModR/M  SIB   displacement  immediate
  3b  18                                      # compare *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: SF=0; ZF=0; OF=0

:(before "End Single-Byte Opcodes")
case 0x3b: {  // set SF if r32 < r/m32
  uint8_t modrm = next();
  uint8_t reg1 = (modrm>>3)&0x7;
  trace(2, "run") << "compare r/m32 with " << rname(reg1) << end();
  int32_t arg1 = Reg[reg1].i;
  int32_t* arg2 = effective_address(modrm);
  int32_t tmp1 = arg1 - *arg2;
  SF = (tmp1 < 0);
  ZF = (tmp1 == 0);
  int64_t tmp2 = arg1 - *arg2;
  OF = (tmp1 != tmp2);
  trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
  break;
}

:(scenario compare_r32_with_mem_at_r32_lesser)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c0d);
% Reg[EBX].i = 0x0a0b0c07;
# op  ModR/M  SIB   displacement  immediate
  3b  18                                      # compare *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: SF=1; ZF=0; OF=0

:(scenario compare_r32_with_mem_at_r32_equal)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x0a0b0c0d);
% Reg[EBX].i = 0x0a0b0c0d;
# op  ModR/M  SIB   displacement  immediate
  3b  18                                      # compare *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: SF=0; ZF=1; OF=0

//:: copy (mov)

:(scenario copy_r32_to_mem_at_r32)
% Reg[EBX].i = 0xaf;
% Reg[EAX].i = 0x60;
# op  ModR/M  SIB   displacement  immediate
  89  18                                      # copy EBX to *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: copy EBX to r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x000000af

//:

:(scenario copy_mem_at_r32_to_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x000000af);
# op  ModR/M  SIB   displacement  immediate
  8b  18                                      # copy *EAX to EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: copy r/m32 to EBX
+run: effective address is 0x60 (EAX)
+run: storing 0x000000af

:(before "End Single-Byte Opcodes")
case 0x8b: {  // copy r32 to r/m32
  uint8_t modrm = next();
  uint8_t reg1 = (modrm>>3)&0x7;
  trace(2, "run") << "copy r/m32 to " << rname(reg1) << end();
  int32_t* arg2 = effective_address(modrm);
  Reg[reg1].i = *arg2;
  trace(2, "run") << "storing 0x" << HEXWORD << *arg2 << end();
  break;
}

//:: jump

:(scenario jump_mem_at_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 8);
# op  ModR/M  SIB   displacement  immediate
  ff  20                                      # jump to *EAX
# ModR/M in binary: 00 (indirect mode) 100 (jump to r/m32) 000 (src EAX)
  05                              00 00 00 01
  05                              00 00 00 02
+run: inst: 0x00000001
+run: jump to r/m32
+run: effective address is 0x60 (EAX)
+run: jumping to 0x00000008
+run: inst: 0x00000008
-run: inst: 0x00000003

:(before "End Single-Byte Opcodes")
case 0xff: {
  uint8_t modrm = next();
  uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
    case 4: {  // jump to r/m32
      trace(2, "run") << "jump to r/m32" << end();
      int32_t* arg2 = effective_address(modrm);
      EIP = *arg2;
      trace(2, "run") << "jumping to 0x" << HEXWORD << EIP << end();
      break;
    }
    // End Op ff Subops
  }
  break;
}

//:: push

:(scenario push_mem_at_r32)
% Reg[EAX].i = 0x60;
% write_mem_i32(0x60, 0x000000af);
% Reg[ESP].u = 0x14;
# op  ModR/M  SIB   displacement  immediate
  ff  30                                      # push *EAX to stack
# ModR/M in binary: 00 (indirect mode) 110 (push r/m32) 000 (src EAX)
+run: push r/m32
+run: effective address is 0x60 (EAX)
+run: decrementing ESP to 0x00000010
+run: pushing value 0x000000af

:(before "End Op ff Subops")
case 6: {  // push r/m32 to stack
  trace(2, "run") << "push r/m32" << end();
  const int32_t* val = effective_address(modrm);
  push(*val);
  break;
}

//:: pop

:(scenario pop_mem_at_r32)
% Reg[EAX].i = 0x60;
% Reg[ESP].u = 0x10;
% write_mem_i32(0x10, 0x00000030);
# op  ModR/M  SIB   displacement  immediate
  8f  00                                      # pop stack into *EAX
# ModR/M in binary: 00 (indirect mode) 000 (pop r/m32) 000 (dest EAX)
+run: pop into r/m32
+run: effective address is 0x60 (EAX)
+run: popping value 0x00000030
+run: incrementing ESP to 0x00000014

:(before "End Single-Byte Opcodes")
case 0x8f: {  // pop stack into r/m32
  uint8_t modrm = next();
  uint8_t subop = (modrm>>3)&0x7;
  switch (subop) {
    case 0: {
      trace(2, "run") << "pop into r/m32" << end();
      int32_t* dest = effective_address(modrm);
      *dest = pop();
      break;
    }
  }
  break;
}

//:: special-case for loading address from disp32 rather than register

:(scenario add_r32_to_mem_at_displacement)
% Reg[EBX].i = 0x10;  // source
% write_mem_i32(0x60, 1);
# op  ModR/M  SIB   displacement  immediate
  01  1d            60 00 00 00              # add EBX to *0x60
# ModR/M in binary: 00 (indirect mode) 011 (src EBX) 101 (dest in disp32)
+run: add EBX to r/m32
+run: effective address is 0x60 (disp32)
+run: storing 0x00000011

:(before "End Mod 0 Special-cases(addr)")
case 5:  // exception: mod 0b00 rm 0b101 => incoming disp32
  addr = imm32();
  trace(2, "run") << "effective address is 0x" << std::hex << addr << " (disp32)" << end();
  break;

//:

:(scenario add_r32_to_mem_at_r32_plus_disp8)
% Reg[EBX].i = 0x10;  // source
% Reg[EAX].i = 0x5e;  // dest
% write_mem_i32(0x60, 1);
# op  ModR/M  SIB   displacement  immediate
  01  58            02                       # add EBX to *(EAX+2)
# ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: effective address is initially 0x5e (EAX)
+run: effective address is 0x60 (after adding disp8)
+run: storing 0x00000011

:(before "End Mod Special-cases(addr)")
case 1:  // indirect + disp8 addressing
  switch (rm) {
  default:
    addr = Reg[rm].u;
    trace(2, "run") << "effective address is initially 0x" << std::hex << addr << " (" << rname(rm) << ")" << end();
    break;
  // End Mod 1 Special-cases(addr)
  }
  if (addr > 0) {
    addr += static_cast<int8_t>(next());
    trace(2, "run") << "effective address is 0x" << std::hex << addr << " (after adding disp8)" << end();
  }
  break;

:(scenario add_r32_to_mem_at_r32_plus_negative_disp8)
% Reg[EBX].i = 0x10;  // source
% Reg[EAX].i = 0x61;  // dest
% write_mem_i32(0x60, 1);
# op  ModR/M  SIB   displacement  immediate
  01  58            ff                       # add EBX to *(EAX-1)
# ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: effective address is initially 0x61 (EAX)
+run: effective address is 0x60 (after adding disp8)
+run: storing 0x00000011

//:

:(scenario add_r32_to_mem_at_r32_plus_disp32)
% Reg[EBX].i = 0x10;  // source
% Reg[EAX].i = 0x5e;  // dest
% write_mem_i32(0x60, 1);
# op  ModR/M  SIB   displacement  immediate
  01  98            02 00 00 00              # add EBX to *(EAX+2)
# ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: effective address is initially 0x5e (EAX)
+run: effective address is 0x60 (after adding disp32)
+run: storing 0x00000011

:(before "End Mod Special-cases(addr)")
case 2:  // indirect + disp32 addressing
  switch (rm) {
  default:
    addr = Reg[rm].u;
    trace(2, "run") << "effective address is initially 0x" << std::hex << addr << " (" << rname(rm) << ")" << end();
    break;
  // End Mod 2 Special-cases(addr)
  }
  if (addr > 0) {
    addr += imm32();
    trace(2, "run") << "effective address is 0x" << std::hex << addr << " (after adding disp32)" << end();
  }
  break;

:(scenario add_r32_to_mem_at_r32_plus_negative_disp32)
% Reg[EBX].i = 0x10;  // source
% Reg[EAX].i = 0x61;  // dest
% write_mem_i32(0x60, 1);
# op  ModR/M  SIB   displacement  immediate
  01  98            ff ff ff ff              # add EBX to *(EAX-1)
# ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: effective address is initially 0x61 (EAX)
+run: effective address is 0x60 (after adding disp32)
+run: storing 0x00000011