#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
#
# included from cgen.nim
proc canRaiseDisp(p: BProc; n: PNode): bool =
# we assume things like sysFatal cannot raise themselves
if n.kind == nkSym and {sfNeverRaises, sfImportc, sfCompilerProc} * n.sym.flags != {}:
result = false
elif optPanics in p.config.globalOptions or
(n.kind == nkSym and sfSystemModule in getModule(n.sym).flags):
# we know we can be strict:
result = canRaise(n)
else:
# we have to be *very* conservative:
result = canRaiseConservative(n)
proc preventNrvo(p: BProc; dest, le, ri: PNode): bool =
proc locationEscapes(p: BProc; le: PNode; inTryStmt: bool): bool =
var n = le
while true:
# do NOT follow nkHiddenDeref here!
case n.kind
of nkSym:
# we don't own the location so it escapes:
if n.sym.owner != p.prc:
return true
elif inTryStmt and sfUsedInFinallyOrExcept in n.sym.flags:
# it is also an observable store if the location is used
# in 'except' or 'finally'
return true
return false
of nkDotExpr, nkBracketExpr, nkObjUpConv, nkObjDownConv,
nkCheckedFieldExpr:
n = n[0]
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
n = n[1]
else:
# cannot analyse the location; assume the worst
return true
if le != nil:
for i in 1..<ri.len:
let r = ri[i]
if isPartOf(le, r) != arNo: return true
# we use the weaker 'canRaise' here in order to prevent too many
# annoying warnings, see #14514
if canRaise(ri[0]) and
locationEscapes(p, le, p.nestedTryStmts.len > 0):
message(p.config, le.info, warnObservableStores, $le)
# bug #19613 prevent dangerous aliasing too:
if dest != nil and dest != le:
for i in 1..<ri.len:
let r = ri[i]
if isPartOf(dest, r) != arNo: return true
proc hasNoInit(call: PNode): bool {.inline.} =
result = call[0].kind == nkSym and sfNoInit in call[0].sym.flags
proc isHarmlessStore(p: BProc; canRaise: bool; d: TLoc): bool =
if d.k in {locTemp, locNone} or not canRaise:
result = true
elif d.k == locLocalVar and p.withinTryWithExcept == 0:
# we cannot observe a store to a local variable if the current proc
# has no error handler:
result = true
else:
result = false
proc fixupCall(p: BProc, le, ri: PNode, d: var TLoc,
callee, params: Rope) =
let canRaise = p.config.exc == excGoto and canRaiseDisp(p, ri[0])
genLineDir(p, ri)
var pl = callee & "(" & params
# getUniqueType() is too expensive here:
var typ = skipTypes(ri[0].typ, abstractInst)
if typ[0] != nil:
if isInvalidReturnType(p.config, typ):
if params.len != 0: pl.add(", ")
# beware of 'result = p(result)'. We may need to allocate a temporary:
if d.k in {locTemp, locNone} or not preventNrvo(p, d.lode, le, ri):
# Great, we can use 'd':
if d.k == locNone: getTemp(p, typ[0], d, needsInit=true)
elif d.k notin {locTemp} and not hasNoInit(ri):
# reset before pass as 'result' var:
discard "resetLoc(p, d)"
pl.add(addrLoc(p.config, d))
pl.add(");\n")
line(p, cpsStmts, pl)
else:
var tmp: TLoc
getTemp(p, typ[0], tmp, needsInit=true)
pl.add(addrLoc(p.config, tmp))
pl.add(");\n")
line(p, cpsStmts, pl)
genAssignment(p, d, tmp, {}) # no need for deep copying
if canRaise: raiseExit(p)
else:
pl.add(")")
if p.module.compileToCpp:
if lfSingleUse in d.flags:
# do not generate spurious temporaries for C++! For C we're better off
# with them to prevent undefined behaviour and because the codegen
# is free to emit expressions multiple times!
d.k = locCall
d.r = pl
excl d.flags, lfSingleUse
else:
if d.k == locNone and p.splitDecls == 0:
getTempCpp(p, typ[0], d, pl)
else:
if d.k == locNone: getTemp(p, typ[0], d)
var list: TLoc
initLoc(list, locCall, d.lode, OnUnknown)
list.r = pl
genAssignment(p, d, list, {}) # no need for deep copying
if canRaise: raiseExit(p)
elif isHarmlessStore(p, canRaise, d):
if d.k == locNone: getTemp(p, typ[0], d)
assert(d.t != nil) # generate an assignment to d:
var list: TLoc
initLoc(list, locCall, d.lode, OnUnknown)
list.r = pl
genAssignment(p, d, list, {}) # no need for deep copying
if canRaise: raiseExit(p)
else:
var tmp: TLoc
getTemp(p, typ[0], tmp, needsInit=true)
var list: TLoc
initLoc(list, locCall, d.lode, OnUnknown)
list.r = pl
genAssignment(p, tmp, list, {}) # no need for deep copying
if canRaise: raiseExit(p)
genAssignment(p, d, tmp, {})
else:
pl.add(");\n")
line(p, cpsStmts, pl)
if canRaise: raiseExit(p)
proc genBoundsCheck(p: BProc; arr, a, b: TLoc)
proc reifiedOpenArray(n: PNode): bool {.inline.} =
var x = n
while x.kind in {nkAddr, nkHiddenAddr, nkHiddenStdConv, nkHiddenDeref}:
x = x[0]
if x.kind == nkSym and x.sym.kind == skParam:
result = false
else:
result = true
proc genOpenArraySlice(p: BProc; q: PNode; formalType, destType: PType): (Rope, Rope) =
var a, b, c: TLoc
initLocExpr(p, q[1], a)
initLocExpr(p, q[2], b)
initLocExpr(p, q[3], c)
# but first produce the required index checks:
if optBoundsCheck in p.options:
genBoundsCheck(p, a, b, c)
let ty = skipTypes(a.t, abstractVar+{tyPtr})
let dest = getTypeDesc(p.module, destType)
let lengthExpr = "($1)-($2)+1" % [rdLoc(c), rdLoc(b)]
case ty.kind
of tyArray:
let first = toInt64(firstOrd(p.config, ty))
if first == 0:
result = ("($3*)(($1)+($2))" % [rdLoc(a), rdLoc(b), dest],
lengthExpr)
else:
var lit = newRopeAppender()
intLiteral(first, lit)
result = ("($4*)($1)+(($2)-($3))" %
[rdLoc(a), rdLoc(b), lit, dest],
lengthExpr)
of tyOpenArray, tyVarargs:
if reifiedOpenArray(q[1]):
result = ("($3*)($1.Field0)+($2)" % [rdLoc(a), rdLoc(b), dest],
lengthExpr)
else:
result = ("($3*)($1)+($2)" % [rdLoc(a), rdLoc(b), dest],
lengthExpr)
of tyUncheckedArray, tyCstring:
result = ("($3*)($1)+($2)" % [rdLoc(a), rdLoc(b), dest],
lengthExpr)
of tyString, tySequence:
let atyp = skipTypes(a.t, abstractInst)
if formalType.skipTypes(abstractInst).kind in {tyVar} and atyp.kind == tyString and
optSeqDestructors in p.config.globalOptions:
linefmt(p, cpsStmts, "#nimPrepareStrMutationV2($1);$n", [byRefLoc(p, a)])
if atyp.kind in {tyVar} and not compileToCpp(p.module):
result = ("($4*)(*$1)$3+($2)" % [rdLoc(a), rdLoc(b), dataField(p), dest],
lengthExpr)
else:
result = ("($4*)$1$3+($2)" % [rdLoc(a), rdLoc(b), dataField(p), dest],
lengthExpr)
else:
internalError(p.config, "openArrayLoc: " & typeToString(a.t))
proc openArrayLoc(p: BProc, formalType: PType, n: PNode; result: var Rope) =
var q = skipConv(n)
var skipped = false
while q.kind == nkStmtListExpr and q.len > 0:
skipped = true
q = q.lastSon
if getMagic(q) == mSlice:
# magic: pass slice to openArray:
if skipped:
q = skipConv(n)
while q.kind == nkStmtListExpr and q.len > 0:
for i in 0..<q.len-1:
genStmts(p, q[i])
q = q.lastSon
let (x, y) = genOpenArraySlice(p, q, formalType, n.typ[0])
result.add x & ", " & y
else:
var a: TLoc
initLocExpr(p, if n.kind == nkHiddenStdConv: n[1] else: n, a)
case skipTypes(a.t, abstractVar+{tyStatic}).kind
of tyOpenArray, tyVarargs:
if reifiedOpenArray(n):
if a.t.kind in {tyVar, tyLent}:
result.add "$1->Field0, $1->Field1" % [rdLoc(a)]
else:
result.add "$1.Field0, $1.Field1" % [rdLoc(a)]
else:
result.add "$1, $1Len_0" % [rdLoc(a)]
of tyString, tySequence:
let ntyp = skipTypes(n.typ, abstractInst)
if formalType.skipTypes(abstractInst).kind in {tyVar} and ntyp.kind == tyString and
optSeqDestructors in p.config.globalOptions:
linefmt(p, cpsStmts, "#nimPrepareStrMutationV2($1);$n", [byRefLoc(p, a)])
if ntyp.kind in {tyVar} and not compileToCpp(p.module):
var t: TLoc
t.r = "(*$1)" % [a.rdLoc]
result.add "(*$1)$3, $2" % [a.rdLoc, lenExpr(p, t), dataField(p)]
else:
result.add "$1$3, $2" % [a.rdLoc, lenExpr(p, a), dataField(p)]
of tyArray:
result.add "$1, $2" % [rdLoc(a), rope(lengthOrd(p.config, a.t))]
of tyPtr, tyRef:
case lastSon(a.t).kind
of tyString, tySequence:
var t: TLoc
t.r = "(*$1)" % [a.rdLoc]
result.add "(*$1)$3, $2" % [a.rdLoc, lenExpr(p, t), dataField(p)]
of tyArray:
result.add "$1, $2" % [rdLoc(a), rope(lengthOrd(p.config, lastSon(a.t)))]
else:
internalError(p.config, "openArrayLoc: " & typeToString(a.t))
else: internalError(p.config, "openArrayLoc: " & typeToString(a.t))
proc withTmpIfNeeded(p: BProc, a: TLoc, needsTmp: bool): TLoc =
# Bug https://github.com/status-im/nimbus-eth2/issues/1549
# Aliasing is preferred over stack overflows.
# Also don't regress for non ARC-builds, too risky.
if needsTmp and a.lode.typ != nil and p.config.selectedGC in {gcArc, gcOrc} and
getSize(p.config, a.lode.typ) < 1024:
getTemp(p, a.lode.typ, result, needsInit=false)
genAssignment(p, result, a, {})
else:
result = a
proc literalsNeedsTmp(p: BProc, a: TLoc): TLoc =
getTemp(p, a.lode.typ, result, needsInit=false)
genAssignment(p, result, a, {})
proc genArgStringToCString(p: BProc, n: PNode; result: var Rope; needsTmp: bool) {.inline.} =
var a: TLoc
initLocExpr(p, n[0], a)
appcg(p.module, result, "#nimToCStringConv($1)", [withTmpIfNeeded(p, a, needsTmp).rdLoc])
proc genArg(p: BProc, n: PNode, param: PSym; call: PNode; result: var Rope; needsTmp = false) =
var a: TLoc
if n.kind == nkStringToCString:
genArgStringToCString(p, n, result, needsTmp)
elif skipTypes(param.typ, abstractVar).kind in {tyOpenArray, tyVarargs}:
var n = if n.kind != nkHiddenAddr: n else: n[0]
openArrayLoc(p, param.typ, n, result)
elif ccgIntroducedPtr(p.config, param, call[0].typ[0]):
initLocExpr(p, n, a)
if n.kind in {nkCharLit..nkNilLit}:
addAddrLoc(p.config, literalsNeedsTmp(p, a), result)
else:
addAddrLoc(p.config, withTmpIfNeeded(p, a, needsTmp), result)
elif p.module.compileToCpp and param.typ.kind in {tyVar} and
n.kind == nkHiddenAddr:
initLocExprSingleUse(p, n[0], a)
# if the proc is 'importc'ed but not 'importcpp'ed then 'var T' still
# means '*T'. See posix.nim for lots of examples that do that in the wild.
let callee = call[0]
if callee.kind == nkSym and
{sfImportc, sfInfixCall, sfCompilerProc} * callee.sym.flags == {sfImportc} and
{lfHeader, lfNoDecl} * callee.sym.loc.flags != {}:
addAddrLoc(p.config, a, result)
else:
addRdLoc(a, result)
else:
initLocExprSingleUse(p, n, a)
addRdLoc(withTmpIfNeeded(p, a, needsTmp), result)
#assert result != nil
proc genArgNoParam(p: BProc, n: PNode; result: var Rope; needsTmp = false) =
var a: TLoc
if n.kind == nkStringToCString:
genArgStringToCString(p, n, result, needsTmp)
else:
initLocExprSingleUse(p, n, a)
addRdLoc(withTmpIfNeeded(p, a, needsTmp), result)
import aliasanalysis
proc potentialAlias(n: PNode, potentialWrites: seq[PNode]): bool =
for p in potentialWrites:
if p.aliases(n) != no or n.aliases(p) != no:
return true
proc skipTrivialIndirections(n: PNode): PNode =
result = n
while true:
case result.kind
of nkDerefExpr, nkHiddenDeref, nkAddr, nkHiddenAddr, nkObjDownConv, nkObjUpConv:
result = result[0]
of nkHiddenStdConv, nkHiddenSubConv:
result = result[1]
else: break
proc getPotentialWrites(n: PNode; mutate: bool; result: var seq[PNode]) =
case n.kind:
of nkLiterals, nkIdent, nkFormalParams: discard
of nkSym:
if mutate: result.add n
of nkAsgn, nkFastAsgn, nkSinkAsgn:
getPotentialWrites(n[0], true, result)
getPotentialWrites(n[1], mutate, result)
of nkAddr, nkHiddenAddr:
getPotentialWrites(n[0], true, result)
of nkBracketExpr, nkDotExpr, nkCheckedFieldExpr:
getPotentialWrites(n[0], mutate, result)
of nkCallKinds:
case n.getMagic:
of mIncl, mExcl, mInc, mDec, mAppendStrCh, mAppendStrStr, mAppendSeqElem,
mAddr, mNew, mNewFinalize, mWasMoved, mDestroy, mReset:
getPotentialWrites(n[1], true, result)
for i in 2..<n.len:
getPotentialWrites(n[i], mutate, result)
of mSwap:
for i in 1..<n.len:
getPotentialWrites(n[i], true, result)
else:
for i in 1..<n.len:
getPotentialWrites(n[i], mutate, result)
else:
for s in n:
getPotentialWrites(s, mutate, result)
proc getPotentialReads(n: PNode; result: var seq[PNode]) =
case n.kind:
of nkLiterals, nkIdent, nkFormalParams: discard
of nkSym: result.add n
else:
for s in n:
getPotentialReads(s, result)
proc genParams(p: BProc, ri: PNode, typ: PType; result: var Rope) =
# We must generate temporaries in cases like #14396
# to keep the strict Left-To-Right evaluation
var needTmp = newSeq[bool](ri.len - 1)
var potentialWrites: seq[PNode]
for i in countdown(ri.len - 1, 1):
if ri[i].skipTrivialIndirections.kind == nkSym:
needTmp[i - 1] = potentialAlias(ri[i], potentialWrites)
else:
#if not ri[i].typ.isCompileTimeOnly:
var potentialReads: seq[PNode]
getPotentialReads(ri[i], potentialReads)
for n in potentialReads:
if not needTmp[i - 1]:
needTmp[i - 1] = potentialAlias(n, potentialWrites)
getPotentialWrites(ri[i], false, potentialWrites)
if ri[i].kind in {nkHiddenAddr, nkAddr}:
# Optimization: don't use a temp, if we would only take the address anyway
needTmp[i - 1] = false
var oldLen = result.len
for i in 1..<ri.len:
if i < typ.len:
assert(typ.n[i].kind == nkSym)
let paramType = typ.n[i]
if not paramType.typ.isCompileTimeOnly:
if oldLen != result.len:
result.add(", ")
oldLen = result.len
genArg(p, ri[i], paramType.sym, ri, result, needTmp[i-1])
else:
if oldLen != result.len:
result.add(", ")
oldLen = result.len
genArgNoParam(p, ri[i], result, needTmp[i-1])
proc addActualSuffixForHCR(res: var Rope, module: PSym, sym: PSym) =
if sym.flags * {sfImportc, sfNonReloadable} == {} and sym.loc.k == locProc and
(sym.typ.callConv == ccInline or sym.owner.id == module.id):
res = res & "_actual".rope
proc genPrefixCall(p: BProc, le, ri: PNode, d: var TLoc) =
var op: TLoc
# this is a hotspot in the compiler
initLocExpr(p, ri[0], op)
# getUniqueType() is too expensive here:
var typ = skipTypes(ri[0].typ, abstractInstOwned)
assert(typ.kind == tyProc)
assert(typ.len == typ.n.len)
var params = newRopeAppender()
genParams(p, ri, typ, params)
var callee = rdLoc(op)
if p.hcrOn and ri[0].kind == nkSym:
callee.addActualSuffixForHCR(p.module.module, ri[0].sym)
fixupCall(p, le, ri, d, callee, params)
proc genClosureCall(p: BProc, le, ri: PNode, d: var TLoc) =
proc addComma(r: Rope): Rope =
if r.len == 0: r else: r & ", "
const PatProc = "$1.ClE_0? $1.ClP_0($3$1.ClE_0):(($4)($1.ClP_0))($2)"
const PatIter = "$1.ClP_0($3$1.ClE_0)" # we know the env exists
var op: TLoc
initLocExpr(p, ri[0], op)
# getUniqueType() is too expensive here:
var typ = skipTypes(ri[0].typ, abstractInstOwned)
assert(typ.kind == tyProc)
assert(typ.len == typ.n.len)
var pl = newRopeAppender()
genParams(p, ri, typ, pl)
template genCallPattern {.dirty.} =
if tfIterator in typ.flags:
lineF(p, cpsStmts, PatIter & ";$n", [rdLoc(op), pl, pl.addComma, rawProc])
else:
lineF(p, cpsStmts, PatProc & ";$n", [rdLoc(op), pl, pl.addComma, rawProc])
let rawProc = getClosureType(p.module, typ, clHalf)
let canRaise = p.config.exc == excGoto and canRaiseDisp(p, ri[0])
if typ[0] != nil:
if isInvalidReturnType(p.config, typ):
if ri.len > 1: pl.add(", ")
# beware of 'result = p(result)'. We may need to allocate a temporary:
if d.k in {locTemp, locNone} or not preventNrvo(p, d.lode, le, ri):
# Great, we can use 'd':
if d.k == locNone:
getTemp(p, typ[0], d, needsInit=true)
elif d.k notin {locTemp} and not hasNoInit(ri):
# reset before pass as 'result' var:
discard "resetLoc(p, d)"
pl.add(addrLoc(p.config, d))
genCallPattern()
else:
var tmp: TLoc
getTemp(p, typ[0], tmp, needsInit=true)
pl.add(addrLoc(p.config, tmp))
genCallPattern()
if canRaise: raiseExit(p)
genAssignment(p, d, tmp, {}) # no need for deep copying
elif isHarmlessStore(p, canRaise, d):
if d.k == locNone: getTemp(p, typ[0], d)
assert(d.t != nil) # generate an assignment to d:
var list: TLoc
initLoc(list, locCall, d.lode, OnUnknown)
if tfIterator in typ.flags:
list.r = PatIter % [rdLoc(op), pl, pl.addComma, rawProc]
else:
list.r = PatProc % [rdLoc(op), pl, pl.addComma, rawProc]
genAssignment(p, d, list, {}) # no need for deep copying
if canRaise: raiseExit(p)
else:
var tmp: TLoc
getTemp(p, typ[0], tmp)
assert(d.t != nil) # generate an assignment to d:
var list: TLoc
initLoc(list, locCall, d.lode, OnUnknown)
if tfIterator in typ.flags:
list.r = PatIter % [rdLoc(op), pl, pl.addComma, rawProc]
else:
list.r = PatProc % [rdLoc(op), pl, pl.addComma, rawProc]
genAssignment(p, tmp, list, {})
if canRaise: raiseExit(p)
genAssignment(p, d, tmp, {})
else:
genCallPattern()
if canRaise: raiseExit(p)
proc genOtherArg(p: BProc; ri: PNode; i: int; typ: PType; result: var Rope;
argsCounter: var int) =
if i < typ.len:
# 'var T' is 'T&' in C++. This means we ignore the request of
# any nkHiddenAddr when it's a 'var T'.
let paramType = typ.n[i]
assert(paramType.kind == nkSym)
if paramType.typ.isCompileTimeOnly:
discard
elif typ[i].kind in {tyVar} and ri[i].kind == nkHiddenAddr:
if argsCounter > 0: result.add ", "
genArgNoParam(p, ri[i][0], result)
inc argsCounter
else:
if argsCounter > 0: result.add ", "
genArgNoParam(p, ri[i], result) #, typ.n[i].sym)
inc argsCounter
else:
if tfVarargs notin typ.flags:
localError(p.config, ri.info, "wrong argument count")
else:
if argsCounter > 0: result.add ", "
genArgNoParam(p, ri[i], result)
inc argsCounter
discard """
Dot call syntax in C++
======================
so c2nim translates 'this' sometimes to 'T' and sometimes to 'var T'
both of which are wrong, but often more convenient to use.
For manual wrappers it can also be 'ptr T'
Fortunately we know which parameter is the 'this' parameter and so can fix this
mess in the codegen.
now ... if the *argument* is a 'ptr' the codegen shall emit -> and otherwise .
but this only depends on the argument and not on how the 'this' was declared
however how the 'this' was declared affects whether we end up with
wrong 'addr' and '[]' ops...
Since I'm tired I'll enumerate all the cases here:
var
x: ptr T
y: T
proc t(x: T)
x[].t() --> (*x).t() is correct.
y.t() --> y.t() is correct
proc u(x: ptr T)
x.u() --> needs to become x->u()
(addr y).u() --> needs to become y.u()
proc v(x: var T)
--> first skip the implicit 'nkAddr' node
x[].v() --> (*x).v() is correct, but might have been eliminated due
to the nkAddr node! So for this case we need to generate '->'
y.v() --> y.v() is correct
"""
proc skipAddrDeref(node: PNode): PNode =
var n = node
var isAddr = false
case n.kind
of nkAddr, nkHiddenAddr:
n = n[0]
isAddr = true
of nkDerefExpr, nkHiddenDeref:
n = n[0]
else: return n
if n.kind == nkObjDownConv: n = n[0]
if isAddr and n.kind in {nkDerefExpr, nkHiddenDeref}:
result = n[0]
elif n.kind in {nkAddr, nkHiddenAddr}:
result = n[0]
else:
result = node
proc genThisArg(p: BProc; ri: PNode; i: int; typ: PType; result: var Rope) =
# for better or worse c2nim translates the 'this' argument to a 'var T'.
# However manual wrappers may also use 'ptr T'. In any case we support both
# for convenience.
internalAssert p.config, i < typ.len
assert(typ.n[i].kind == nkSym)
# if the parameter is lying (tyVar) and thus we required an additional deref,
# skip the deref:
var ri = ri[i]
while ri.kind == nkObjDownConv: ri = ri[0]
let t = typ[i].skipTypes({tyGenericInst, tyAlias, tySink})
if t.kind in {tyVar}:
let x = if ri.kind == nkHiddenAddr: ri[0] else: ri
if x.typ.kind == tyPtr:
genArgNoParam(p, x, result)
result.add("->")
elif x.kind in {nkHiddenDeref, nkDerefExpr} and x[0].typ.kind == tyPtr:
genArgNoParam(p, x[0], result)
result.add("->")
else:
genArgNoParam(p, x, result)
result.add(".")
elif t.kind == tyPtr:
if ri.kind in {nkAddr, nkHiddenAddr}:
genArgNoParam(p, ri[0], result)
result.add(".")
else:
genArgNoParam(p, ri, result)
result.add("->")
else:
ri = skipAddrDeref(ri)
if ri.kind in {nkAddr, nkHiddenAddr}: ri = ri[0]
genArgNoParam(p, ri, result) #, typ.n[i].sym)
result.add(".")
proc genPatternCall(p: BProc; ri: PNode; pat: string; typ: PType; result: var Rope) =
var i = 0
var j = 1
while i < pat.len:
case pat[i]
of '@':
var argsCounter = 0
for k in j..<ri.len:
genOtherArg(p, ri, k, typ, result, argsCounter)
inc i
of '#':
if i+1 < pat.len and pat[i+1] in {'+', '@'}:
let ri = ri[j]
if ri.kind in nkCallKinds:
let typ = skipTypes(ri[0].typ, abstractInst)
if pat[i+1] == '+': genArgNoParam(p, ri[0], result)
result.add("(")
if 1 < ri.len:
var argsCounterB = 0
genOtherArg(p, ri, 1, typ, result, argsCounterB)
for k in j+1..<ri.len:
var argsCounterB = 0
genOtherArg(p, ri, k, typ, result, argsCounterB)
result.add(")")
else:
localError(p.config, ri.info, "call expression expected for C++ pattern")
inc i
elif i+1 < pat.len and pat[i+1] == '.':
genThisArg(p, ri, j, typ, result)
inc i
elif i+1 < pat.len and pat[i+1] == '[':
var arg = ri[j].skipAddrDeref
while arg.kind in {nkAddr, nkHiddenAddr, nkObjDownConv}: arg = arg[0]
genArgNoParam(p, arg, result)
#result.add debugTree(arg, 0, 10)
else:
var argsCounter = 0
genOtherArg(p, ri, j, typ, result, argsCounter)
inc j
inc i
of '\'':
var idx, stars: int
if scanCppGenericSlot(pat, i, idx, stars):
var t = resolveStarsInCppType(typ, idx, stars)
if t == nil: result.add("void")
else: result.add(getTypeDesc(p.module, t))
else:
let start = i
while i < pat.len:
if pat[i] notin {'@', '#', '\''}: inc(i)
else: break
if i - 1 >= start:
result.add(substr(pat, start, i - 1))
proc genInfixCall(p: BProc, le, ri: PNode, d: var TLoc) =
var op: TLoc
initLocExpr(p, ri[0], op)
# getUniqueType() is too expensive here:
var typ = skipTypes(ri[0].typ, abstractInst)
assert(typ.kind == tyProc)
assert(typ.len == typ.n.len)
# don't call '$' here for efficiency:
let pat = $ri[0].sym.loc.r
internalAssert p.config, pat.len > 0
if pat.contains({'#', '(', '@', '\''}):
var pl = newRopeAppender()
genPatternCall(p, ri, pat, typ, pl)
# simpler version of 'fixupCall' that works with the pl+params combination:
var typ = skipTypes(ri[0].typ, abstractInst)
if typ[0] != nil:
if p.module.compileToCpp and lfSingleUse in d.flags:
# do not generate spurious temporaries for C++! For C we're better off
# with them to prevent undefined behaviour and because the codegen
# is free to emit expressions multiple times!
d.k = locCall
d.r = pl
excl d.flags, lfSingleUse
else:
if d.k == locNone: getTemp(p, typ[0], d)
assert(d.t != nil) # generate an assignment to d:
var list: TLoc
initLoc(list, locCall, d.lode, OnUnknown)
list.r = pl
genAssignment(p, d, list, {}) # no need for deep copying
else:
pl.add(";\n")
line(p, cpsStmts, pl)
else:
var pl = newRopeAppender()
var argsCounter = 0
if 1 < ri.len:
genThisArg(p, ri, 1, typ, pl)
pl.add(op.r)
var params = newRopeAppender()
for i in 2..<ri.len:
assert(typ.len == typ.n.len)
genOtherArg(p, ri, i, typ, params, argsCounter)
fixupCall(p, le, ri, d, pl, params)
proc genNamedParamCall(p: BProc, ri: PNode, d: var TLoc) =
# generates a crappy ObjC call
var op: TLoc
initLocExpr(p, ri[0], op)
var pl = "["
# getUniqueType() is too expensive here:
var typ = skipTypes(ri[0].typ, abstractInst)
assert(typ.kind == tyProc)
assert(typ.len == typ.n.len)
# don't call '$' here for efficiency:
let pat = $ri[0].sym.loc.r
internalAssert p.config, pat.len > 0
var start = 3
if ' ' in pat:
start = 1
pl.add(op.r)
if ri.len > 1:
pl.add(": ")
genArg(p, ri[1], typ.n[1].sym, ri, pl)
start = 2
else:
if ri.len > 1:
genArg(p, ri[1], typ.n[1].sym, ri, pl)
pl.add(" ")
pl.add(op.r)
if ri.len > 2:
pl.add(": ")
genArg(p, ri[2], typ.n[2].sym, ri, pl)
for i in start..<ri.len:
assert(typ.len == typ.n.len)
if i >= typ.len:
internalError(p.config, ri.info, "varargs for objective C method?")
assert(typ.n[i].kind == nkSym)
var param = typ.n[i].sym
pl.add(" ")
pl.add(param.name.s)
pl.add(": ")
genArg(p, ri[i], param, ri, pl)
if typ[0] != nil:
if isInvalidReturnType(p.config, typ):
if ri.len > 1: pl.add(" ")
# beware of 'result = p(result)'. We always allocate a temporary:
if d.k in {locTemp, locNone}:
# We already got a temp. Great, special case it:
if d.k == locNone: getTemp(p, typ[0], d, needsInit=true)
pl.add("Result: ")
pl.add(addrLoc(p.config, d))
pl.add("];\n")
line(p, cpsStmts, pl)
else:
var tmp: TLoc
getTemp(p, typ[0], tmp, needsInit=true)
pl.add(addrLoc(p.config, tmp))
pl.add("];\n")
line(p, cpsStmts, pl)
genAssignment(p, d, tmp, {}) # no need for deep copying
else:
pl.add("]")
if d.k == locNone: getTemp(p, typ[0], d)
assert(d.t != nil) # generate an assignment to d:
var list: TLoc
initLoc(list, locCall, ri, OnUnknown)
list.r = pl
genAssignment(p, d, list, {}) # no need for deep copying
else:
pl.add("];\n")
line(p, cpsStmts, pl)
proc notYetAlive(n: PNode): bool {.inline.} =
let r = getRoot(n)
result = r != nil and r.loc.lode == nil
proc isInactiveDestructorCall(p: BProc, e: PNode): bool =
#[ Consider this example.
var :tmpD_3281815
try:
if true:
return
let args_3280013 =
wasMoved_3281816(:tmpD_3281815)
`=_3280036`(:tmpD_3281815, [1])
:tmpD_3281815
finally:
`=destroy_3280027`(args_3280013)
We want to return early but the 'finally' section is traversed before
the 'let args = ...' statement. We exploit this to generate better
code for 'return'. ]#
result = e.len == 2 and e[0].kind == nkSym and
e[0].sym.name.s == "=destroy" and notYetAlive(e[1].skipAddr)
proc genAsgnCall(p: BProc, le, ri: PNode, d: var TLoc) =
if p.withinBlockLeaveActions > 0 and isInactiveDestructorCall(p, ri):
return
if ri[0].typ.skipTypes({tyGenericInst, tyAlias, tySink, tyOwned}).callConv == ccClosure:
genClosureCall(p, le, ri, d)
elif ri[0].kind == nkSym and sfInfixCall in ri[0].sym.flags:
genInfixCall(p, le, ri, d)
elif ri[0].kind == nkSym and sfNamedParamCall in ri[0].sym.flags:
genNamedParamCall(p, ri, d)
else:
genPrefixCall(p, le, ri, d)
proc genCall(p: BProc, e: PNode, d: var TLoc) = genAsgnCall(p, nil, e, d)