summary refs log blame commit diff stats
path: root/appveyor.yml
blob: be2cc50d3789f0c28aae42ac1346c1ec77bdd0d8 (plain) (tree)
1
2
3
4
5
6
7
8
9




                                              


                                                
                   







                                                                                                                                                                                                              





                                                                                                                                                                                                                  


                     


                                                                                         
                                                                                                     
                                                 
                                                                                                  
                                                
                                                      



                                                                                                                                                                                                                                                                                       






                                                               
                        






                                   
                                                                

            
                                                          

                 

           
version: '{build}'

cache:
- x86_64-4.9.2-release-win32-seh-rt_v4-rev4.7z
- sqlite-dll-win64-x64-3160200.zip
# - i686-4.9.2-release-win32-dwarf-rt_v4-rev4.7z

matrix:
  fast_finish: true

environment:
  matrix:
    - MINGW_DIR: mingw64
      MINGW_URL: https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/4.9.2/threads-win32/seh/x86_64-4.9.2-release-win32-seh-rt_v4-rev4.7z/download
      MINGW_ARCHIVE: x86_64-4.9.2-release-win32-seh-rt_v4-rev4.7z
      SQLITE_URL: http://www.sqlite.org/2017/sqlite-dll-win64-x64-3160200.zip
      SQLITE_ARCHIVE: sqlite-dll-win64-x64-3160200.zip
      platform: x64
    # - MINGW_DIR: mingw32
    #   MINGW_URL: https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/4.9.2/threads-win32/dwarf/i686-4.9.2-release-win32-dwarf-rt_v4-rev4.7z/download
    #   MINGW_ARCHIVE: i686-4.9.2-release-win32-dwarf-rt_v4-rev4.7z
    #   SQLITE_URL: http://www.sqlite.org/2017/sqlite-dll-win32-x86-3160200.zip
    #   SQLITE_ARCHIVE: sqlite-dll-win32-x86-3160200.zip
    #   platform: x86

install:
  - MKDIR %CD%\DIST
  - MKDIR %CD%\DIST\PCRE
  - nuget install pcre -Verbosity quiet -Version 8.33.0.1 -OutputDirectory %CD%\DIST\PCRE
  - IF not exist "%SQLITE_ARCHIVE%" appveyor DownloadFile "%SQLITE_URL%" -FileName "%SQLITE_ARCHIVE%"
  - 7z x -y "%SQLITE_ARCHIVE%" -o"%CD%\DIST"> nul
  - IF not exist "%MINGW_ARCHIVE%" appveyor DownloadFile "%MINGW_URL%" -FileName "%MINGW_ARCHIVE%"
  - 7z x -y "%MINGW_ARCHIVE%" -o"%CD%\DIST"> nul
  - SET PATH=%CD%\DIST\%MINGW_DIR%\BIN;%CD%\BIN;%PATH%
  - IF "%PLATFORM%" == "x64" ( copy C:\OpenSSL-Win64\libeay32.dll %CD%\BIN\libeay64.dll & copy C:\OpenSSL-Win64\libeay32.dll %CD%\BIN\libeay32.dll & copy C:\OpenSSL-Win64\libssl32.dll %CD%\BIN\libssl64.dll & copy C:\OpenSSL-Win64\libssl32.dll %CD%\BIN\libssl32.dll )
    ELSE ( copy C:\OpenSSL-Win32\libeay32.dll %CD%\BIN\libeay32.dll & copy C:\OpenSSL-Win32\libssl32.dll %CD%\BIN\libssl32.dll )
  - IF "%PLATFORM%" == "x64" ( copy %CD%\DIST\sqlite3.dll %CD%\BIN\sqlite3_64.dll ) ELSE ( copy %CD%\DIST\sqlite3.dll %CD%\BIN\sqlite3_32.dll )
  - IF "%PLATFORM%" == "x64" ( copy %CD%\DIST\PCRE\pcre.redist.8.33.0.1\build\native\bin\v100\x64\Release\dynamic\utf8\pcre8.dll %CD%\bin\pcre64.dll ) ELSE ( copy %CD%\DIST\PCRE\pcre.redist.8.33.0.1\build\native\bin\v100\Win32\Release\dynamic\utf8\pcre8.dll %CD%\bin\pcre32.dll )
  - git clone --depth 1 https://github.com/nim-lang/csources
  - cd csources
  - IF "%PLATFORM%" == "x64" ( build64.bat ) else ( build.bat )
  - cd ..

build_script:
  - bin\nim c koch
  - koch boot -d:release
  - koch nimble
  - nim e tests/test_nimscript.nims
  - nimble install zip -y
  - nimble install opengl
  - nimble install sdl1
  - nimble install jester@#head
  - nimble install niminst
  - nim c --taintMode:on -d:nimCoroutines tests/testament/tester

test_script:
  - tests\testament\tester --pedantic all -d:nimCoroutines
#  - koch csource
#  - koch zip

deploy: off
889'>889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# abstract syntax tree + symbol table

import 
  msgs, hashes, nversion, options, strutils, crc, ropes, idents, lists, 
  intsets, idgen

type
  TCallingConvention* = enum 
    ccDefault,                # proc has no explicit calling convention
    ccStdCall,                # procedure is stdcall
    ccCDecl,                  # cdecl
    ccSafeCall,               # safecall
    ccSysCall,                # system call
    ccInline,                 # proc should be inlined
    ccNoInline,               # proc should not be inlined
    ccFastCall,               # fastcall (pass parameters in registers)
    ccClosure,                # proc has a closure
    ccNoConvention            # needed for generating proper C procs sometimes

const 
  CallingConvToStr*: array[TCallingConvention, string] = ["", "stdcall", 
    "cdecl", "safecall", "syscall", "inline", "noinline", "fastcall",
    "closure", "noconv"]

type 
  TNodeKind* = enum # order is extremely important, because ranges are used
                    # to check whether a node belongs to a certain class
    nkNone,               # unknown node kind: indicates an error
                          # Expressions:
                          # Atoms:
    nkEmpty,              # the node is empty
    nkIdent,              # node is an identifier
    nkSym,                # node is a symbol
    nkType,               # node is used for its typ field

    nkCharLit,            # a character literal ''
    nkIntLit,             # an integer literal
    nkInt8Lit,
    nkInt16Lit,
    nkInt32Lit,
    nkInt64Lit,
    nkUIntLit,            # an unsigned integer literal
    nkUInt8Lit,
    nkUInt16Lit,
    nkUInt32Lit,
    nkUInt64Lit,
    nkFloatLit,           # a floating point literal
    nkFloat32Lit,
    nkFloat64Lit,
    nkFloat128Lit,
    nkStrLit,             # a string literal ""
    nkRStrLit,            # a raw string literal r""
    nkTripleStrLit,       # a triple string literal """
    nkNilLit,             # the nil literal
                          # end of atoms
    nkMetaNode_Obsolete,  # difficult to explain; represents itself
                          # (used for macros)
    nkDotCall,            # used to temporarily flag a nkCall node; 
                          # this is used
                          # for transforming ``s.len`` to ``len(s)``

    nkCommand,            # a call like ``p 2, 4`` without parenthesis
    nkCall,               # a call like p(x, y) or an operation like +(a, b)
    nkCallStrLit,         # a call with a string literal 
                          # x"abc" has two sons: nkIdent, nkRStrLit
                          # x"""abc""" has two sons: nkIdent, nkTripleStrLit
    nkInfix,              # a call like (a + b)
    nkPrefix,             # a call like !a
    nkPostfix,            # something like a! (also used for visibility)
    nkHiddenCallConv,     # an implicit type conversion via a type converter

    nkExprEqExpr,         # a named parameter with equals: ''expr = expr''
    nkExprColonExpr,      # a named parameter with colon: ''expr: expr''
    nkIdentDefs,          # a definition like `a, b: typeDesc = expr`
                          # either typeDesc or expr may be nil; used in
                          # formal parameters, var statements, etc.
    nkVarTuple,           # a ``var (a, b) = expr`` construct
    nkPar,                # syntactic (); may be a tuple constructor
    nkObjConstr,          # object constructor: T(a: 1, b: 2)
    nkCurly,              # syntactic {}
    nkCurlyExpr,          # an expression like a{i}
    nkBracket,            # syntactic []
    nkBracketExpr,        # an expression like a[i..j, k]
    nkPragmaExpr,         # an expression like a{.pragmas.}
    nkRange,              # an expression like i..j
    nkDotExpr,            # a.b
    nkCheckedFieldExpr,   # a.b, but b is a field that needs to be checked
    nkDerefExpr,          # a^
    nkIfExpr,             # if as an expression
    nkElifExpr,
    nkElseExpr,
    nkLambda,             # lambda expression
    nkDo,                 # lambda block appering as trailing proc param
    nkAccQuoted,          # `a` as a node

    nkTableConstr,        # a table constructor {expr: expr}
    nkBind,               # ``bind expr`` node
    nkClosedSymChoice,    # symbol choice node; a list of nkSyms (closed)
    nkOpenSymChoice,      # symbol choice node; a list of nkSyms (open)
    nkHiddenStdConv,      # an implicit standard type conversion
    nkHiddenSubConv,      # an implicit type conversion from a subtype
                          # to a supertype
    nkConv,               # a type conversion
    nkCast,               # a type cast
    nkStaticExpr,         # a static expr
    nkAddr,               # a addr expression
    nkHiddenAddr,         # implicit address operator
    nkHiddenDeref,        # implicit ^ operator
    nkObjDownConv,        # down conversion between object types
    nkObjUpConv,          # up conversion between object types
    nkChckRangeF,         # range check for floats
    nkChckRange64,        # range check for 64 bit ints
    nkChckRange,          # range check for ints
    nkStringToCString,    # string to cstring
    nkCStringToString,    # cstring to string
                          # end of expressions

    nkAsgn,               # a = b
    nkFastAsgn,           # internal node for a fast ``a = b``
                          # (no string copy) 
    nkGenericParams,      # generic parameters
    nkFormalParams,       # formal parameters
    nkOfInherit,          # inherited from symbol

    nkImportAs,           # a 'as' b in an import statement
    nkProcDef,            # a proc
    nkMethodDef,          # a method
    nkConverterDef,       # a converter
    nkMacroDef,           # a macro
    nkTemplateDef,        # a template
    nkIteratorDef,        # an iterator

    nkOfBranch,           # used inside case statements
                          # for (cond, action)-pairs
    nkElifBranch,         # used in if statements
    nkExceptBranch,       # an except section
    nkElse,               # an else part
    nkAsmStmt,            # an assembler block
    nkPragma,             # a pragma statement
    nkPragmaBlock,        # a pragma with a block
    nkIfStmt,             # an if statement
    nkWhenStmt,           # a when expression or statement
    nkForStmt,            # a for statement
    nkParForStmt,         # a parallel for statement
    nkWhileStmt,          # a while statement
    nkCaseStmt,           # a case statement
    nkTypeSection,        # a type section (consists of type definitions)
    nkVarSection,         # a var section
    nkLetSection,         # a let section
    nkConstSection,       # a const section
    nkConstDef,           # a const definition
    nkTypeDef,            # a type definition
    nkYieldStmt,          # the yield statement as a tree
    nkTryStmt,            # a try statement
    nkFinally,            # a finally section
    nkRaiseStmt,          # a raise statement
    nkReturnStmt,         # a return statement
    nkBreakStmt,          # a break statement
    nkContinueStmt,       # a continue statement
    nkBlockStmt,          # a block statement
    nkStaticStmt,         # a static statement
    nkDiscardStmt,        # a discard statement
    nkStmtList,           # a list of statements
    nkImportStmt,         # an import statement
    nkImportExceptStmt,   # an import x except a statement
    nkExportStmt,         # an export statement
    nkExportExceptStmt,   # an 'export except' statement
    nkFromStmt,           # a from * import statement
    nkIncludeStmt,        # an include statement
    nkBindStmt,           # a bind statement
    nkMixinStmt,          # a mixin statement
    nkUsingStmt,          # an using statement
    nkCommentStmt,        # a comment statement
    nkStmtListExpr,       # a statement list followed by an expr; this is used
                          # to allow powerful multi-line templates
    nkBlockExpr,          # a statement block ending in an expr; this is used
                          # to allowe powerful multi-line templates that open a
                          # temporary scope
    nkStmtListType,       # a statement list ending in a type; for macros
    nkBlockType,          # a statement block ending in a type; for macros
                          # types as syntactic trees:

    nkWith,               # distinct with `foo`
    nkWithout,            # distinct without `foo`
    
    nkTypeOfExpr,         # type(1+2)
    nkObjectTy,           # object body
    nkTupleTy,            # tuple body
    nkTypeClassTy,        # user-defined type class
    nkStaticTy,           # ``static[T]``
    nkRecList,            # list of object parts
    nkRecCase,            # case section of object
    nkRecWhen,            # when section of object
    nkRefTy,              # ``ref T``
    nkPtrTy,              # ``ptr T``
    nkVarTy,              # ``var T``
    nkConstTy,            # ``const T``
    nkMutableTy,          # ``mutable T``
    nkDistinctTy,         # distinct type
    nkProcTy,             # proc type
    nkIteratorTy,         # iterator type
    nkSharedTy,           # 'shared T'
                          # we use 'nkPostFix' for the 'not nil' addition
    nkEnumTy,             # enum body
    nkEnumFieldDef,       # `ident = expr` in an enumeration
    nkArgList,            # argument list
    nkPattern,            # a special pattern; used for matching
    nkReturnToken,        # token used for interpretation
    nkClosure,            # (prc, env)-pair (internally used for code gen)
    nkGotoState,          # used for the state machine (for iterators)
    nkState,              # give a label to a code section (for iterators)
    nkBreakState,         # special break statement for easier code generation
  TNodeKinds* = set[TNodeKind]

type
  TSymFlag* = enum    # already 32 flags!
    sfUsed,           # read access of sym (for warnings) or simply used
    sfExported,       # symbol is exported from module
    sfFromGeneric,    # symbol is instantiation of a generic; this is needed 
                      # for symbol file generation; such symbols should always
                      # be written into the ROD file
    sfGlobal,         # symbol is at global scope

    sfForward,        # symbol is forward declared
    sfImportc,        # symbol is external; imported
    sfExportc,        # symbol is exported (under a specified name)
    sfVolatile,       # variable is volatile
    sfRegister,       # variable should be placed in a register
    sfPure,           # object is "pure" that means it has no type-information
                      # enum is "pure", its values need qualified access
                      # variable is "pure"; it's an explicit "global"
    sfNoSideEffect,   # proc has no side effects
    sfSideEffect,     # proc may have side effects; cannot prove it has none
    sfMainModule,     # module is the main module
    sfSystemModule,   # module is the system module
    sfNoReturn,       # proc never returns (an exit proc)
    sfAddrTaken,      # the variable's address is taken (ex- or implicitly);
                      # *OR*: a proc is indirectly called (used as first class)
    sfCompilerProc,   # proc is a compiler proc, that is a C proc that is
                      # needed for the code generator
    sfProcvar,        # proc can be passed to a proc var
    sfDiscriminant,   # field is a discriminant in a record/object
    sfDeprecated,     # symbol is deprecated
    sfError,          # usage of symbol should trigger a compile-time error
    sfShadowed,       # a symbol that was shadowed in some inner scope
    sfThread,         # proc will run as a thread
                      # variable is a thread variable
    sfCompileTime,    # proc can be evaluated at compile time
    sfMerge,          # proc can be merged with itself
    sfDeadCodeElim,   # dead code elimination for the module is turned on
    sfBorrow,         # proc is borrowed
    sfInfixCall,      # symbol needs infix call syntax in target language;
                      # for interfacing with C++, JS
    sfNamedParamCall, # symbol needs named parameter call syntax in target
                      # language; for interfacing with Objective C
    sfDiscardable,    # returned value may be discarded implicitly
    sfOverriden,      # proc is overriden
    sfGenSym          # symbol is 'gensym'ed; do not add to symbol table

  TSymFlags* = set[TSymFlag]

const
  sfFakeConst* = sfDeadCodeElim  # const cannot be put into a data section
  sfDispatcher* = sfDeadCodeElim # copied method symbol is the dispatcher
  sfNoInit* = sfMainModule       # don't generate code to init the variable

  sfImmediate* = sfDeadCodeElim
    # macro or template is immediately expanded
    # without considering any possible overloads

  sfDirty* = sfPure
    # template is not hygienic (old styled template)
    # module, compiled from a dirty-buffer

  sfAnon* = sfDiscardable
    # symbol name that was generated by the compiler
    # the compiler will avoid printing such names 
    # in user messages.
      
  sfNoForward* = sfRegister
    # forward declarations are not required (per module)

  sfNoRoot* = sfBorrow # a local variable is provably no root so it doesn't
                       # require RC ops
  sfCompileToCpp* = sfInfixCall       # compile the module as C++ code
  sfCompileToObjc* = sfNamedParamCall # compile the module as Objective-C code

const
  # getting ready for the future expr/stmt merge
  nkWhen* = nkWhenStmt
  nkWhenExpr* = nkWhenStmt
  nkEffectList* = nkArgList 
  # hacks ahead: an nkEffectList is a node with 4 children:
  exceptionEffects* = 0 # exceptions at position 0
  usesEffects* = 1      # read effects at position 1
  writeEffects* = 2     # write effects at position 2
  tagEffects* = 3       # user defined tag ('gc', 'time' etc.)
  effectListLen* = 4    # list of effects list

type
  TTypeKind* = enum  # order is important!
                     # Don't forget to change hti.nim if you make a change here
                     # XXX put this into an include file to avoid this issue!
    tyNone, tyBool, tyChar,
    tyEmpty, tyArrayConstr, tyNil, tyExpr, tyStmt, tyTypeDesc,
    tyGenericInvokation, # ``T[a, b]`` for types to invoke
    tyGenericBody,       # ``T[a, b, body]`` last parameter is the body
    tyGenericInst,       # ``T[a, b, realInstance]`` instantiated generic type
                         # realInstance will be a concrete type like tyObject
                         # unless this is an instance of a generic alias type.
                         # then realInstance will be the tyGenericInst of the
                         # completely (recursively) resolved alias.
                         
    tyGenericParam,      # ``a`` in the above patterns
    tyDistinct,
    tyEnum,
    tyOrdinal,           # integer types (including enums and boolean)
    tyArray,
    tyObject,
    tyTuple,
    tySet,
    tyRange,
    tyPtr, tyRef,
    tyVar,
    tySequence,
    tyProc,
    tyPointer, tyOpenArray,
    tyString, tyCString, tyForward,
    tyInt, tyInt8, tyInt16, tyInt32, tyInt64, # signed integers
    tyFloat, tyFloat32, tyFloat64, tyFloat128,
    tyUInt, tyUInt8, tyUInt16, tyUInt32, tyUInt64,
    tyBigNum, 
    tyConst, tyMutable, tyVarargs, 
    tyIter, # unused
    tyProxy # used as errornous type (for idetools)
    
    tyBuiltInTypeClass #\
      # Type such as the catch-all object, tuple, seq, etc
    
    tyUserTypeClass #\
      # the body of a user-defined type class

    tyUserTypeClassInst #\
      # Instance of a parametric user-defined type class.
      # Structured similarly to tyGenericInst.
      # tyGenericInst represents concrete types, while
      # this is still a "generic param" that will bind types
      # and resolves them during sigmatch and instantiation.
    
    tyCompositeTypeClass #\
      # Type such as seq[Number]
      # The notes for tyUserTypeClassInst apply here as well 
      # sons[0]: the original expression used by the user.
      # sons[1]: fully expanded and instantiated meta type
      # (potentially following aliases)
    
    tyAnd, tyOr, tyNot #\
      # boolean type classes such as `string|int`,`not seq`,
      # `Sortable and Enumable`, etc
    
    tyAnything #\
      # a type class matching any type
    
    tyStatic #\
      # a value known at compile type (the underlying type is .base)
    
    tyFromExpr #\
      # This is a type representing an expression that depends
      # on generic parameters (the exprsesion is stored in t.n)
      # It will be converted to a real type only during generic
      # instantiation and prior to this it has the potential to
      # be any type.

    tyFieldAccessor #\
      # Expressions such as Type.field (valid in contexts such
      # as the `is` operator and magics like `high` and `low`).
      # Could be lifted to a single argument proc returning the
      # field value.
      # sons[0]: type of containing object or tuple
      # sons[1]: field type
      # .n: nkDotExpr storing the field name
    
static:
  # remind us when TTypeKind stops to fit in a single 64-bit word
  assert TTypeKind.high.ord <= 63

const
  tyPureObject* = tyTuple
  GcTypeKinds* = {tyRef, tySequence, tyString}
  tyError* = tyProxy # as an errornous node should match everything

  tyUnknownTypes* = {tyError, tyFromExpr}

  tyTypeClasses* = {tyBuiltInTypeClass, tyCompositeTypeClass,
                    tyUserTypeClass, tyUserTypeClassInst,
                    tyAnd, tyOr, tyNot, tyAnything}

  tyMetaTypes* = {tyGenericParam, tyTypeDesc, tyExpr} + tyTypeClasses
 
type
  TTypeKinds* = set[TTypeKind]

  TNodeFlag* = enum
    nfNone,
    nfBase2,    # nfBase10 is default, so not needed
    nfBase8,
    nfBase16,
    nfAllConst, # used to mark complex expressions constant; easy to get rid of
                # but unfortunately it has measurable impact for compilation
                # efficiency
    nfTransf,   # node has been transformed
    nfSem       # node has been checked for semantics
    nfLL        # node has gone through lambda lifting
    nfDotField  # the call can use a dot operator
    nfDotSetter # the call can use a setter dot operarator
    nfExplicitCall # x.y() was used instead of x.y
    nfExprCall  # this is an attempt to call a regular expression
    nfIsRef     # this node is a 'ref' node; used for the VM
 
  TNodeFlags* = set[TNodeFlag]
  TTypeFlag* = enum   # keep below 32 for efficiency reasons (now: 28)
    tfVarargs,        # procedure has C styled varargs
    tfNoSideEffect,   # procedure type does not allow side effects
    tfFinal,          # is the object final?
    tfInheritable,    # is the object inheritable?
    tfAcyclic,        # type is acyclic (for GC optimization)
    tfEnumHasHoles,   # enum cannot be mapped into a range
    tfShallow,        # type can be shallow copied on assignment
    tfThread,         # proc type is marked as ``thread``; alias for ``gcsafe``
    tfFromGeneric,    # type is an instantiation of a generic; this is needed
                      # because for instantiations of objects, structural
                      # type equality has to be used
    tfUnresolved,     # marks unresolved typedesc/static params: e.g.
                      # proc foo(T: typedesc, list: seq[T]): var T
                      # proc foo(L: static[int]): array[L, int]
                      # can be attached to ranges to indicate that the range
                      # depends on unresolved static params.
    tfRetType,        # marks return types in proc (used to detect type classes 
                      # used as return types for return type inference)
    tfCapturesEnv,    # whether proc really captures some environment
    tfByCopy,         # pass object/tuple by copy (C backend)
    tfByRef,          # pass object/tuple by reference (C backend)
    tfIterator,       # type is really an iterator, not a tyProc
    tfShared,         # type is 'shared'
    tfNotNil,         # type cannot be 'nil'
    
    tfNeedsInit,      # type constains a "not nil" constraint somewhere or some
                      # other type so that it requires inititalization
    tfHasShared,      # type constains a "shared" constraint modifier somewhere
    tfHasMeta,        # type contains "wildcard" sub-types such as generic params
                      # or other type classes
    tfHasGCedMem,     # type contains GC'ed memory
    tfPacked
    tfHasStatic
    tfGenericTypeParam
    tfImplicitTypeParam
    tfWildcard        # consider a proc like foo[T, I](x: Type[T, I])
                      # T and I here can bind to both typedesc and static types
                      # before this is determined, we'll consider them to be a
                      # wildcard type.
    tfGuarded         # guarded pointer
    tfBorrowDot       # distinct type borrows '.'

  TTypeFlags* = set[TTypeFlag]

  TSymKind* = enum        # the different symbols (start with the prefix sk);
                          # order is important for the documentation generator!
    skUnknown,            # unknown symbol: used for parsing assembler blocks
                          # and first phase symbol lookup in generics
    skConditional,        # symbol for the preprocessor (may become obsolete)
    skDynLib,             # symbol represents a dynamic library; this is used
                          # internally; it does not exist in Nim code
    skParam,              # a parameter
    skGenericParam,       # a generic parameter; eq in ``proc x[eq=`==`]()``
    skTemp,               # a temporary variable (introduced by compiler)
    skModule,             # module identifier
    skType,               # a type
    skVar,                # a variable
    skLet,                # a 'let' symbol
    skConst,              # a constant
    skResult,             # special 'result' variable
    skProc,               # a proc
    skMethod,             # a method
    skIterator,           # an inline iterator
    skClosureIterator,    # a resumable closure iterator
    skConverter,          # a type converter
    skMacro,              # a macro
    skTemplate,           # a template; currently also misused for user-defined
                          # pragmas
    skField,              # a field in a record or object
    skEnumField,          # an identifier in an enum
    skForVar,             # a for loop variable
    skLabel,              # a label (for block statement)
    skStub,               # symbol is a stub and not yet loaded from the ROD
                          # file (it is loaded on demand, which may
                          # mean: never)
    skPackage,            # symbol is a package (used for canonicalization)
    skAlias               # an alias (needs to be resolved immediately)
  TSymKinds* = set[TSymKind]

const
  routineKinds* = {skProc, skMethod, skIterator, skClosureIterator,
                   skConverter, skMacro, skTemplate}
  tfIncompleteStruct* = tfVarargs
  tfUncheckedArray* = tfVarargs
  tfUnion* = tfNoSideEffect
  tfGcSafe* = tfThread
  tfObjHasKids* = tfEnumHasHoles
  skError* = skUnknown
  
  # type flags that are essential for type equality:
  eqTypeFlags* = {tfIterator, tfShared, tfNotNil}

type
  TMagic* = enum # symbols that require compiler magic:
    mNone,
    mDefined, mDefinedInScope, mCompiles,
    mLow, mHigh, mSizeOf, mTypeTrait, mIs, mOf,
    mEcho, mShallowCopy, mSlurp, mStaticExec,
    mParseExprToAst, mParseStmtToAst, mExpandToAst, mQuoteAst,
    mUnaryLt, mSucc, 
    mPred, mInc, mDec, mOrd, mNew, mNewFinalize, mNewSeq, mLengthOpenArray, 
    mLengthStr, mLengthArray, mLengthSeq, mIncl, mExcl, mCard, mChr, mGCref, 
    mGCunref, mAddI, mSubI, mMulI, mDivI, mModI, mAddI64, mSubI64, mMulI64, 
    mDivI64, mModI64,
    mAddF64, mSubF64, mMulF64, mDivF64,
    mShrI, mShlI, mBitandI, mBitorI, mBitxorI, mMinI, mMaxI, 
    mShrI64, mShlI64, mBitandI64, mBitorI64, mBitxorI64, mMinI64, mMaxI64,
    mMinF64, mMaxF64, mAddU, mSubU, mMulU, 
    mDivU, mModU, mEqI, mLeI,
    mLtI, 
    mEqI64, mLeI64, mLtI64, mEqF64, mLeF64, mLtF64, 
    mLeU, mLtU, mLeU64, mLtU64, 
    mEqEnum, mLeEnum, mLtEnum, mEqCh, mLeCh, mLtCh, mEqB, mLeB, mLtB, mEqRef, 
    mEqUntracedRef, mLePtr, mLtPtr, mEqCString, mXor, mEqProc, mUnaryMinusI,
    mUnaryMinusI64, mAbsI, mAbsI64, mNot, 
    mUnaryPlusI, mBitnotI, mUnaryPlusI64, 
    mBitnotI64, mUnaryPlusF64, mUnaryMinusF64, mAbsF64, mZe8ToI, mZe8ToI64, 
    mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64, mToU8, mToU16, mToU32, 
    mToFloat, mToBiggestFloat, mToInt, mToBiggestInt, mCharToStr, mBoolToStr, 
    mIntToStr, mInt64ToStr, mFloatToStr, mCStrToStr, mStrToStr, mEnumToStr, 
    mAnd, mOr, mEqStr, mLeStr, mLtStr, mEqSet, mLeSet, mLtSet, mMulSet, 
    mPlusSet, mMinusSet, mSymDiffSet, mConStrStr, mConArrArr, mConArrT, 
    mConTArr, mConTT, mSlice,
    mFields, mFieldPairs, mOmpParFor,
    mAppendStrCh, mAppendStrStr, mAppendSeqElem,
    mInRange, mInSet, mRepr, mExit, mSetLengthStr, mSetLengthSeq,
    mIsPartOf, mAstToStr, mParallel,
    mSwap, mIsNil, mArrToSeq, mCopyStr, mCopyStrLast,
    mNewString, mNewStringOfCap, mParseBiggestFloat,
    mReset,
    mArray, mOpenArray, mRange, mSet, mSeq, mVarargs,
    mOrdinal,
    mInt, mInt8, mInt16, mInt32, mInt64,
    mUInt, mUInt8, mUInt16, mUInt32, mUInt64,
    mFloat, mFloat32, mFloat64, mFloat128,
    mBool, mChar, mString, mCstring,
    mPointer, mEmptySet, mIntSetBaseType, mNil, mExpr, mStmt, mTypeDesc,
    mVoidType, mPNimrodNode, mShared, mGuarded, mLock, mSpawn, mDeepCopy,
    mIsMainModule, mCompileDate, mCompileTime, mNimrodVersion, mNimrodMajor,
    mNimrodMinor, mNimrodPatch, mCpuEndian, mHostOS, mHostCPU, mAppType,
    mNaN, mInf, mNegInf,
    mCompileOption, mCompileOptionArg,
    mNLen, mNChild, mNSetChild, mNAdd, mNAddMultiple, mNDel, mNKind,
    mNIntVal, mNFloatVal, mNSymbol, mNIdent, mNGetType, mNStrVal, mNSetIntVal,
    mNSetFloatVal, mNSetSymbol, mNSetIdent, mNSetType, mNSetStrVal, mNLineInfo,
    mNNewNimNode, mNCopyNimNode, mNCopyNimTree, mStrToIdent, mIdentToStr,
    mNBindSym, mLocals, mNCallSite,
    mEqIdent, mEqNimrodNode, mNHint, mNWarning, mNError,
    mInstantiationInfo, mGetTypeInfo, mNGenSym

# things that we can evaluate safely at compile time, even if not asked for it:
const
  ctfeWhitelist* = {mNone, mUnaryLt, mSucc, 
    mPred, mInc, mDec, mOrd, mLengthOpenArray, 
    mLengthStr, mLengthArray, mLengthSeq, mIncl, mExcl, mCard, mChr, 
    mAddI, mSubI, mMulI, mDivI, mModI, mAddI64, mSubI64, mMulI64, 
    mDivI64, mModI64, mAddF64, mSubF64, mMulF64, mDivF64,
    mShrI, mShlI, mBitandI, mBitorI, mBitxorI, mMinI, mMaxI, 
    mShrI64, mShlI64, mBitandI64, mBitorI64, mBitxorI64, mMinI64, mMaxI64,
    mMinF64, mMaxF64, mAddU, mSubU, mMulU, 
    mDivU, mModU, mEqI, mLeI,
    mLtI, 
    mEqI64, mLeI64, mLtI64, mEqF64, mLeF64, mLtF64, 
    mLeU, mLtU, mLeU64, mLtU64, 
    mEqEnum, mLeEnum, mLtEnum, mEqCh, mLeCh, mLtCh, mEqB, mLeB, mLtB, mEqRef, 
    mEqProc, mEqUntracedRef, mLePtr, mLtPtr, mEqCString, mXor, mUnaryMinusI, 
    mUnaryMinusI64, mAbsI, mAbsI64, mNot, 
    mUnaryPlusI, mBitnotI, mUnaryPlusI64, 
    mBitnotI64, mUnaryPlusF64, mUnaryMinusF64, mAbsF64, mZe8ToI, mZe8ToI64, 
    mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64, mToU8, mToU16, mToU32, 
    mToFloat, mToBiggestFloat, mToInt, mToBiggestInt, mCharToStr, mBoolToStr, 
    mIntToStr, mInt64ToStr, mFloatToStr, mCStrToStr, mStrToStr, mEnumToStr, 
    mAnd, mOr, mEqStr, mLeStr, mLtStr, mEqSet, mLeSet, mLtSet, mMulSet, 
    mPlusSet, mMinusSet, mSymDiffSet, mConStrStr, mConArrArr, mConArrT, 
    mConTArr, mConTT,
    mAppendStrCh, mAppendStrStr, mAppendSeqElem, 
    mInRange, mInSet, mRepr,
    mCopyStr, mCopyStrLast}
  # magics that require special semantic checking and
  # thus cannot be overloaded (also documented in the spec!):
  SpecialSemMagics* = {
    mDefined, mDefinedInScope, mCompiles, mLow, mHigh, mSizeOf, mIs, mOf, 
    mEcho, mShallowCopy, mExpandToAst, mParallel, mSpawn}

type
  PNode* = ref TNode
  TNodeSeq* = seq[PNode]
  PType* = ref TType
  PSym* = ref TSym
  TNode*{.final, acyclic.} = object # on a 32bit machine, this takes 32 bytes
    when defined(useNodeIds):
      id*: int
    typ*: PType
    info*: TLineInfo
    flags*: TNodeFlags
    case kind*: TNodeKind
    of nkCharLit..nkUInt64Lit:
      intVal*: BiggestInt
    of nkFloatLit..nkFloat128Lit:
      floatVal*: BiggestFloat
    of nkStrLit..nkTripleStrLit:
      strVal*: string
    of nkSym: 
      sym*: PSym
    of nkIdent: 
      ident*: PIdent
    else:
      sons*: TNodeSeq
    comment*: string
  
  TSymSeq* = seq[PSym]
  TStrTable* = object         # a table[PIdent] of PSym
    counter*: int
    data*: TSymSeq
  
  # -------------- backend information -------------------------------
  TLocKind* = enum 
    locNone,                  # no location
    locTemp,                  # temporary location
    locLocalVar,              # location is a local variable
    locGlobalVar,             # location is a global variable
    locParam,                 # location is a parameter
    locField,                 # location is a record field
    locArrayElem,             # location is an array element
    locExpr,                  # "location" is really an expression
    locProc,                  # location is a proc (an address of a procedure)
    locData,                  # location is a constant
    locCall,                  # location is a call expression
    locOther                  # location is something other
  TLocFlag* = enum 
    lfIndirect,               # backend introduced a pointer
    lfParamCopy,              # backend introduced a parameter copy (LLVM)
    lfNoDeepCopy,             # no need for a deep copy
    lfNoDecl,                 # do not declare it in C
    lfDynamicLib,             # link symbol to dynamic library
    lfExportLib,              # export symbol for dynamic library generation
    lfHeader,                 # include header file for symbol
    lfImportCompilerProc      # ``importc`` of a compilerproc
  TStorageLoc* = enum 
    OnUnknown,                # location is unknown (stack, heap or static)
    OnStack,                  # location is on hardware stack
    OnHeap                    # location is on heap or global
                              # (reference counting needed)
  TLocFlags* = set[TLocFlag]
  TLoc*{.final.} = object     
    k*: TLocKind              # kind of location
    s*: TStorageLoc
    flags*: TLocFlags         # location's flags
    t*: PType                 # type of location
    r*: PRope                 # rope value of location (code generators)
    heapRoot*: PRope          # keeps track of the enclosing heap object that
                              # owns this location (required by GC algorithms
                              # employing heap snapshots or sliding views)

  # ---------------- end of backend information ------------------------------

  TLibKind* = enum 
    libHeader, libDynamic
  TLib* = object of lists.TListEntry # also misused for headers!
    kind*: TLibKind
    generated*: bool          # needed for the backends:
    isOverriden*: bool
    name*: PRope
    path*: PNode              # can be a string literal!
  
  TInstantiation* = object
    sym*: PSym
    concreteTypes*: seq[PType]
    usedBy*: seq[int32]       # list of modules using the generic
                              # needed in caas mode for purging the cache
                              # XXX: it's possible to switch to a 
                              # simple ref count here
  
  PInstantiation* = ref TInstantiation
 
  TScope* = object
    depthLevel*: int
    symbols*: TStrTable
    usingSyms*: seq[PNode]
    parent*: PScope

  PScope* = ref TScope

  PLib* = ref TLib
  TSym* {.acyclic.} = object of TIdObj
    # proc and type instantiations are cached in the generic symbol
    case kind*: TSymKind
    of skType, skGenericParam:
      typeInstCache*: seq[PType]
      typScope*: PScope
    of routineKinds:
      procInstCache*: seq[PInstantiation]
      scope*: PScope          # the scope where the proc was defined
    of skModule:
      # modules keep track of the generic symbols they use from other modules.
      # this is because in incremental compilation, when a module is about to
      # be replaced with a newer version, we must decrement the usage count
      # of all previously used generics.
      # For 'import as' we copy the module symbol but shallowCopy the 'tab'
      # and set the 'usedGenerics' to ... XXX gah! Better set module.name
      # instead? But this doesn't work either. --> We need an skModuleAlias?
      # No need, just leave it as skModule but set the owner accordingly and
      # check for the owner when touching 'usedGenerics'.
      usedGenerics*: seq[PInstantiation]
      tab*: TStrTable         # interface table for modules
    of skLet, skVar, skField:
      guard*: PSym
    else: nil
    magic*: TMagic
    typ*: PType
    name*: PIdent
    info*: TLineInfo
    owner*: PSym
    flags*: TSymFlags
    ast*: PNode               # syntax tree of proc, iterator, etc.:
                              # the whole proc including header; this is used
                              # for easy generation of proper error messages
                              # for variant record fields the discriminant
                              # expression
                              # for modules, it's a placeholder for compiler
                              # generated code that will be appended to the
                              # module after the sem pass (see appendToModule)
    options*: TOptions
    position*: int            # used for many different things:
                              # for enum fields its position;
                              # for fields its offset
                              # for parameters its position
                              # for a conditional:
                              # 1 iff the symbol is defined, else 0
                              # (or not in symbol table)
                              # for modules, an unique index corresponding
                              # to the module's fileIdx
                              # for variables a slot index for the evaluator
                              # for routines a superop-ID
    offset*: int              # offset of record field
    loc*: TLoc
    annex*: PLib              # additional fields (seldom used, so we use a
                              # reference to another object to safe space)
    constraint*: PNode        # additional constraints like 'lit|result'; also
                              # misused for the codegenDecl pragma in the hope
                              # it won't cause problems
  
  TTypeSeq* = seq[PType]
  TLockLevel* = distinct int16
  TType* {.acyclic.} = object of TIdObj # \
                              # types are identical iff they have the
                              # same id; there may be multiple copies of a type
                              # in memory!
    kind*: TTypeKind          # kind of type
    callConv*: TCallingConvention # for procs
    flags*: TTypeFlags        # flags of the type
    sons*: TTypeSeq           # base types, etc.
    n*: PNode                 # node for types:
                              # for range types a nkRange node
                              # for record types a nkRecord node
                              # for enum types a list of symbols
                              # for tyInt it can be the int literal
                              # for procs and tyGenericBody, it's the
                              # the body of the user-defined type class
                              # formal param list
                              # else: unused
    owner*: PSym              # the 'owner' of the type
    sym*: PSym                # types have the sym associated with them
                              # it is used for converting types to strings
    destructor*: PSym         # destructor. warning: nil here may not necessary
                              # mean that there is no destructor.
                              # see instantiateDestructor in semdestruct.nim
    deepCopy*: PSym           # overriden 'deepCopy' operation
    size*: BiggestInt         # the size of the type in bytes
                              # -1 means that the size is unkwown
    align*: int16             # the type's alignment requirements
    lockLevel*: TLockLevel    # lock level as required for deadlock checking
    loc*: TLoc

  TPair*{.final.} = object 
    key*, val*: RootRef

  TPairSeq* = seq[TPair]
  TTable*{.final.} = object   # the same as table[PObject] of PObject
    counter*: int
    data*: TPairSeq

  TIdPair*{.final.} = object 
    key*: PIdObj
    val*: RootRef

  TIdPairSeq* = seq[TIdPair]
  TIdTable*{.final.} = object # the same as table[PIdent] of PObject
    counter*: int
    data*: TIdPairSeq

  TIdNodePair*{.final.} = object 
    key*: PIdObj
    val*: PNode

  TIdNodePairSeq* = seq[TIdNodePair]
  TIdNodeTable*{.final.} = object # the same as table[PIdObj] of PNode
    counter*: int
    data*: TIdNodePairSeq

  TNodePair*{.final.} = object 
    h*: THash                 # because it is expensive to compute!
    key*: PNode
    val*: int

  TNodePairSeq* = seq[TNodePair]
  TNodeTable*{.final.} = object # the same as table[PNode] of int;
                                # nodes are compared by structure!
    counter*: int
    data*: TNodePairSeq

  TObjectSeq* = seq[RootRef]
  TObjectSet*{.final.} = object 
    counter*: int
    data*: TObjectSeq

  TImplication* = enum
    impUnknown, impNo, impYes

# BUGFIX: a module is overloadable so that a proc can have the
# same name as an imported module. This is necessary because of
# the poor naming choices in the standard library.

const 
  OverloadableSyms* = {skProc, skMethod, skIterator, skClosureIterator,
    skConverter, skModule, skTemplate, skMacro}

  GenericTypes*: TTypeKinds = {tyGenericInvokation, tyGenericBody, 
    tyGenericParam}
  
  StructuralEquivTypes*: TTypeKinds = {tyArrayConstr, tyNil, tyTuple, tyArray, 
    tySet, tyRange, tyPtr, tyRef, tyVar, tySequence, tyProc, tyOpenArray,
    tyVarargs}
  
  ConcreteTypes*: TTypeKinds = { # types of the expr that may occur in::
                                 # var x = expr
    tyBool, tyChar, tyEnum, tyArray, tyObject, 
    tySet, tyTuple, tyRange, tyPtr, tyRef, tyVar, tySequence, tyProc,
    tyPointer, 
    tyOpenArray, tyString, tyCString, tyInt..tyInt64, tyFloat..tyFloat128,
    tyUInt..tyUInt64}
  IntegralTypes* = {tyBool, tyChar, tyEnum, tyInt..tyInt64,
    tyFloat..tyFloat128, tyUInt..tyUInt64}
  ConstantDataTypes*: TTypeKinds = {tyArrayConstr, tyArray, tySet, 
                                    tyTuple, tySequence}
  NilableTypes*: TTypeKinds = {tyPointer, tyCString, tyRef, tyPtr, tySequence,
    tyProc, tyString, tyError}
  ExportableSymKinds* = {skVar, skConst, skProc, skMethod, skType,
    skIterator, skClosureIterator,
    skMacro, skTemplate, skConverter, skEnumField, skLet, skStub, skAlias}
  PersistentNodeFlags*: TNodeFlags = {nfBase2, nfBase8, nfBase16,
                                      nfDotSetter, nfDotField,
                                      nfIsRef}
  namePos* = 0
  patternPos* = 1    # empty except for term rewriting macros
  genericParamsPos* = 2
  paramsPos* = 3
  pragmasPos* = 4
  optimizedCodePos* = 5  # will be used for exception tracking
  bodyPos* = 6       # position of body; use rodread.getBody() instead!
  resultPos* = 7
  dispatcherPos* = 8 # caution: if method has no 'result' it can be position 7!

  nkCallKinds* = {nkCall, nkInfix, nkPrefix, nkPostfix,
                  nkCommand, nkCallStrLit, nkHiddenCallConv}
  nkIdentKinds* = {nkIdent, nkSym, nkAccQuoted, nkOpenSymChoice,
                   nkClosedSymChoice}

  nkLiterals* = {nkCharLit..nkTripleStrLit}
  nkLambdaKinds* = {nkLambda, nkDo}
  declarativeDefs* = {nkProcDef, nkMethodDef, nkIteratorDef, nkConverterDef}
  procDefs* = nkLambdaKinds + declarativeDefs

  nkSymChoices* = {nkClosedSymChoice, nkOpenSymChoice}
  nkStrKinds* = {nkStrLit..nkTripleStrLit}

  skLocalVars* = {skVar, skLet, skForVar, skParam, skResult}
  skProcKinds* = {skProc, skTemplate, skMacro, skIterator, skClosureIterator,
                  skMethod, skConverter}

  skIterators* = {skIterator, skClosureIterator}

  lfFullExternalName* = lfParamCopy # \
    # only used when 'gCmd == cmdPretty': Indicates that the symbol has been
    # imported via 'importc: "fullname"' and no format string.

# creator procs:
proc newSym*(symKind: TSymKind, name: PIdent, owner: PSym,
             info: TLineInfo): PSym
proc newType*(kind: TTypeKind, owner: PSym): PType
proc newNode*(kind: TNodeKind): PNode
proc newIntNode*(kind: TNodeKind, intVal: BiggestInt): PNode
proc newIntTypeNode*(kind: TNodeKind, intVal: BiggestInt, typ: PType): PNode
proc newFloatNode*(kind: TNodeKind, floatVal: BiggestFloat): PNode
proc newStrNode*(kind: TNodeKind, strVal: string): PNode
proc newIdentNode*(ident: PIdent, info: TLineInfo): PNode
proc newSymNode*(sym: PSym): PNode
proc newNodeI*(kind: TNodeKind, info: TLineInfo): PNode
proc newNodeIT*(kind: TNodeKind, info: TLineInfo, typ: PType): PNode
proc initStrTable*(x: var TStrTable)
proc initTable*(x: var TTable)
proc initIdTable*(x: var TIdTable)
proc initObjectSet*(x: var TObjectSet)
proc initIdNodeTable*(x: var TIdNodeTable)
proc initNodeTable*(x: var TNodeTable)
  
# copy procs:
proc copyType*(t: PType, owner: PSym, keepId: bool): PType
proc copySym*(s: PSym, keepId: bool = false): PSym
proc assignType*(dest, src: PType)
proc copyStrTable*(dest: var TStrTable, src: TStrTable)
proc copyTable*(dest: var TTable, src: TTable)
proc copyObjectSet*(dest: var TObjectSet, src: TObjectSet)
proc copyIdTable*(dest: var TIdTable, src: TIdTable)
proc sonsLen*(n: PNode): int {.inline.}
proc sonsLen*(n: PType): int {.inline.}
proc lastSon*(n: PNode): PNode {.inline.}
proc lastSon*(n: PType): PType {.inline.}
proc newSons*(father: PNode, length: int)
proc newSons*(father: PType, length: int)
proc addSon*(father, son: PNode)
proc delSon*(father: PNode, idx: int)
proc hasSonWith*(n: PNode, kind: TNodeKind): bool
proc hasSubnodeWith*(n: PNode, kind: TNodeKind): bool
proc replaceSons*(n: PNode, oldKind, newKind: TNodeKind)
proc copyNode*(src: PNode): PNode
  # does not copy its sons!
proc copyTree*(src: PNode): PNode
  # does copy its sons!

proc isCallExpr*(n: PNode): bool =
  result = n.kind in nkCallKinds

proc discardSons*(father: PNode)

proc len*(n: PNode): int {.inline.} =
  if isNil(n.sons): result = 0
  else: result = len(n.sons)
  
proc safeLen*(n: PNode): int {.inline.} =
  ## works even for leaves.
  if n.kind in {nkNone..nkNilLit} or isNil(n.sons): result = 0
  else: result = len(n.sons)
  
proc add*(father, son: PNode) =
  assert son != nil
  if isNil(father.sons): father.sons = @[]
  add(father.sons, son)
  
proc `[]`*(n: PNode, i: int): PNode {.inline.} =
  result = n.sons[i]

# son access operators with support for negative indices
template `{}`*(n: PNode, i: int): expr = n[i -| n]
template `{}=`*(n: PNode, i: int, s: PNode): stmt =
  n.sons[i -| n] = s
  
var emptyNode* = newNode(nkEmpty)
# There is a single empty node that is shared! Do not overwrite it!

var anyGlobal* = newSym(skVar, getIdent("*"), nil, unknownLineInfo())

proc isMetaType*(t: PType): bool =
  return t.kind in tyMetaTypes or
         (t.kind == tyStatic and t.n == nil) or
         tfHasMeta in t.flags

proc linkTo*(t: PType, s: PSym): PType {.discardable.} =
  t.sym = s
  s.typ = t
  result = t

proc linkTo*(s: PSym, t: PType): PSym {.discardable.} =
  t.sym = s
  s.typ = t
  result = s

template fileIdx*(c: PSym): int32 =
  # XXX: this should be used only on module symbols
  c.position.int32

template filename*(c: PSym): string =
  # XXX: this should be used only on module symbols
  c.position.int32.toFilename

proc appendToModule*(m: PSym, n: PNode) =
  ## The compiler will use this internally to add nodes that will be
  ## appended to the module after the sem pass
  if m.ast == nil:
    m.ast = newNode(nkStmtList)
    m.ast.sons = @[n]
  else:
    assert m.ast.kind == nkStmtList
    m.ast.sons.add(n)
  
const                         # for all kind of hash tables:
  GrowthFactor* = 2           # must be power of 2, > 0
  StartSize* = 8              # must be power of 2, > 0

proc copyStrTable(dest: var TStrTable, src: TStrTable) = 
  dest.counter = src.counter
  if isNil(src.data): return 
  setLen(dest.data, len(src.data))
  for i in countup(0, high(src.data)): dest.data[i] = src.data[i]
  
proc copyIdTable(dest: var TIdTable, src: TIdTable) = 
  dest.counter = src.counter
  if isNil(src.data): return 
  newSeq(dest.data, len(src.data))
  for i in countup(0, high(src.data)): dest.data[i] = src.data[i]
  
proc copyTable(dest: var TTable, src: TTable) = 
  dest.counter = src.counter
  if isNil(src.data): return 
  setLen(dest.data, len(src.data))
  for i in countup(0, high(src.data)): dest.data[i] = src.data[i]
  
proc copyObjectSet(dest: var TObjectSet, src: TObjectSet) = 
  dest.counter = src.counter
  if isNil(src.data): return 
  setLen(dest.data, len(src.data))
  for i in countup(0, high(src.data)): dest.data[i] = src.data[i]
  
proc discardSons(father: PNode) = 
  father.sons = nil

when defined(useNodeIds):
  const nodeIdToDebug* = 310841 # 612794
  #612840 # 612905 # 614635 # 614637 # 614641
  # 423408
  #429107 # 430443 # 441048 # 441090 # 441153
  var gNodeId: int

proc newNode(kind: TNodeKind): PNode = 
  new(result)
  result.kind = kind
  #result.info = UnknownLineInfo() inlined:
  result.info.fileIndex = int32(- 1)
  result.info.col = int16(- 1)
  result.info.line = int16(- 1)
  when defined(useNodeIds):
    result.id = gNodeId
    if result.id == nodeIdToDebug:
      echo "KIND ", result.kind
      writeStackTrace()
    inc gNodeId

proc newIntNode(kind: TNodeKind, intVal: BiggestInt): PNode = 
  result = newNode(kind)
  result.intVal = intVal

proc newIntTypeNode(kind: TNodeKind, intVal: BiggestInt, typ: PType): PNode = 
  result = newIntNode(kind, intVal)
  result.typ = typ

proc newFloatNode(kind: TNodeKind, floatVal: BiggestFloat): PNode = 
  result = newNode(kind)
  result.floatVal = floatVal

proc newStrNode(kind: TNodeKind, strVal: string): PNode = 
  result = newNode(kind)
  result.strVal = strVal

proc withInfo*(n: PNode, info: TLineInfo): PNode =
  n.info = info
  return n

proc newIdentNode(ident: PIdent, info: TLineInfo): PNode = 
  result = newNode(nkIdent)
  result.ident = ident
  result.info = info

proc newSymNode(sym: PSym): PNode = 
  result = newNode(nkSym)
  result.sym = sym
  result.typ = sym.typ
  result.info = sym.info

proc newSymNode*(sym: PSym, info: TLineInfo): PNode = 
  result = newNode(nkSym)
  result.sym = sym
  result.typ = sym.typ
  result.info = info

proc newNodeI(kind: TNodeKind, info: TLineInfo): PNode =
  new(result)
  result.kind = kind
  result.info = info
  when defined(useNodeIds):
    result.id = gNodeId
    if result.id == nodeIdToDebug:
      echo "KIND ", result.kind
      writeStackTrace()
    inc gNodeId

proc newNodeI*(kind: TNodeKind, info: TLineInfo, children: int): PNode =
  new(result)
  result.kind = kind
  result.info = info
  if children > 0:
    newSeq(result.sons, children)
  when defined(useNodeIds):
    result.id = gNodeId
    if result.id == nodeIdToDebug:
      echo "KIND ", result.kind
      writeStackTrace()
    inc gNodeId

proc newNode*(kind: TNodeKind, info: TLineInfo, sons: TNodeSeq = @[],
             typ: PType = nil): PNode =
  new(result)
  result.kind = kind
  result.info = info
  result.typ = typ
  # XXX use shallowCopy here for ownership transfer:
  result.sons = sons
  when defined(useNodeIds):
    result.id = gNodeId
    if result.id == nodeIdToDebug:
      echo "KIND ", result.kind
      writeStackTrace()
    inc gNodeId

proc newNodeIT(kind: TNodeKind, info: TLineInfo, typ: PType): PNode = 
  result = newNode(kind)
  result.info = info
  result.typ = typ

var emptyParams = newNode(nkFormalParams)
emptyParams.addSon(emptyNode)

proc newProcNode*(kind: TNodeKind, info: TLineInfo, body: PNode,
                 params = emptyParams,
                 name, pattern, genericParams,
                 pragmas, exceptions = ast.emptyNode): PNode =
  result = newNodeI(kind, info)
  result.sons = @[name, pattern, genericParams, params,
                  pragmas, exceptions, body]

const
  UnspecifiedLockLevel* = TLockLevel(-1'i16)
  MaxLockLevel* = 1000'i16
  UnknownLockLevel* = TLockLevel(1001'i16)

proc `$`*(x: TLockLevel): string =
  if x.ord == UnspecifiedLockLevel.ord: result = "<unspecified>"
  elif x.ord == UnknownLockLevel.ord: result = "<unknown>"
  else: result = $int16(x)

proc newType(kind: TTypeKind, owner: PSym): PType = 
  new(result)
  result.kind = kind
  result.owner = owner
  result.size = - 1
  result.align = 2            # default alignment
  result.id = getID()
  result.lockLevel = UnspecifiedLockLevel
  when debugIds:
    registerId(result)
  #if result.id < 2000:
  #  messageOut(typeKindToStr[kind] & ' has id: ' & toString(result.id))
  
proc mergeLoc(a: var TLoc, b: TLoc) =
  if a.k == low(a.k): a.k = b.k
  if a.s == low(a.s): a.s = b.s
  a.flags = a.flags + b.flags
  if a.t == nil: a.t = b.t
  if a.r == nil: a.r = b.r
  #if a.a == 0: a.a = b.a
  
proc assignType(dest, src: PType) = 
  dest.kind = src.kind
  dest.flags = src.flags
  dest.callConv = src.callConv
  dest.n = src.n
  dest.size = src.size
  dest.align = src.align
  dest.destructor = src.destructor
  dest.deepCopy = src.deepCopy
  dest.lockLevel = src.lockLevel
  # this fixes 'type TLock = TSysLock':
  if src.sym != nil:
    if dest.sym != nil:
      dest.sym.flags = dest.sym.flags + src.sym.flags
      if dest.sym.annex == nil: dest.sym.annex = src.sym.annex
      mergeLoc(dest.sym.loc, src.sym.loc)
    else:
      dest.sym = src.sym
  newSons(dest, sonsLen(src))
  for i in countup(0, sonsLen(src) - 1): dest.sons[i] = src.sons[i]
  
proc copyType(t: PType, owner: PSym, keepId: bool): PType = 
  result = newType(t.kind, owner)
  assignType(result, t)
  if keepId: 
    result.id = t.id
  else: 
    when debugIds: registerId(result)
  result.sym = t.sym          # backend-info should not be copied
  
proc copySym(s: PSym, keepId: bool = false): PSym = 
  result = newSym(s.kind, s.name, s.owner, s.info)
  #result.ast = nil            # BUGFIX; was: s.ast which made problems
  result.typ = s.typ
  if keepId:
    result.id = s.id
  else: 
    result.id = getID()
    when debugIds: registerId(result)
  result.flags = s.flags
  result.magic = s.magic
  if s.kind == skModule:
    copyStrTable(result.tab, s.tab)
  result.options = s.options
  result.position = s.position
  result.loc = s.loc
  result.annex = s.annex      # BUGFIX
  if result.kind in {skVar, skLet, skField}:
    result.guard = s.guard

proc createModuleAlias*(s: PSym, newIdent: PIdent, info: TLineInfo): PSym =
  result = newSym(s.kind, newIdent, s.owner, info)
  # keep ID!
  result.ast = s.ast
  result.id = s.id
  result.flags = s.flags
  system.shallowCopy(result.tab, s.tab)
  result.options = s.options
  result.position = s.position
  result.loc = s.loc
  result.annex = s.annex
  # XXX once usedGenerics is used, ensure module aliases keep working!
  assert s.usedGenerics == nil
  
proc newSym(symKind: TSymKind, name: PIdent, owner: PSym,
            info: TLineInfo): PSym = 
  # generates a symbol and initializes the hash field too
  new(result)
  result.name = name
  result.kind = symKind
  result.flags = {}
  result.info = info
  result.options = gOptions
  result.owner = owner
  result.offset = - 1
  result.id = getID()
  when debugIds: 
    registerId(result)
  #if result.id < 2000:
  #  MessageOut(name.s & " has id: " & toString(result.id))
  
proc initStrTable(x: var TStrTable) = 
  x.counter = 0
  newSeq(x.data, StartSize)

proc newStrTable*: TStrTable =
  initStrTable(result)

proc initTable(x: var TTable) = 
  x.counter = 0
  newSeq(x.data, StartSize)

proc initIdTable(x: var TIdTable) = 
  x.counter = 0
  newSeq(x.data, StartSize)

proc initObjectSet(x: var TObjectSet) = 
  x.counter = 0
  newSeq(x.data, StartSize)

proc initIdNodeTable(x: var TIdNodeTable) = 
  x.counter = 0
  newSeq(x.data, StartSize)

proc initNodeTable(x: var TNodeTable) = 
  x.counter = 0
  newSeq(x.data, StartSize)

proc sonsLen(n: PType): int = 
  if isNil(n.sons): result = 0
  else: result = len(n.sons)

proc len*(n: PType): int = 
  if isNil(n.sons): result = 0
  else: result = len(n.sons)
  
proc newSons(father: PType, length: int) = 
  if isNil(father.sons): 
    newSeq(father.sons, length)
  else:
    setLen(father.sons, length)

proc sonsLen(n: PNode): int = 
  if isNil(n.sons): result = 0
  else: result = len(n.sons)
  
proc newSons(father: PNode, length: int) = 
  if isNil(father.sons): 
    newSeq(father.sons, length)
  else:
    setLen(father.sons, length)

proc skipTypes*(t: PType, kinds: TTypeKinds): PType =
  ## Used throughout the compiler code to test whether a type tree contains or
  ## doesn't contain a specific type/types - it is often the case that only the
  ## last child nodes of a type tree need to be searched. This is a really hot
  ## path within the compiler!
  result = t
  while result.kind in kinds: result = lastSon(result)

proc isGCedMem*(t: PType): bool {.inline.} =
  result = t.kind in {tyString, tyRef, tySequence} or
           t.kind == tyProc and t.callConv == ccClosure

proc propagateToOwner*(owner, elem: PType) =
  const HaveTheirOwnEmpty = {tySequence, tySet}
  owner.flags = owner.flags + (elem.flags * {tfHasShared, tfHasMeta})
  if tfNotNil in elem.flags:
    if owner.kind in {tyGenericInst, tyGenericBody, tyGenericInvokation}:
      owner.flags.incl tfNotNil
    elif owner.kind notin HaveTheirOwnEmpty:
      owner.flags.incl tfNeedsInit
  
  if tfNeedsInit in elem.flags:
    if owner.kind in HaveTheirOwnEmpty: discard
    else: owner.flags.incl tfNeedsInit
    
  if tfShared in elem.flags:
    owner.flags.incl tfHasShared

  if elem.isMetaType:
    owner.flags.incl tfHasMeta

  if owner.kind != tyProc:
    if elem.isGCedMem or tfHasGCedMem in elem.flags:
      owner.flags.incl tfHasGCedMem

proc rawAddSon*(father, son: PType) =
  if isNil(father.sons): father.sons = @[]
  add(father.sons, son)
  if not son.isNil: propagateToOwner(father, son)

proc addSon(father, son: PNode) = 
  assert son != nil
  if isNil(father.sons): father.sons = @[]
  add(father.sons, son)

proc addSonNilAllowed*(father, son: PNode) =
  if isNil(father.sons): father.sons = @[]
  add(father.sons, son)

proc delSon(father: PNode, idx: int) = 
  if isNil(father.sons): return 
  var length = sonsLen(father)
  for i in countup(idx, length - 2): father.sons[i] = father.sons[i + 1]
  setLen(father.sons, length - 1)

proc copyNode(src: PNode): PNode = 
  # does not copy its sons!
  if src == nil: 
    return nil
  result = newNode(src.kind)
  result.info = src.info
  result.typ = src.typ
  result.flags = src.flags * PersistentNodeFlags
  when defined(useNodeIds):
    if result.id == nodeIdToDebug:
      echo "COMES FROM ", src.id
  case src.kind
  of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
  of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
  of nkSym: result.sym = src.sym
  of nkIdent: result.ident = src.ident
  of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
  else: discard

proc shallowCopy*(src: PNode): PNode = 
  # does not copy its sons, but provides space for them:
  if src == nil: return nil
  result = newNode(src.kind)
  result.info = src.info
  result.typ = src.typ
  result.flags = src.flags * PersistentNodeFlags
  when defined(useNodeIds):
    if result.id == nodeIdToDebug:
      echo "COMES FROM ", src.id
  case src.kind
  of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
  of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
  of nkSym: result.sym = src.sym
  of nkIdent: result.ident = src.ident
  of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
  else: newSeq(result.sons, sonsLen(src))

proc copyTree(src: PNode): PNode = 
  # copy a whole syntax tree; performs deep copying
  if src == nil: 
    return nil
  result = newNode(src.kind)
  result.info = src.info
  result.typ = src.typ
  result.flags = src.flags * PersistentNodeFlags
  when defined(useNodeIds):
    if result.id == nodeIdToDebug:
      echo "COMES FROM ", src.id
  case src.kind
  of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
  of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
  of nkSym: result.sym = src.sym
  of nkIdent: result.ident = src.ident
  of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
  else: 
    newSeq(result.sons, sonsLen(src))
    for i in countup(0, sonsLen(src) - 1): 
      result.sons[i] = copyTree(src.sons[i])
  
proc lastSon(n: PNode): PNode = 
  result = n.sons[sonsLen(n) - 1]

proc lastSon(n: PType): PType = 
  result = n.sons[sonsLen(n) - 1]

proc hasSonWith(n: PNode, kind: TNodeKind): bool = 
  for i in countup(0, sonsLen(n) - 1): 
    if n.sons[i].kind == kind: 
      return true
  result = false

proc hasNilSon*(n: PNode): bool = 
  for i in countup(0, safeLen(n) - 1): 
    if n.sons[i] == nil: 
      return true
    elif hasNilSon(n.sons[i]):
      return true
  result = false

proc containsNode*(n: PNode, kinds: TNodeKinds): bool =
  if n == nil: return
  case n.kind
  of nkEmpty..nkNilLit: result = n.kind in kinds
  else:
    for i in countup(0, sonsLen(n) - 1):
      if n.kind in kinds or containsNode(n.sons[i], kinds): return true

proc hasSubnodeWith(n: PNode, kind: TNodeKind): bool = 
  case n.kind
  of nkEmpty..nkNilLit: result = n.kind == kind
  else: 
    for i in countup(0, sonsLen(n) - 1): 
      if (n.sons[i].kind == kind) or hasSubnodeWith(n.sons[i], kind): 
        return true
    result = false

proc replaceSons(n: PNode, oldKind, newKind: TNodeKind) = 
  for i in countup(0, sonsLen(n) - 1): 
    if n.sons[i].kind == oldKind: n.sons[i].kind = newKind
  
proc sonsNotNil(n: PNode): bool = 
  for i in countup(0, sonsLen(n) - 1): 
    if n.sons[i] == nil: 
      return false
  result = true

proc getInt*(a: PNode): BiggestInt = 
  case a.kind
  of nkIntLit..nkUInt64Lit: result = a.intVal
  else: 
    internalError(a.info, "getInt")
    result = 0

proc getFloat*(a: PNode): BiggestFloat = 
  case a.kind
  of nkFloatLit..nkFloat128Lit: result = a.floatVal
  else: 
    internalError(a.info, "getFloat")
    result = 0.0

proc getStr*(a: PNode): string = 
  case a.kind
  of nkStrLit..nkTripleStrLit: result = a.strVal
  else: 
    internalError(a.info, "getStr")
    result = ""

proc getStrOrChar*(a: PNode): string = 
  case a.kind
  of nkStrLit..nkTripleStrLit: result = a.strVal
  of nkCharLit: result = $chr(int(a.intVal))
  else: 
    internalError(a.info, "getStrOrChar")
    result = ""

proc isGenericRoutine*(s: PSym): bool = 
  case s.kind
  of skProcKinds:
    result = sfFromGeneric in s.flags or
             (s.ast != nil and s.ast[genericParamsPos].kind != nkEmpty)
  else: discard

proc skipGenericOwner*(s: PSym): PSym =
  internalAssert s.kind in skProcKinds
  ## Generic instantiations are owned by their originating generic
  ## symbol. This proc skips such owners and goes straight to the owner
  ## of the generic itself (the module or the enclosing proc).
  result = if sfFromGeneric in s.flags: s.owner.owner
           else: s.owner

proc originatingModule*(s: PSym): PSym =
  result = s.owner
  while result.kind != skModule: result = result.owner

proc isRoutine*(s: PSym): bool {.inline.} =
  result = s.kind in skProcKinds

proc hasPattern*(s: PSym): bool {.inline.} =
  result = isRoutine(s) and s.ast.sons[patternPos].kind != nkEmpty

iterator items*(n: PNode): PNode =
  for i in 0.. <n.len: yield n.sons[i]

iterator pairs*(n: PNode): tuple[i: int, n: PNode] =
  for i in 0.. <n.len: yield (i, n.sons[i])

proc isAtom*(n: PNode): bool {.inline.} =
  result = n.kind >= nkNone and n.kind <= nkNilLit

proc isEmptyType*(t: PType): bool {.inline.} =
  ## 'void' and 'stmt' types are often equivalent to 'nil' these days:
  result = t == nil or t.kind in {tyEmpty, tyStmt}