#
#
# The Nimrod Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# included from cgen.nim
proc lenField: PRope {.inline.} =
result = toRope(if gCmd != cmdCompileToCpp: "Sup.len" else: "len")
# -------------------------- constant expressions ------------------------
proc intLiteral(i: biggestInt): PRope =
if (i > low(int32)) and (i <= high(int32)):
result = toRope(i)
elif i == low(int32):
# Nimrod has the same bug for the same reasons :-)
result = toRope("(-2147483647 -1)")
elif i > low(int64):
result = ropef("IL64($1)", [toRope(i)])
else:
result = toRope("(IL64(-9223372036854775807) - IL64(1))")
proc int32Literal(i: Int): PRope =
if i == int(low(int32)):
result = toRope("(-2147483647 -1)")
else:
result = toRope(i)
proc genHexLiteral(v: PNode): PRope =
# hex literals are unsigned in C
# so we don't generate hex literals any longer.
if not (v.kind in {nkIntLit..nkUInt64Lit}):
internalError(v.info, "genHexLiteral")
result = intLiteral(v.intVal)
proc getStrLit(m: BModule, s: string): PRope =
discard cgsym(m, "TGenericSeq")
result = con("TMP", toRope(backendId()))
appf(m.s[cfsData], "STRING_LITERAL($1, $2, $3);$n",
[result, makeCString(s), ToRope(len(s))])
proc genLiteral(p: BProc, n: PNode, ty: PType): PRope =
if ty == nil: internalError(n.info, "genLiteral: ty is nil")
case n.kind
of nkCharLit..nkUInt64Lit:
case skipTypes(ty, abstractVarRange).kind
of tyChar, tyInt64, tyNil:
result = intLiteral(n.intVal)
of tyInt:
if (n.intVal >= low(int32)) and (n.intVal <= high(int32)):
result = int32Literal(int32(n.intVal))
else:
result = intLiteral(n.intVal)
of tyBool:
if n.intVal != 0: result = toRope("NIM_TRUE")
else: result = toRope("NIM_FALSE")
else:
result = ropef("(($1) $2)", [getTypeDesc(p.module,
skipTypes(ty, abstractVarRange)), intLiteral(n.intVal)])
of nkNilLit:
let t = skipTypes(ty, abstractVarRange)
if t.kind == tyProc and t.callConv == ccClosure:
var id = NodeTableTestOrSet(p.module.dataCache, n, gBackendId)
result = con("TMP", toRope(id))
if id == gBackendId:
# not found in cache:
inc(gBackendId)
appf(p.module.s[cfsData],
"static NIM_CONST $1 $2 = {NIM_NIL,NIM_NIL};$n",
[getTypeDesc(p.module, t), result])
else:
result = toRope("NIM_NIL")
of nkStrLit..nkTripleStrLit:
if skipTypes(ty, abstractVarRange).kind == tyString:
var id = NodeTableTestOrSet(p.module.dataCache, n, gBackendId)
if id == gBackendId:
# string literal not found in the cache:
result = ropecg(p.module, "((#NimStringDesc*) &$1)",
[getStrLit(p.module, n.strVal)])
else:
result = ropecg(p.module, "((#NimStringDesc*) &TMP$1)", [toRope(id)])
else:
result = makeCString(n.strVal)
of nkFloatLit..nkFloat64Lit:
result = toRope(n.floatVal.ToStrMaxPrecision)
else:
InternalError(n.info, "genLiteral(" & $n.kind & ')')
result = nil
proc genLiteral(p: BProc, n: PNode): PRope =
result = genLiteral(p, n, n.typ)
proc bitSetToWord(s: TBitSet, size: int): BiggestInt =
result = 0
when true:
for j in countup(0, size - 1):
if j < len(s): result = result or `shl`(Ze64(s[j]), j * 8)
else:
# not needed, too complex thinking:
if CPU[platform.hostCPU].endian == CPU[targetCPU].endian:
for j in countup(0, size - 1):
if j < len(s): result = result or `shl`(Ze64(s[j]), j * 8)
else:
for j in countup(0, size - 1):
if j < len(s): result = result or `shl`(Ze64(s[j]), (Size - 1 - j) * 8)
proc genRawSetData(cs: TBitSet, size: int): PRope =
var frmt: TFormatStr
if size > 8:
result = ropef("{$n")
for i in countup(0, size - 1):
if i < size - 1:
# not last iteration?
if (i + 1) mod 8 == 0: frmt = "0x$1,$n"
else: frmt = "0x$1, "
else:
frmt = "0x$1}$n"
appf(result, frmt, [toRope(toHex(Ze64(cs[i]), 2))])
else:
result = intLiteral(bitSetToWord(cs, size))
# result := toRope('0x' + ToHex(bitSetToWord(cs, size), size * 2))
proc genSetNode(p: BProc, n: PNode): PRope =
var cs: TBitSet
var size = int(getSize(n.typ))
toBitSet(n, cs)
if size > 8:
var id = NodeTableTestOrSet(p.module.dataCache, n, gBackendId)
result = con("TMP", toRope(id))
if id == gBackendId:
# not found in cache:
inc(gBackendId)
appf(p.module.s[cfsData], "static NIM_CONST $1 $2 = $3;$n",
[getTypeDesc(p.module, n.typ), result, genRawSetData(cs, size)])
else:
result = genRawSetData(cs, size)
proc getStorageLoc(n: PNode): TStorageLoc =
case n.kind
of nkSym:
case n.sym.kind
of skParam, skTemp:
result = OnStack
of skVar, skForVar, skResult, skLet:
if sfGlobal in n.sym.flags: result = OnHeap
else: result = OnStack
of skConst:
if sfGlobal in n.sym.flags: result = OnHeap
else: result = OnUnknown
else: result = OnUnknown
of nkDerefExpr, nkHiddenDeref:
case n.sons[0].typ.kind
of tyVar: result = OnUnknown
of tyPtr: result = OnStack
of tyRef: result = OnHeap
else: InternalError(n.info, "getStorageLoc")
of nkBracketExpr, nkDotExpr, nkObjDownConv, nkObjUpConv:
result = getStorageLoc(n.sons[0])
else: result = OnUnknown
proc genRefAssign(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
if dest.s == OnStack or optRefcGC notin gGlobalOptions:
lineF(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)])
if needToKeepAlive in flags: keepAlive(p, dest)
elif dest.s == OnHeap:
# location is on heap
# now the writer barrier is inlined for performance:
#
# if afSrcIsNotNil in flags:
# UseMagic(p.module, 'nimGCref')
# lineF(p, cpsStmts, 'nimGCref($1);$n', [rdLoc(src)])
# elif afSrcIsNil notin flags:
# UseMagic(p.module, 'nimGCref')
# lineF(p, cpsStmts, 'if ($1) nimGCref($1);$n', [rdLoc(src)])
# if afDestIsNotNil in flags:
# UseMagic(p.module, 'nimGCunref')
# lineF(p, cpsStmts, 'nimGCunref($1);$n', [rdLoc(dest)])
# elif afDestIsNil notin flags:
# UseMagic(p.module, 'nimGCunref')
# lineF(p, cpsStmts, 'if ($1) nimGCunref($1);$n', [rdLoc(dest)])
# lineF(p, cpsStmts, '$1 = $2;$n', [rdLoc(dest), rdLoc(src)])
if canFormAcycle(dest.t):
lineCg(p, cpsStmts, "#asgnRef((void**) $1, $2);$n",
[addrLoc(dest), rdLoc(src)])
else:
lineCg(p, cpsStmts, "#asgnRefNoCycle((void**) $1, $2);$n",
[addrLoc(dest), rdLoc(src)])
else:
lineCg(p, cpsStmts, "#unsureAsgnRef((void**) $1, $2);$n",
[addrLoc(dest), rdLoc(src)])
if needToKeepAlive in flags: keepAlive(p, dest)
proc genGenericAsgn(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
# Consider:
# type TMyFastString {.shallow.} = string
# Due to the implementation of pragmas this would end up to set the
# tfShallow flag for the built-in string type too! So we check only
# here for this flag, where it is reasonably safe to do so
# (for objects, etc.):
if needToCopy notin flags or
tfShallow in skipTypes(dest.t, abstractVarRange).flags:
if dest.s == OnStack or optRefcGC notin gGlobalOptions:
lineCg(p, cpsStmts,
"memcpy((void*)$1, (NIM_CONST void*)$2, sizeof($3));$n",
[addrLoc(dest), addrLoc(src), rdLoc(dest)])
if needToKeepAlive in flags: keepAlive(p, dest)
else:
lineCg(p, cpsStmts, "#genericShallowAssign((void*)$1, (void*)$2, $3);$n",
[addrLoc(dest), addrLoc(src), genTypeInfo(p.module, dest.t)])
else:
lineCg(p, cpsStmts, "#genericAssign((void*)$1, (void*)$2, $3);$n",
[addrLoc(dest), addrLoc(src), genTypeInfo(p.module, dest.t)])
proc genAssignment(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
# This function replaces all other methods for generating
# the assignment operation in C.
if src.t != nil and src.t.kind == tyPtr:
# little HACK to support the new 'var T' as return type:
lineCg(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)])
return
var ty = skipTypes(dest.t, abstractVarRange)
case ty.kind
of tyRef:
genRefAssign(p, dest, src, flags)
of tySequence:
if needToCopy notin flags:
genRefAssign(p, dest, src, flags)
else:
lineCg(p, cpsStmts, "#genericSeqAssign($1, $2, $3);$n",
[addrLoc(dest), rdLoc(src), genTypeInfo(p.module, dest.t)])
of tyString:
if needToCopy notin flags:
genRefAssign(p, dest, src, flags)
else:
if dest.s == OnStack or optRefcGC notin gGlobalOptions:
lineCg(p, cpsStmts, "$1 = #copyString($2);$n", [dest.rdLoc, src.rdLoc])
if needToKeepAlive in flags: keepAlive(p, dest)
elif dest.s == OnHeap:
# we use a temporary to care for the dreaded self assignment:
var tmp: TLoc
getTemp(p, ty, tmp)
lineCg(p, cpsStmts, "$3 = $1; $1 = #copyStringRC1($2);$n",
[dest.rdLoc, src.rdLoc, tmp.rdLoc])
lineCg(p, cpsStmts, "if ($1) #nimGCunrefNoCycle($1);$n", tmp.rdLoc)
else:
lineCg(p, cpsStmts, "#unsureAsgnRef((void**) $1, #copyString($2));$n",
[addrLoc(dest), rdLoc(src)])
if needToKeepAlive in flags: keepAlive(p, dest)
of tyTuple, tyObject, tyProc:
# XXX: check for subtyping?
if needsComplexAssignment(dest.t):
genGenericAsgn(p, dest, src, flags)
else:
lineCg(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)])
of tyArray, tyArrayConstr:
if needsComplexAssignment(dest.t):
genGenericAsgn(p, dest, src, flags)
else:
lineCg(p, cpsStmts,
"memcpy((void*)$1, (NIM_CONST void*)$2, sizeof($1));$n",
[rdLoc(dest), rdLoc(src)])
of tyOpenArray, tyVarargs:
# open arrays are always on the stack - really? What if a sequence is
# passed to an open array?
if needsComplexAssignment(dest.t):
lineCg(p, cpsStmts, # XXX: is this correct for arrays?
"#genericAssignOpenArray((void*)$1, (void*)$2, $1Len0, $3);$n",
[addrLoc(dest), addrLoc(src), genTypeInfo(p.module, dest.t)])
else:
lineCg(p, cpsStmts,
"memcpy((void*)$1, (NIM_CONST void*)$2, sizeof($1[0])*$1Len0);$n",
[rdLoc(dest), rdLoc(src)])
of tySet:
if mapType(ty) == ctArray:
lineCg(p, cpsStmts, "memcpy((void*)$1, (NIM_CONST void*)$2, $3);$n",
[rdLoc(dest), rdLoc(src), toRope(getSize(dest.t))])
else:
lineCg(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)])
of tyPtr, tyPointer, tyChar, tyBool, tyEnum, tyCString,
tyInt..tyUInt64, tyRange:
lineCg(p, cpsStmts, "$1 = $2;$n", [rdLoc(dest), rdLoc(src)])
else: InternalError("genAssignment(" & $ty.kind & ')')
proc expr(p: BProc, e: PNode, d: var TLoc)
proc initLocExpr(p: BProc, e: PNode, result: var TLoc) =
initLoc(result, locNone, e.typ, OnUnknown)
expr(p, e, result)
proc getDestLoc(p: BProc, d: var TLoc, typ: PType) =
if d.k == locNone: getTemp(p, typ, d)
proc putLocIntoDest(p: BProc, d: var TLoc, s: TLoc) =
if d.k != locNone:
if lfNoDeepCopy in d.flags: genAssignment(p, d, s, {})
else: genAssignment(p, d, s, {needToCopy})
else:
d = s # ``d`` is free, so fill it with ``s``
proc putIntoDest(p: BProc, d: var TLoc, t: PType, r: PRope) =
var a: TLoc
if d.k != locNone:
# need to generate an assignment here
initLoc(a, locExpr, getUniqueType(t), OnUnknown)
a.r = r
if lfNoDeepCopy in d.flags: genAssignment(p, d, a, {})
else: genAssignment(p, d, a, {needToCopy})
else:
# we cannot call initLoc() here as that would overwrite
# the flags field!
d.k = locExpr
d.t = getUniqueType(t)
d.r = r
d.a = -1
proc binaryStmt(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var b: TLoc
if d.k != locNone: InternalError(e.info, "binaryStmt")
InitLocExpr(p, e.sons[1], d)
InitLocExpr(p, e.sons[2], b)
lineCg(p, cpsStmts, frmt, [rdLoc(d), rdLoc(b)])
proc unaryStmt(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a: TLoc
if (d.k != locNone): InternalError(e.info, "unaryStmt")
InitLocExpr(p, e.sons[1], a)
lineCg(p, cpsStmts, frmt, [rdLoc(a)])
proc binaryStmtChar(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a, b: TLoc
if (d.k != locNone): InternalError(e.info, "binaryStmtChar")
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
lineCg(p, cpsStmts, frmt, [rdCharLoc(a), rdCharLoc(b)])
proc binaryExpr(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
putIntoDest(p, d, e.typ, ropecg(p.module, frmt, [rdLoc(a), rdLoc(b)]))
proc binaryExprChar(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
putIntoDest(p, d, e.typ, ropecg(p.module, frmt, [a.rdCharLoc, b.rdCharLoc]))
proc unaryExpr(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a: TLoc
InitLocExpr(p, e.sons[1], a)
putIntoDest(p, d, e.typ, ropecg(p.module, frmt, [rdLoc(a)]))
proc unaryExprChar(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a: TLoc
InitLocExpr(p, e.sons[1], a)
putIntoDest(p, d, e.typ, ropecg(p.module, frmt, [rdCharLoc(a)]))
proc binaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
const
prc: array[mAddi..mModi64, string] = ["addInt", "subInt", "mulInt",
"divInt", "modInt", "addInt64", "subInt64", "mulInt64", "divInt64",
"modInt64"]
opr: array[mAddi..mModi64, string] = ["+", "-", "*", "/", "%", "+", "-",
"*", "/", "%"]
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
var t = skipTypes(e.typ, abstractRange)
if optOverflowCheck notin p.options:
putIntoDest(p, d, e.typ, ropef("(NI$4)($2 $1 $3)", [toRope(opr[m]),
rdLoc(a), rdLoc(b), toRope(getSize(t) * 8)]))
else:
var storage: PRope
var size = getSize(t)
if size < platform.IntSize:
storage = toRope("NI")
else:
storage = getTypeDesc(p.module, t)
var tmp = getTempName()
lineCg(p, cpsLocals, "$1 $2;$n", [storage, tmp])
lineCg(p, cpsStmts, "$1 = #$2($3, $4);$n", [tmp, toRope(prc[m]),
rdLoc(a), rdLoc(b)])
if size < platform.IntSize or t.kind in {tyRange, tyEnum, tySet}:
lineCg(p, cpsStmts, "if ($1 < $2 || $1 > $3) #raiseOverflow();$n",
[tmp, intLiteral(firstOrd(t)), intLiteral(lastOrd(t))])
putIntoDest(p, d, e.typ, ropef("(NI$1)($2)", [toRope(getSize(t)*8), tmp]))
proc unaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
const
opr: array[mUnaryMinusI..mAbsI64, string] = [
mUnaryMinusI: "((NI$2)-($1))",
mUnaryMinusI64: "-($1)",
mAbsI: "(NI$2)abs($1)",
mAbsI64: "($1 > 0? ($1) : -($1))"]
var
a: TLoc
t: PType
assert(e.sons[1].typ != nil)
InitLocExpr(p, e.sons[1], a)
t = skipTypes(e.typ, abstractRange)
if optOverflowCheck in p.options:
lineCg(p, cpsStmts, "if ($1 == $2) #raiseOverflow();$n",
[rdLoc(a), intLiteral(firstOrd(t))])
putIntoDest(p, d, e.typ, ropef(opr[m], [rdLoc(a), toRope(getSize(t) * 8)]))
proc binaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
const
binArithTab: array[mAddF64..mXor, string] = [
"($1 + $2)", # AddF64
"($1 - $2)", # SubF64
"($1 * $2)", # MulF64
"($1 / $2)", # DivF64
"($4)((NU$3)($1) >> (NU$3)($2))", # ShrI
"($4)((NU$3)($1) << (NU$3)($2))", # ShlI
"($4)($1 & $2)", # BitandI
"($4)($1 | $2)", # BitorI
"($4)($1 ^ $2)", # BitxorI
"(($1 <= $2) ? $1 : $2)", # MinI
"(($1 >= $2) ? $1 : $2)", # MaxI
"($4)((NU64)($1) >> (NU64)($2))", # ShrI64
"($4)((NU64)($1) << (NU64)($2))", # ShlI64
"($4)($1 & $2)", # BitandI64
"($4)($1 | $2)", # BitorI64
"($4)($1 ^ $2)", # BitxorI64
"(($1 <= $2) ? $1 : $2)", # MinI64
"(($1 >= $2) ? $1 : $2)", # MaxI64
"(($1 <= $2) ? $1 : $2)", # MinF64
"(($1 >= $2) ? $1 : $2)", # MaxF64
"($4)((NU$3)($1) + (NU$3)($2))", # AddU
"($4)((NU$3)($1) - (NU$3)($2))", # SubU
"($4)((NU$3)($1) * (NU$3)($2))", # MulU
"($4)((NU$3)($1) / (NU$3)($2))", # DivU
"($4)((NU$3)($1) % (NU$3)($2))", # ModU
"($1 == $2)", # EqI
"($1 <= $2)", # LeI
"($1 < $2)", # LtI
"($1 == $2)", # EqI64
"($1 <= $2)", # LeI64
"($1 < $2)", # LtI64
"($1 == $2)", # EqF64
"($1 <= $2)", # LeF64
"($1 < $2)", # LtF64
"((NU$3)($1) <= (NU$3)($2))", # LeU
"((NU$3)($1) < (NU$3)($2))", # LtU
"((NU64)($1) <= (NU64)($2))", # LeU64
"((NU64)($1) < (NU64)($2))", # LtU64
"($1 == $2)", # EqEnum
"($1 <= $2)", # LeEnum
"($1 < $2)", # LtEnum
"((NU8)($1) == (NU8)($2))", # EqCh
"((NU8)($1) <= (NU8)($2))", # LeCh
"((NU8)($1) < (NU8)($2))", # LtCh
"($1 == $2)", # EqB
"($1 <= $2)", # LeB
"($1 < $2)", # LtB
"($1 == $2)", # EqRef
"($1 == $2)", # EqPtr
"($1 <= $2)", # LePtr
"($1 < $2)", # LtPtr
"($1 == $2)", # EqCString
"($1 != $2)"] # Xor
var
a, b: TLoc
s: biggestInt
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
# BUGFIX: cannot use result-type here, as it may be a boolean
s = max(getSize(a.t), getSize(b.t)) * 8
putIntoDest(p, d, e.typ,
ropef(binArithTab[op], [rdLoc(a), rdLoc(b), toRope(s),
getSimpleTypeDesc(p.module, e.typ)]))
proc genEqProc(p: BProc, e: PNode, d: var TLoc) =
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
if a.t.callConv == ccClosure:
putIntoDest(p, d, e.typ,
ropef("($1.ClPrc == $2.ClPrc && $1.ClEnv == $2.ClEnv)", [
rdLoc(a), rdLoc(b)]))
else:
putIntoDest(p, d, e.typ, ropef("($1 == $2)", [rdLoc(a), rdLoc(b)]))
proc genIsNil(p: BProc, e: PNode, d: var TLoc) =
let t = skipTypes(e.sons[1].typ, abstractRange)
if t.kind == tyProc and t.callConv == ccClosure:
unaryExpr(p, e, d, "$1.ClPrc == 0")
else:
unaryExpr(p, e, d, "$1 == 0")
proc unaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
const
unArithTab: array[mNot..mToBiggestInt, string] = ["!($1)", # Not
"$1", # UnaryPlusI
"($3)((NU$2) ~($1))", # BitnotI
"$1", # UnaryPlusI64
"($3)((NU$2) ~($1))", # BitnotI64
"$1", # UnaryPlusF64
"-($1)", # UnaryMinusF64
"($1 > 0? ($1) : -($1))", # AbsF64; BUGFIX: fabs() makes problems
# for Tiny C, so we don't use it
"(($3)(NU)(NU8)($1))", # mZe8ToI
"(($3)(NU64)(NU8)($1))", # mZe8ToI64
"(($3)(NU)(NU16)($1))", # mZe16ToI
"(($3)(NU64)(NU16)($1))", # mZe16ToI64
"(($3)(NU64)(NU32)($1))", # mZe32ToI64
"(($3)(NU64)(NU)($1))", # mZeIToI64
"(($3)(NU8)(NU)($1))", # ToU8
"(($3)(NU16)(NU)($1))", # ToU16
"(($3)(NU32)(NU64)($1))", # ToU32
"((double) ($1))", # ToFloat
"((double) ($1))", # ToBiggestFloat
"float64ToInt32($1)", # ToInt
"float64ToInt64($1)"] # ToBiggestInt
var
a: TLoc
t: PType
assert(e.sons[1].typ != nil)
InitLocExpr(p, e.sons[1], a)
t = skipTypes(e.typ, abstractRange)
putIntoDest(p, d, e.typ,
ropef(unArithTab[op], [rdLoc(a), toRope(getSize(t) * 8),
getSimpleTypeDesc(p.module, e.typ)]))
proc genDeref(p: BProc, e: PNode, d: var TLoc) =
var a: TLoc
if mapType(e.sons[0].typ) == ctArray:
# XXX the amount of hacks for C's arrays is incredible, maybe we should
# simply wrap them in a struct? --> Losing auto vectorization then?
expr(p, e.sons[0], d)
else:
initLocExpr(p, e.sons[0], a)
case skipTypes(a.t, abstractInst).kind
of tyRef:
d.s = OnHeap
of tyVar:
d.s = OnUnknown
of tyPtr:
d.s = OnUnknown # BUGFIX!
else: InternalError(e.info, "genDeref " & $a.t.kind)
putIntoDest(p, d, a.t.sons[0], ropef("(*$1)", [rdLoc(a)]))
proc genAddr(p: BProc, e: PNode, d: var TLoc) =
var a: TLoc
if mapType(e.sons[0].typ) == ctArray:
expr(p, e.sons[0], d)
else:
InitLocExpr(p, e.sons[0], a)
putIntoDest(p, d, e.typ, addrLoc(a))
proc genRecordFieldAux(p: BProc, e: PNode, d, a: var TLoc): PType =
initLocExpr(p, e.sons[0], a)
if e.sons[1].kind != nkSym: InternalError(e.info, "genRecordFieldAux")
if d.k == locNone: d.s = a.s
discard getTypeDesc(p.module, a.t) # fill the record's fields.loc
result = a.t
proc genRecordField(p: BProc, e: PNode, d: var TLoc) =
var a: TLoc
var ty = genRecordFieldAux(p, e, d, a)
var r = rdLoc(a)
var f = e.sons[1].sym
if ty.kind == tyTuple:
# we found a unique tuple type which lacks field information
# so we use Field$i
appf(r, ".Field$1", [toRope(f.position)])
putIntoDest(p, d, f.typ, r)
else:
var field: PSym = nil
while ty != nil:
if ty.kind notin {tyTuple, tyObject}:
InternalError(e.info, "genRecordField")
field = lookupInRecord(ty.n, f.name)
if field != nil: break
if gCmd != cmdCompileToCpp: app(r, ".Sup")
ty = GetUniqueType(ty.sons[0])
if field == nil: InternalError(e.info, "genRecordField 2 ")
if field.loc.r == nil: InternalError(e.info, "genRecordField 3")
appf(r, ".$1", [field.loc.r])
putIntoDest(p, d, field.typ, r)
proc genTupleElem(p: BProc, e: PNode, d: var TLoc) =
var
a: TLoc
i: int
initLocExpr(p, e.sons[0], a)
if d.k == locNone: d.s = a.s
discard getTypeDesc(p.module, a.t) # fill the record's fields.loc
var ty = a.t
var r = rdLoc(a)
case e.sons[1].kind
of nkIntLit..nkUInt64Lit: i = int(e.sons[1].intVal)
else: internalError(e.info, "genTupleElem")
when false:
if ty.n != nil:
var field = ty.n.sons[i].sym
if field == nil: InternalError(e.info, "genTupleElem")
if field.loc.r == nil: InternalError(e.info, "genTupleElem")
appf(r, ".$1", [field.loc.r])
else:
appf(r, ".Field$1", [toRope(i)])
putIntoDest(p, d, ty.sons[i], r)
proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc)
proc genCheckedRecordField(p: BProc, e: PNode, d: var TLoc) =
var
a, u, v, test: TLoc
f, field, op: PSym
ty: PType
r, strLit: PRope
id: int
it: PNode
if optFieldCheck in p.options:
ty = genRecordFieldAux(p, e.sons[0], d, a)
r = rdLoc(a)
f = e.sons[0].sons[1].sym
field = nil
while ty != nil:
assert(ty.kind in {tyTuple, tyObject})
field = lookupInRecord(ty.n, f.name)
if field != nil: break
if gCmd != cmdCompileToCpp: app(r, ".Sup")
ty = getUniqueType(ty.sons[0])
if field == nil: InternalError(e.info, "genCheckedRecordField")
if field.loc.r == nil:
InternalError(e.info, "genCheckedRecordField") # generate the checks:
for i in countup(1, sonsLen(e) - 1):
it = e.sons[i]
assert(it.kind in nkCallKinds)
assert(it.sons[0].kind == nkSym)
op = it.sons[0].sym
if op.magic == mNot: it = it.sons[1]
assert(it.sons[2].kind == nkSym)
initLoc(test, locNone, it.typ, OnStack)
InitLocExpr(p, it.sons[1], u)
initLoc(v, locExpr, it.sons[2].typ, OnUnknown)
v.r = ropef("$1.$2", [r, it.sons[2].sym.loc.r])
genInExprAux(p, it, u, v, test)
id = NodeTableTestOrSet(p.module.dataCache,
newStrNode(nkStrLit, field.name.s), gBackendId)
if id == gBackendId: strLit = getStrLit(p.module, field.name.s)
else: strLit = con("TMP", toRope(id))
if op.magic == mNot:
lineCg(p, cpsStmts,
"if ($1) #raiseFieldError(((#NimStringDesc*) &$2));$n",
[rdLoc(test), strLit])
else:
lineCg(p, cpsStmts,
"if (!($1)) #raiseFieldError(((#NimStringDesc*) &$2));$n",
[rdLoc(test), strLit])
appf(r, ".$1", [field.loc.r])
putIntoDest(p, d, field.typ, r)
else:
genRecordField(p, e.sons[0], d)
proc genArrayElem(p: BProc, e: PNode, d: var TLoc) =
var a, b: TLoc
initLocExpr(p, e.sons[0], a)
initLocExpr(p, e.sons[1], b)
var ty = skipTypes(skipTypes(a.t, abstractVarRange), abstractPtrs)
var first = intLiteral(firstOrd(ty))
# emit range check:
if (optBoundsCheck in p.options):
if not isConstExpr(e.sons[1]):
# semantic pass has already checked for const index expressions
if firstOrd(ty) == 0:
if (firstOrd(b.t) < firstOrd(ty)) or (lastOrd(b.t) > lastOrd(ty)):
lineCg(p, cpsStmts, "if ((NU)($1) > (NU)($2)) #raiseIndexError();$n",
[rdCharLoc(b), intLiteral(lastOrd(ty))])
else:
lineCg(p, cpsStmts, "if ($1 < $2 || $1 > $3) #raiseIndexError();$n",
[rdCharLoc(b), first, intLiteral(lastOrd(ty))])
if d.k == locNone: d.s = a.s
putIntoDest(p, d, elemType(skipTypes(ty, abstractVar)),
ropef("$1[($2)- $3]", [rdLoc(a), rdCharLoc(b), first]))
proc genCStringElem(p: BProc, e: PNode, d: var TLoc) =
var a, b: TLoc
initLocExpr(p, e.sons[0], a)
initLocExpr(p, e.sons[1], b)
var ty = skipTypes(a.t, abstractVarRange)
if d.k == locNone: d.s = a.s
putIntoDest(p, d, elemType(skipTypes(ty, abstractVar)),
ropef("$1[$2]", [rdLoc(a), rdCharLoc(b)]))
proc genOpenArrayElem(p: BProc, e: PNode, d: var TLoc) =
var a, b: TLoc
initLocExpr(p, e.sons[0], a)
initLocExpr(p, e.sons[1], b) # emit range check:
if optBoundsCheck in p.options:
lineCg(p, cpsStmts, "if ((NU)($1) >= (NU)($2Len0)) #raiseIndexError();$n",
[rdLoc(b), rdLoc(a)]) # BUGFIX: ``>=`` and not ``>``!
if d.k == locNone: d.s = a.s
putIntoDest(p, d, elemType(skipTypes(a.t, abstractVar)),
ropef("$1[$2]", [rdLoc(a), rdCharLoc(b)]))
proc genSeqElem(p: BPRoc, e: PNode, d: var TLoc) =
var a, b: TLoc
initLocExpr(p, e.sons[0], a)
initLocExpr(p, e.sons[1], b)
var ty = skipTypes(a.t, abstractVarRange)
if ty.kind in {tyRef, tyPtr}:
ty = skipTypes(ty.sons[0], abstractVarRange) # emit range check:
if optBoundsCheck in p.options:
if ty.kind == tyString:
lineCg(p, cpsStmts,
"if ((NU)($1) > (NU)($2->$3)) #raiseIndexError();$n",
[rdLoc(b), rdLoc(a), lenField()])
else:
lineCg(p, cpsStmts,
"if ((NU)($1) >= (NU)($2->$3)) #raiseIndexError();$n",
[rdLoc(b), rdLoc(a), lenField()])
if d.k == locNone: d.s = OnHeap
if skipTypes(a.t, abstractVar).kind in {tyRef, tyPtr}:
a.r = ropef("(*$1)", [a.r])
putIntoDest(p, d, elemType(skipTypes(a.t, abstractVar)),
ropef("$1->data[$2]", [rdLoc(a), rdCharLoc(b)]))
proc genAndOr(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
# how to generate code?
# 'expr1 and expr2' becomes:
# result = expr1
# fjmp result, end
# result = expr2
# end:
# ... (result computed)
# BUGFIX:
# a = b or a
# used to generate:
# a = b
# if a: goto end
# a = a
# end:
# now it generates:
# tmp = b
# if tmp: goto end
# tmp = a
# end:
# a = tmp
var
L: TLabel
tmp: TLoc
getTemp(p, e.typ, tmp) # force it into a temp!
expr(p, e.sons[1], tmp)
L = getLabel(p)
if m == mOr:
lineF(p, cpsStmts, "if ($1) goto $2;$n", [rdLoc(tmp), L])
else:
lineF(p, cpsStmts, "if (!($1)) goto $2;$n", [rdLoc(tmp), L])
expr(p, e.sons[2], tmp)
fixLabel(p, L)
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {}) # no need for deep copying
proc genIfExpr(p: BProc, n: PNode, d: var TLoc) =
#
# if (!expr1) goto L1;
# thenPart
# goto LEnd
# L1:
# if (!expr2) goto L2;
# thenPart2
# goto LEnd
# L2:
# elsePart
# Lend:
#
var
it: PNode
a, tmp: TLoc
Lend, Lelse: TLabel
getTemp(p, n.typ, tmp) # force it into a temp!
Lend = getLabel(p)
for i in countup(0, sonsLen(n) - 1):
it = n.sons[i]
case it.kind
of nkElifExpr:
initLocExpr(p, it.sons[0], a)
Lelse = getLabel(p)
lineF(p, cpsStmts, "if (!$1) goto $2;$n", [rdLoc(a), Lelse])
expr(p, it.sons[1], tmp)
lineF(p, cpsStmts, "goto $1;$n", [Lend])
fixLabel(p, Lelse)
of nkElseExpr:
expr(p, it.sons[0], tmp)
else: internalError(n.info, "genIfExpr()")
fixLabel(p, Lend)
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {}) # no need for deep copying
proc genEcho(p: BProc, n: PNode) =
# this unusal way of implementing it ensures that e.g. ``echo("hallo", 45)``
# is threadsafe.
var args: PRope = nil
var a: TLoc
for i in countup(1, n.len-1):
initLocExpr(p, n.sons[i], a)
appf(args, ", ($1)->data", [rdLoc(a)])
lineCg(p, cpsStmts, "printf($1$2);$n", [
makeCString(repeatStr(n.len-1, "%s") & tnl), args])
include ccgcalls
proc genStrConcat(p: BProc, e: PNode, d: var TLoc) =
# <Nimrod code>
# s = 'Hello ' & name & ', how do you feel?' & 'z'
#
# <generated C code>
# {
# string tmp0;
# ...
# tmp0 = rawNewString(6 + 17 + 1 + s2->len);
# // we cannot generate s = rawNewString(...) here, because
# // ``s`` may be used on the right side of the expression
# appendString(tmp0, strlit_1);
# appendString(tmp0, name);
# appendString(tmp0, strlit_2);
# appendChar(tmp0, 'z');
# asgn(s, tmp0);
# }
var a, tmp: TLoc
getTemp(p, e.typ, tmp)
var L = 0
var appends: PRope = nil
var lens: PRope = nil
for i in countup(0, sonsLen(e) - 2):
# compute the length expression:
initLocExpr(p, e.sons[i + 1], a)
if skipTypes(e.sons[i + 1].Typ, abstractVarRange).kind == tyChar:
Inc(L)
appLineCg(p, appends, "#appendChar($1, $2);$n", [tmp.r, rdLoc(a)])
else:
if e.sons[i + 1].kind in {nkStrLit..nkTripleStrLit}:
Inc(L, len(e.sons[i + 1].strVal))
else:
appf(lens, "$1->$2 + ", [rdLoc(a), lenField()])
appLineCg(p, appends, "#appendString($1, $2);$n", [tmp.r, rdLoc(a)])
lineCg(p, cpsStmts, "$1 = #rawNewString($2$3);$n", [tmp.r, lens, toRope(L)])
app(p.s(cpsStmts), appends)
if d.k == locNone:
d = tmp
keepAlive(p, tmp)
else:
genAssignment(p, d, tmp, {needToKeepAlive}) # no need for deep copying
proc genStrAppend(p: BProc, e: PNode, d: var TLoc) =
# <Nimrod code>
# s &= 'Hello ' & name & ', how do you feel?' & 'z'
# // BUG: what if s is on the left side too?
# <generated C code>
# {
# s = resizeString(s, 6 + 17 + 1 + name->len);
# appendString(s, strlit_1);
# appendString(s, name);
# appendString(s, strlit_2);
# appendChar(s, 'z');
# }
var
a, dest: TLoc
appends, lens: PRope
assert(d.k == locNone)
var L = 0
initLocExpr(p, e.sons[1], dest)
for i in countup(0, sonsLen(e) - 3):
# compute the length expression:
initLocExpr(p, e.sons[i + 2], a)
if skipTypes(e.sons[i + 2].Typ, abstractVarRange).kind == tyChar:
Inc(L)
appLineCg(p, appends, "#appendChar($1, $2);$n",
[rdLoc(dest), rdLoc(a)])
else:
if e.sons[i + 2].kind in {nkStrLit..nkTripleStrLit}:
Inc(L, len(e.sons[i + 2].strVal))
else:
appf(lens, "$1->$2 + ", [rdLoc(a), lenField()])
appLineCg(p, appends, "#appendString($1, $2);$n",
[rdLoc(dest), rdLoc(a)])
lineCg(p, cpsStmts, "$1 = #resizeString($1, $2$3);$n",
[rdLoc(dest), lens, toRope(L)])
keepAlive(p, dest)
app(p.s(cpsStmts), appends)
proc genSeqElemAppend(p: BProc, e: PNode, d: var TLoc) =
# seq &= x -->
# seq = (typeof seq) incrSeq(&seq->Sup, sizeof(x));
# seq->data[seq->len-1] = x;
let seqAppendPattern = if gCmd != cmdCompileToCpp:
"$1 = ($2) #incrSeq(&($1)->Sup, sizeof($3));$n"
else:
"$1 = ($2) #incrSeq($1, sizeof($3));$n"
var a, b, dest: TLoc
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
lineCg(p, cpsStmts, seqAppendPattern, [
rdLoc(a),
getTypeDesc(p.module, skipTypes(e.sons[1].typ, abstractVar)),
getTypeDesc(p.module, skipTypes(e.sons[2].Typ, abstractVar))])
keepAlive(p, a)
initLoc(dest, locExpr, b.t, OnHeap)
dest.r = ropef("$1->data[$1->$2-1]", [rdLoc(a), lenField()])
genAssignment(p, dest, b, {needToCopy, afDestIsNil})
proc genReset(p: BProc, n: PNode) =
var a: TLoc
InitLocExpr(p, n.sons[1], a)
lineCg(p, cpsStmts, "#genericReset((void*)$1, $2);$n",
[addrLoc(a), genTypeInfo(p.module, skipTypes(a.t, abstractVarRange))])
proc genNew(p: BProc, e: PNode) =
var
a, b: TLoc
reftype, bt: PType
refType = skipTypes(e.sons[1].typ, abstractVarRange)
InitLocExpr(p, e.sons[1], a)
initLoc(b, locExpr, a.t, OnHeap)
let args = [getTypeDesc(p.module, reftype),
genTypeInfo(p.module, refType),
getTypeDesc(p.module, skipTypes(reftype.sons[0], abstractRange))]
if a.s == OnHeap and optRefcGc in gGlobalOptions:
# use newObjRC1 as an optimization; and we don't need 'keepAlive' either
if canFormAcycle(a.t):
lineCg(p, cpsStmts, "if ($1) #nimGCunref($1);$n", a.rdLoc)
else:
lineCg(p, cpsStmts, "if ($1) #nimGCunrefNoCycle($1);$n", a.rdLoc)
b.r = ropecg(p.module, "($1) #newObjRC1($2, sizeof($3))", args)
lineCg(p, cpsStmts, "$1 = $2;$n", a.rdLoc, b.rdLoc)
else:
b.r = ropecg(p.module, "($1) #newObj($2, sizeof($3))", args)
genAssignment(p, a, b, {needToKeepAlive}) # set the object type:
bt = skipTypes(refType.sons[0], abstractRange)
genObjectInit(p, cpsStmts, bt, a, false)
proc genNewSeqAux(p: BProc, dest: TLoc, length: PRope) =
let seqtype = skipTypes(dest.t, abstractVarRange)
let args = [getTypeDesc(p.module, seqtype),
genTypeInfo(p.module, seqType), length]
var call: TLoc
initLoc(call, locExpr, dest.t, OnHeap)
if dest.s == OnHeap and optRefcGc in gGlobalOptions:
lineCg(p, cpsStmts, "if ($1) #nimGCunrefNoCycle($1);$n", dest.rdLoc)
call.r = ropecg(p.module, "($1) #newSeqRC1($2, $3)", args)
lineCg(p, cpsStmts, "$1 = $2;$n", dest.rdLoc, call.rdLoc)
else:
call.r = ropecg(p.module, "($1) #newSeq($2, $3)", args)
genAssignment(p, dest, call, {needToKeepAlive})
proc genNewSeq(p: BProc, e: PNode) =
var a, b: TLoc
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
genNewSeqAux(p, a, b.rdLoc)
proc genSeqConstr(p: BProc, t: PNode, d: var TLoc) =
var arr: TLoc
if d.k == locNone:
getTemp(p, t.typ, d)
# generate call to newSeq before adding the elements per hand:
genNewSeqAux(p, d, intLiteral(sonsLen(t)))
for i in countup(0, sonsLen(t) - 1):
initLoc(arr, locExpr, elemType(skipTypes(t.typ, abstractInst)), OnHeap)
arr.r = ropef("$1->data[$2]", [rdLoc(d), intLiteral(i)])
arr.s = OnHeap # we know that sequences are on the heap
expr(p, t.sons[i], arr)
proc genArrToSeq(p: BProc, t: PNode, d: var TLoc) =
var elem, a, arr: TLoc
if t.kind == nkBracket:
t.sons[1].typ = t.typ
genSeqConstr(p, t.sons[1], d)
return
if d.k == locNone:
getTemp(p, t.typ, d)
# generate call to newSeq before adding the elements per hand:
var L = int(lengthOrd(t.sons[1].typ))
genNewSeqAux(p, d, intLiteral(L))
initLocExpr(p, t.sons[1], a)
for i in countup(0, L - 1):
initLoc(elem, locExpr, elemType(skipTypes(t.typ, abstractInst)), OnHeap)
elem.r = ropef("$1->data[$2]", [rdLoc(d), intLiteral(i)])
elem.s = OnHeap # we know that sequences are on the heap
initLoc(arr, locExpr, elemType(skipTypes(t.sons[1].typ, abstractInst)), a.s)
arr.r = ropef("$1[$2]", [rdLoc(a), intLiteral(i)])
genAssignment(p, elem, arr, {afDestIsNil, needToCopy})
proc genNewFinalize(p: BProc, e: PNode) =
var
a, b, f: TLoc
refType, bt: PType
ti: PRope
oldModule: BModule
refType = skipTypes(e.sons[1].typ, abstractVarRange)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], f)
initLoc(b, locExpr, a.t, OnHeap)
ti = genTypeInfo(p.module, refType)
appf(p.module.s[cfsTypeInit3], "$1->finalizer = (void*)$2;$n", [ti, rdLoc(f)])
b.r = ropecg(p.module, "($1) #newObj($2, sizeof($3))", [
getTypeDesc(p.module, refType),
ti, getTypeDesc(p.module, skipTypes(reftype.sons[0], abstractRange))])
genAssignment(p, a, b, {needToKeepAlive}) # set the object type:
bt = skipTypes(refType.sons[0], abstractRange)
genObjectInit(p, cpsStmts, bt, a, false)
proc genOf(p: BProc, x: PNode, typ: PType, d: var TLoc) =
var a: TLoc
initLocExpr(p, x, a)
var dest = skipTypes(typ, typedescPtrs)
var r = rdLoc(a)
var nilCheck: PRope = nil
var t = skipTypes(a.t, abstractInst)
while t.kind in {tyVar, tyPtr, tyRef}:
if t.kind != tyVar: nilCheck = r
r = ropef("(*$1)", [r])
t = skipTypes(t.sons[0], typedescInst)
if gCmd != cmdCompileToCpp:
while (t.kind == tyObject) and (t.sons[0] != nil):
app(r, ".Sup")
t = skipTypes(t.sons[0], typedescInst)
if nilCheck != nil:
r = ropecg(p.module, "(($1) && #isObj($2.m_type, $3))",
[nilCheck, r, genTypeInfo(p.module, dest)])
else:
r = ropecg(p.module, "#isObj($1.m_type, $2)",
[r, genTypeInfo(p.module, dest)])
putIntoDest(p, d, getSysType(tyBool), r)
proc genOf(p: BProc, n: PNode, d: var TLoc) =
genOf(p, n.sons[1], n.sons[2].typ, d)
proc genRepr(p: BProc, e: PNode, d: var TLoc) =
# XXX we don't generate keep alive info for now here
var a: TLoc
InitLocExpr(p, e.sons[1], a)
var t = skipTypes(e.sons[1].typ, abstractVarRange)
case t.kind
of tyInt..tyInt64, tyUInt..tyUInt64:
putIntoDest(p, d, e.typ,
ropecg(p.module, "#reprInt((NI64)$1)", [rdLoc(a)]))
of tyFloat..tyFloat128:
putIntoDest(p, d, e.typ, ropecg(p.module, "#reprFloat($1)", [rdLoc(a)]))
of tyBool:
putIntoDest(p, d, e.typ, ropecg(p.module, "#reprBool($1)", [rdLoc(a)]))
of tyChar:
putIntoDest(p, d, e.typ, ropecg(p.module, "#reprChar($1)", [rdLoc(a)]))
of tyEnum, tyOrdinal:
putIntoDest(p, d, e.typ,
ropecg(p.module, "#reprEnum($1, $2)", [
rdLoc(a), genTypeInfo(p.module, t)]))
of tyString:
putIntoDest(p, d, e.typ, ropecg(p.module, "#reprStr($1)", [rdLoc(a)]))
of tySet:
putIntoDest(p, d, e.typ, ropecg(p.module, "#reprSet($1, $2)", [
addrLoc(a), genTypeInfo(p.module, t)]))
of tyOpenArray, tyVarargs:
var b: TLoc
case a.t.kind
of tyOpenArray, tyVarargs:
putIntoDest(p, b, e.typ, ropef("$1, $1Len0", [rdLoc(a)]))
of tyString, tySequence:
putIntoDest(p, b, e.typ,
ropef("$1->data, $1->$2", [rdLoc(a), lenField()]))
of tyArray, tyArrayConstr:
putIntoDest(p, b, e.typ,
ropef("$1, $2", [rdLoc(a), toRope(lengthOrd(a.t))]))
else: InternalError(e.sons[0].info, "genRepr()")
putIntoDest(p, d, e.typ,
ropecg(p.module, "#reprOpenArray($1, $2)", [rdLoc(b),
genTypeInfo(p.module, elemType(t))]))
of tyCString, tyArray, tyArrayConstr, tyRef, tyPtr, tyPointer, tyNil,
tySequence:
putIntoDest(p, d, e.typ,
ropecg(p.module, "#reprAny($1, $2)", [
rdLoc(a), genTypeInfo(p.module, t)]))
else:
putIntoDest(p, d, e.typ, ropecg(p.module, "#reprAny($1, $2)",
[addrLoc(a), genTypeInfo(p.module, t)]))
proc genGetTypeInfo(p: BProc, e: PNode, d: var TLoc) =
var t = skipTypes(e.sons[1].typ, abstractVarRange)
putIntoDest(p, d, e.typ, genTypeInfo(p.module, t))
proc genDollar(p: BProc, n: PNode, d: var TLoc, frmt: string) =
var a: TLoc
InitLocExpr(p, n.sons[1], a)
a.r = ropecg(p.module, frmt, [rdLoc(a)])
if d.k == locNone: getTemp(p, n.typ, d)
genAssignment(p, d, a, {needToKeepAlive})
proc genArrayLen(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
var a = e.sons[1]
if a.kind == nkHiddenAddr: a = a.sons[0]
var typ = skipTypes(a.Typ, abstractVar)
case typ.kind
of tyOpenArray, tyVarargs:
if op == mHigh: unaryExpr(p, e, d, "($1Len0-1)")
else: unaryExpr(p, e, d, "$1Len0")
of tyCstring:
if op == mHigh: unaryExpr(p, e, d, "(strlen($1)-1)")
else: unaryExpr(p, e, d, "strlen($1)")
of tyString, tySequence:
if gCmd != cmdCompileToCpp:
if op == mHigh: unaryExpr(p, e, d, "($1->Sup.len-1)")
else: unaryExpr(p, e, d, "$1->Sup.len")
else:
if op == mHigh: unaryExpr(p, e, d, "($1->len-1)")
else: unaryExpr(p, e, d, "$1->len")
of tyArray, tyArrayConstr:
# YYY: length(sideeffect) is optimized away incorrectly?
if op == mHigh: putIntoDest(p, d, e.typ, toRope(lastOrd(Typ)))
else: putIntoDest(p, d, e.typ, toRope(lengthOrd(typ)))
else: InternalError(e.info, "genArrayLen()")
proc genSetLengthSeq(p: BProc, e: PNode, d: var TLoc) =
var a, b: TLoc
assert(d.k == locNone)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
var t = skipTypes(e.sons[1].typ, abstractVar)
let setLenPattern = if gCmd != cmdCompileToCpp:
"$1 = ($3) #setLengthSeq(&($1)->Sup, sizeof($4), $2);$n"
else:
"$1 = ($3) #setLengthSeq($1, sizeof($4), $2);$n"
lineCg(p, cpsStmts, setLenPattern, [
rdLoc(a), rdLoc(b), getTypeDesc(p.module, t),
getTypeDesc(p.module, t.sons[0])])
keepAlive(p, a)
proc genSetLengthStr(p: BProc, e: PNode, d: var TLoc) =
binaryStmt(p, e, d, "$1 = #setLengthStr($1, $2);$n")
keepAlive(P, d)
proc genSwap(p: BProc, e: PNode, d: var TLoc) =
# swap(a, b) -->
# temp = a
# a = b
# b = temp
var a, b, tmp: TLoc
getTemp(p, skipTypes(e.sons[1].typ, abstractVar), tmp)
InitLocExpr(p, e.sons[1], a) # eval a
InitLocExpr(p, e.sons[2], b) # eval b
genAssignment(p, tmp, a, {})
genAssignment(p, a, b, {})
genAssignment(p, b, tmp, {})
proc rdSetElemLoc(a: TLoc, setType: PType): PRope =
# read a location of an set element; it may need a substraction operation
# before the set operation
result = rdCharLoc(a)
assert(setType.kind == tySet)
if firstOrd(setType) != 0:
result = ropef("($1- $2)", [result, toRope(firstOrd(setType))])
proc fewCmps(s: PNode): bool =
# this function estimates whether it is better to emit code
# for constructing the set or generating a bunch of comparisons directly
if s.kind != nkCurly: InternalError(s.info, "fewCmps")
if (getSize(s.typ) <= platform.intSize) and (nfAllConst in s.flags):
result = false # it is better to emit the set generation code
elif elemType(s.typ).Kind in {tyInt, tyInt16..tyInt64}:
result = true # better not emit the set if int is basetype!
else:
result = sonsLen(s) <= 8 # 8 seems to be a good value
proc binaryExprIn(p: BProc, e: PNode, a, b, d: var TLoc, frmt: string) =
putIntoDest(p, d, e.typ, ropef(frmt, [rdLoc(a), rdSetElemLoc(b, a.t)]))
proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc) =
case int(getSize(skipTypes(e.sons[1].typ, abstractVar)))
of 1: binaryExprIn(p, e, a, b, d, "(($1 &(1<<(($2)&7)))!=0)")
of 2: binaryExprIn(p, e, a, b, d, "(($1 &(1<<(($2)&15)))!=0)")
of 4: binaryExprIn(p, e, a, b, d, "(($1 &(1<<(($2)&31)))!=0)")
of 8: binaryExprIn(p, e, a, b, d, "(($1 &(IL64(1)<<(($2)&IL64(63))))!=0)")
else: binaryExprIn(p, e, a, b, d, "(($1[$2/8] &(1<<($2%8)))!=0)")
proc binaryStmtInExcl(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a, b: TLoc
assert(d.k == locNone)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
lineF(p, cpsStmts, frmt, [rdLoc(a), rdSetElemLoc(b, a.t)])
proc genInOp(p: BProc, e: PNode, d: var TLoc) =
var a, b, x, y: TLoc
if (e.sons[1].Kind == nkCurly) and fewCmps(e.sons[1]):
# a set constructor but not a constant set:
# do not emit the set, but generate a bunch of comparisons
initLocExpr(p, e.sons[2], a)
initLoc(b, locExpr, e.typ, OnUnknown)
b.r = toRope("(")
var length = sonsLen(e.sons[1])
for i in countup(0, length - 1):
if e.sons[1].sons[i].Kind == nkRange:
InitLocExpr(p, e.sons[1].sons[i].sons[0], x)
InitLocExpr(p, e.sons[1].sons[i].sons[1], y)
appf(b.r, "$1 >= $2 && $1 <= $3",
[rdCharLoc(a), rdCharLoc(x), rdCharLoc(y)])
else:
InitLocExpr(p, e.sons[1].sons[i], x)
appf(b.r, "$1 == $2", [rdCharLoc(a), rdCharLoc(x)])
if i < length - 1: app(b.r, " || ")
app(b.r, ")")
putIntoDest(p, d, e.typ, b.r)
else:
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
genInExprAux(p, e, a, b, d)
proc genSetOp(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
const
lookupOpr: array[mLeSet..mSymDiffSet, string] = [
"for ($1 = 0; $1 < $2; $1++) { $n" &
" $3 = (($4[$1] & ~ $5[$1]) == 0);$n" &
" if (!$3) break;}$n", "for ($1 = 0; $1 < $2; $1++) { $n" &
" $3 = (($4[$1] & ~ $5[$1]) == 0);$n" & " if (!$3) break;}$n" &
"if ($3) $3 = (memcmp($4, $5, $2) != 0);$n",
"&", "|", "& ~", "^"]
var a, b, i: TLoc
var setType = skipTypes(e.sons[1].Typ, abstractVar)
var size = int(getSize(setType))
case size
of 1, 2, 4, 8:
case op
of mIncl:
var ts = "NI" & $(size * 8)
binaryStmtInExcl(p, e, d,
"$1 |=((" & ts & ")(1)<<(($2)%(sizeof(" & ts & ")*8)));$n")
of mExcl:
var ts = "NI" & $(size * 8)
binaryStmtInExcl(p, e, d, "$1 &= ~((" & ts & ")(1) << (($2) % (sizeof(" &
ts & ")*8)));$n")
of mCard:
if size <= 4: unaryExprChar(p, e, d, "#countBits32($1)")
else: unaryExprChar(p, e, d, "#countBits64($1)")
of mLtSet: binaryExprChar(p, e, d, "(($1 & ~ $2 ==0)&&($1 != $2))")
of mLeSet: binaryExprChar(p, e, d, "(($1 & ~ $2)==0)")
of mEqSet: binaryExpr(p, e, d, "($1 == $2)")
of mMulSet: binaryExpr(p, e, d, "($1 & $2)")
of mPlusSet: binaryExpr(p, e, d, "($1 | $2)")
of mMinusSet: binaryExpr(p, e, d, "($1 & ~ $2)")
of mSymDiffSet: binaryExpr(p, e, d, "($1 ^ $2)")
of mInSet:
genInOp(p, e, d)
else: internalError(e.info, "genSetOp()")
else:
case op
of mIncl: binaryStmtInExcl(p, e, d, "$1[$2/8] |=(1<<($2%8));$n")
of mExcl: binaryStmtInExcl(p, e, d, "$1[$2/8] &= ~(1<<($2%8));$n")
of mCard: unaryExprChar(p, e, d, "#cardSet($1, " & $size & ')')
of mLtSet, mLeSet:
getTemp(p, getSysType(tyInt), i) # our counter
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
if d.k == locNone: getTemp(p, a.t, d)
lineF(p, cpsStmts, lookupOpr[op],
[rdLoc(i), toRope(size), rdLoc(d), rdLoc(a), rdLoc(b)])
of mEqSet:
binaryExprChar(p, e, d, "(memcmp($1, $2, " & $(size) & ")==0)")
of mMulSet, mPlusSet, mMinusSet, mSymDiffSet:
# we inline the simple for loop for better code generation:
getTemp(p, getSysType(tyInt), i) # our counter
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
if d.k == locNone: getTemp(p, a.t, d)
lineF(p, cpsStmts,
"for ($1 = 0; $1 < $2; $1++) $n" &
" $3[$1] = $4[$1] $6 $5[$1];$n", [
rdLoc(i), toRope(size), rdLoc(d), rdLoc(a), rdLoc(b),
toRope(lookupOpr[op])])
of mInSet: genInOp(p, e, d)
else: internalError(e.info, "genSetOp")
proc genOrd(p: BProc, e: PNode, d: var TLoc) =
unaryExprChar(p, e, d, "$1")
proc genCast(p: BProc, e: PNode, d: var TLoc) =
const
ValueTypes = {tyTuple, tyObject, tyArray, tyOpenArray, tyVarargs,
tyArrayConstr}
# we use whatever C gives us. Except if we have a value-type, we need to go
# through its address:
var a: TLoc
InitLocExpr(p, e.sons[1], a)
let etyp = skipTypes(e.typ, abstractRange)
if etyp.kind in ValueTypes and lfIndirect notin a.flags:
putIntoDest(p, d, e.typ, ropef("(*($1*) ($2))",
[getTypeDesc(p.module, e.typ), addrLoc(a)]))
elif etyp.kind == tyProc and etyp.callConv == ccClosure:
putIntoDest(p, d, e.typ, ropef("(($1) ($2))",
[getClosureType(p.module, etyp, clHalfWithEnv), rdCharLoc(a)]))
else:
putIntoDest(p, d, e.typ, ropef("(($1) ($2))",
[getTypeDesc(p.module, e.typ), rdCharLoc(a)]))
proc genRangeChck(p: BProc, n: PNode, d: var TLoc, magic: string) =
var a: TLoc
var dest = skipTypes(n.typ, abstractVar)
# range checks for unsigned turned out to be buggy and annoying:
if optRangeCheck notin p.options or dest.kind in {tyUInt..tyUInt64}:
InitLocExpr(p, n.sons[0], a)
putIntoDest(p, d, n.typ, ropef("(($1) ($2))",
[getTypeDesc(p.module, dest), rdCharLoc(a)]))
else:
InitLocExpr(p, n.sons[0], a)
if leValue(n.sons[2], n.sons[1]):
InternalError(n.info, "range check will always fail; empty range")
putIntoDest(p, d, dest, ropecg(p.module, "(($1)#$5($2, $3, $4))", [
getTypeDesc(p.module, dest), rdCharLoc(a),
genLiteral(p, n.sons[1], dest), genLiteral(p, n.sons[2], dest),
toRope(magic)]))
proc genConv(p: BProc, e: PNode, d: var TLoc) =
if compareTypes(e.typ, e.sons[1].typ, dcEqIgnoreDistinct):
expr(p, e.sons[1], d)
else:
genCast(p, e, d)
proc convStrToCStr(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc
initLocExpr(p, n.sons[0], a)
putIntoDest(p, d, skipTypes(n.typ, abstractVar), ropef("$1->data",
[rdLoc(a)]))
proc convCStrToStr(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc
initLocExpr(p, n.sons[0], a)
putIntoDest(p, d, skipTypes(n.typ, abstractVar),
ropecg(p.module, "#cstrToNimstr($1)", [rdLoc(a)]))
proc genStrEquals(p: BProc, e: PNode, d: var TLoc) =
var x: TLoc
var a = e.sons[1]
var b = e.sons[2]
if (a.kind == nkNilLit) or (b.kind == nkNilLit):
binaryExpr(p, e, d, "($1 == $2)")
elif (a.kind in {nkStrLit..nkTripleStrLit}) and (a.strVal == ""):
initLocExpr(p, e.sons[2], x)
putIntoDest(p, d, e.typ,
ropef("(($1) && ($1)->$2 == 0)", [rdLoc(x), lenField()]))
elif (b.kind in {nkStrLit..nkTripleStrLit}) and (b.strVal == ""):
initLocExpr(p, e.sons[1], x)
putIntoDest(p, d, e.typ,
ropef("(($1) && ($1)->$2 == 0)", [rdLoc(x), lenField()]))
else:
binaryExpr(p, e, d, "#eqStrings($1, $2)")
proc binaryFloatArith(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
if {optNanCheck, optInfCheck} * p.options != {}:
const opr: array[mAddF64..mDivF64, string] = ["+", "-", "*", "/"]
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
InitLocExpr(p, e.sons[1], a)
InitLocExpr(p, e.sons[2], b)
putIntoDest(p, d, e.typ, ropef("($2 $1 $3)", [
toRope(opr[m]), rdLoc(a), rdLoc(b)]))
if optNanCheck in p.options:
lineCg(p, cpsStmts, "#nanCheck($1);$n", [rdLoc(d)])
if optInfCheck in p.options:
lineCg(p, cpsStmts, "#infCheck($1);$n", [rdLoc(d)])
else:
binaryArith(p, e, d, m)
proc genMagicExpr(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
var line, filen: PRope
case op
of mOr, mAnd: genAndOr(p, e, d, op)
of mNot..mToBiggestInt: unaryArith(p, e, d, op)
of mUnaryMinusI..mAbsI64: unaryArithOverflow(p, e, d, op)
of mAddF64..mDivF64: binaryFloatArith(p, e, d, op)
of mShrI..mXor: binaryArith(p, e, d, op)
of mEqProc: genEqProc(p, e, d)
of mAddi..mModi64: binaryArithOverflow(p, e, d, op)
of mRepr: genRepr(p, e, d)
of mGetTypeInfo: genGetTypeInfo(p, e, d)
of mSwap: genSwap(p, e, d)
of mUnaryLt:
if not (optOverflowCheck in p.Options): unaryExpr(p, e, d, "$1 - 1")
else: unaryExpr(p, e, d, "#subInt($1, 1)")
of mPred:
# XXX: range checking?
if not (optOverflowCheck in p.Options): binaryExpr(p, e, d, "$1 - $2")
else: binaryExpr(p, e, d, "#subInt($1, $2)")
of mSucc:
# XXX: range checking?
if not (optOverflowCheck in p.Options): binaryExpr(p, e, d, "$1 + $2")
else: binaryExpr(p, e, d, "#addInt($1, $2)")
of mInc:
if not (optOverflowCheck in p.Options):
binaryStmt(p, e, d, "$1 += $2;$n")
elif skipTypes(e.sons[1].typ, abstractVar).kind == tyInt64:
binaryStmt(p, e, d, "$1 = #addInt64($1, $2);$n")
else:
binaryStmt(p, e, d, "$1 = #addInt($1, $2);$n")
of ast.mDec:
if not (optOverflowCheck in p.Options):
binaryStmt(p, e, d, "$1 -= $2;$n")
elif skipTypes(e.sons[1].typ, abstractVar).kind == tyInt64:
binaryStmt(p, e, d, "$1 = #subInt64($1, $2);$n")
else:
binaryStmt(p, e, d, "$1 = #subInt($1, $2);$n")
of mConStrStr: genStrConcat(p, e, d)
of mAppendStrCh:
binaryStmt(p, e, d, "$1 = #addChar($1, $2);$n")
# strictly speaking we need to generate "keepAlive" here too, but this
# very likely not needed and would slow down the code too much I fear
of mAppendStrStr: genStrAppend(p, e, d)
of mAppendSeqElem: genSeqElemAppend(p, e, d)
of mEqStr: genStrEquals(p, e, d)
of mLeStr: binaryExpr(p, e, d, "(#cmpStrings($1, $2) <= 0)")
of mLtStr: binaryExpr(p, e, d, "(#cmpStrings($1, $2) < 0)")
of mIsNil: genIsNil(p, e, d)
of mIntToStr: genDollar(p, e, d, "#nimIntToStr($1)")
of mInt64ToStr: genDollar(p, e, d, "#nimInt64ToStr($1)")
of mBoolToStr: genDollar(p, e, d, "#nimBoolToStr($1)")
of mCharToStr: genDollar(p, e, d, "#nimCharToStr($1)")
of mFloatToStr: genDollar(p, e, d, "#nimFloatToStr($1)")
of mCStrToStr: genDollar(p, e, d, "#cstrToNimstr($1)")
of mStrToStr: expr(p, e.sons[1], d)
of mEnumToStr: genRepr(p, e, d)
of mOf: genOf(p, e, d)
of mNew: genNew(p, e)
of mNewFinalize: genNewFinalize(p, e)
of mNewSeq: genNewSeq(p, e)
of mSizeOf:
putIntoDest(p, d, e.typ, ropef("((NI)sizeof($1))",
[getTypeDesc(p.module, e.sons[1].typ)]))
of mChr: genCast(p, e, d)
of mOrd: genOrd(p, e, d)
of mLengthArray, mHigh, mLengthStr, mLengthSeq, mLengthOpenArray:
genArrayLen(p, e, d, op)
of mGCref: unaryStmt(p, e, d, "#nimGCref($1);$n")
of mGCunref: unaryStmt(p, e, d, "#nimGCunref($1);$n")
of mSetLengthStr: genSetLengthStr(p, e, d)
of mSetLengthSeq: genSetLengthSeq(p, e, d)
of mIncl, mExcl, mCard, mLtSet, mLeSet, mEqSet, mMulSet, mPlusSet, mMinusSet,
mInSet:
genSetOp(p, e, d, op)
of mNewString, mNewStringOfCap, mCopyStr, mCopyStrLast, mExit, mRand:
var opr = e.sons[0].sym
if lfNoDecl notin opr.loc.flags:
discard cgsym(p.module, opr.loc.r.ropeToStr)
genCall(p, e, d)
of mReset: genReset(p, e)
of mEcho: genEcho(p, e)
of mArrToSeq: genArrToSeq(p, e, d)
of mNLen..mNError:
localError(e.info, errCannotGenerateCodeForX, e.sons[0].sym.name.s)
of mSlurp, mStaticExec:
localError(e.info, errXMustBeCompileTime, e.sons[0].sym.name.s)
else: internalError(e.info, "genMagicExpr: " & $op)
proc genConstExpr(p: BProc, n: PNode): PRope
proc handleConstExpr(p: BProc, n: PNode, d: var TLoc): bool =
if (nfAllConst in n.flags) and (d.k == locNone) and (sonsLen(n) > 0):
var t = getUniqueType(n.typ)
discard getTypeDesc(p.module, t) # so that any fields are initialized
var id = NodeTableTestOrSet(p.module.dataCache, n, gBackendId)
fillLoc(d, locData, t, con("TMP", toRope(id)), OnHeap)
if id == gBackendId:
# expression not found in the cache:
inc(gBackendId)
appf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n",
[getTypeDesc(p.module, t), d.r, genConstExpr(p, n)])
result = true
else:
result = false
proc genSetConstr(p: BProc, e: PNode, d: var TLoc) =
# example: { a..b, c, d, e, f..g }
# we have to emit an expression of the form:
# memset(tmp, 0, sizeof(tmp)); inclRange(tmp, a, b); incl(tmp, c);
# incl(tmp, d); incl(tmp, e); inclRange(tmp, f, g);
var
a, b, idx: TLoc
if nfAllConst in e.flags:
putIntoDest(p, d, e.typ, genSetNode(p, e))
else:
if d.k == locNone: getTemp(p, e.typ, d)
if getSize(e.typ) > 8:
# big set:
lineF(p, cpsStmts, "memset($1, 0, sizeof($1));$n", [rdLoc(d)])
for i in countup(0, sonsLen(e) - 1):
if e.sons[i].kind == nkRange:
getTemp(p, getSysType(tyInt), idx) # our counter
initLocExpr(p, e.sons[i].sons[0], a)
initLocExpr(p, e.sons[i].sons[1], b)
lineF(p, cpsStmts, "for ($1 = $3; $1 <= $4; $1++) $n" &
"$2[$1/8] |=(1<<($1%8));$n", [rdLoc(idx), rdLoc(d),
rdSetElemLoc(a, e.typ), rdSetElemLoc(b, e.typ)])
else:
initLocExpr(p, e.sons[i], a)
lineF(p, cpsStmts, "$1[$2/8] |=(1<<($2%8));$n",
[rdLoc(d), rdSetElemLoc(a, e.typ)])
else:
# small set
var ts = "NI" & $(getSize(e.typ) * 8)
lineF(p, cpsStmts, "$1 = 0;$n", [rdLoc(d)])
for i in countup(0, sonsLen(e) - 1):
if e.sons[i].kind == nkRange:
getTemp(p, getSysType(tyInt), idx) # our counter
initLocExpr(p, e.sons[i].sons[0], a)
initLocExpr(p, e.sons[i].sons[1], b)
lineF(p, cpsStmts, "for ($1 = $3; $1 <= $4; $1++) $n" &
"$2 |=(1<<((" & ts & ")($1)%(sizeof(" & ts & ")*8)));$n", [
rdLoc(idx), rdLoc(d), rdSetElemLoc(a, e.typ),
rdSetElemLoc(b, e.typ)])
else:
initLocExpr(p, e.sons[i], a)
lineF(p, cpsStmts,
"$1 |=(1<<((" & ts & ")($2)%(sizeof(" & ts & ")*8)));$n",
[rdLoc(d), rdSetElemLoc(a, e.typ)])
proc genTupleConstr(p: BProc, n: PNode, d: var TLoc) =
var rec: TLoc
if not handleConstExpr(p, n, d):
var t = getUniqueType(n.typ)
discard getTypeDesc(p.module, t) # so that any fields are initialized
if d.k == locNone: getTemp(p, t, d)
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
if it.kind == nkExprColonExpr: it = it.sons[1]
initLoc(rec, locExpr, it.typ, d.s)
rec.r = ropef("$1.Field$2", [rdLoc(d), toRope(i)])
expr(p, it, rec)
when false:
initLoc(rec, locExpr, it.typ, d.s)
if (t.n.sons[i].kind != nkSym): InternalError(n.info, "genTupleConstr")
rec.r = ropef("$1.$2",
[rdLoc(d), mangleRecFieldName(t.n.sons[i].sym, t)])
expr(p, it, rec)
proc IsConstClosure(n: PNode): bool {.inline.} =
result = n.sons[0].kind == nkSym and isRoutine(n.sons[0].sym) and
n.sons[1].kind == nkNilLit
proc genClosure(p: BProc, n: PNode, d: var TLoc) =
assert n.kind == nkClosure
if IsConstClosure(n):
inc(p.labels)
var tmp = con("LOC", toRope(p.labels))
appf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n",
[getTypeDesc(p.module, n.typ), tmp, genConstExpr(p, n)])
putIntoDest(p, d, n.typ, tmp)
else:
var tmp, a, b: TLoc
initLocExpr(p, n.sons[0], a)
initLocExpr(p, n.sons[1], b)
getTemp(p, n.typ, tmp)
lineCg(p, cpsStmts, "$1.ClPrc = $2; $1.ClEnv = $3;$n",
tmp.rdLoc, a.rdLoc, b.rdLoc)
putLocIntoDest(p, d, tmp)
proc genArrayConstr(p: BProc, n: PNode, d: var TLoc) =
var arr: TLoc
if not handleConstExpr(p, n, d):
if d.k == locNone: getTemp(p, n.typ, d)
for i in countup(0, sonsLen(n) - 1):
initLoc(arr, locExpr, elemType(skipTypes(n.typ, abstractInst)), d.s)
arr.r = ropef("$1[$2]", [rdLoc(d), intLiteral(i)])
expr(p, n.sons[i], arr)
proc genComplexConst(p: BProc, sym: PSym, d: var TLoc) =
requestConstImpl(p, sym)
assert((sym.loc.r != nil) and (sym.loc.t != nil))
putLocIntoDest(p, d, sym.loc)
proc genStmtListExpr(p: BProc, n: PNode, d: var TLoc) =
var length = sonsLen(n)
for i in countup(0, length - 2): genStmts(p, n.sons[i])
if length > 0: expr(p, n.sons[length - 1], d)
proc upConv(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc
initLocExpr(p, n.sons[0], a)
var dest = skipTypes(n.typ, abstractPtrs)
if optObjCheck in p.options and not isPureObject(dest):
var r = rdLoc(a)
var nilCheck: PRope = nil
var t = skipTypes(a.t, abstractInst)
while t.kind in {tyVar, tyPtr, tyRef}:
if t.kind != tyVar: nilCheck = r
r = ropef("(*$1)", [r])
t = skipTypes(t.sons[0], abstractInst)
if gCmd != cmdCompileToCpp:
while t.kind == tyObject and t.sons[0] != nil:
app(r, ".Sup")
t = skipTypes(t.sons[0], abstractInst)
if nilCheck != nil:
lineCg(p, cpsStmts, "if ($1) #chckObj($2.m_type, $3);$n",
[nilCheck, r, genTypeInfo(p.module, dest)])
else:
lineCg(p, cpsStmts, "#chckObj($1.m_type, $2);$n",
[r, genTypeInfo(p.module, dest)])
if n.sons[0].typ.kind != tyObject:
putIntoDest(p, d, n.typ,
ropef("(($1) ($2))", [getTypeDesc(p.module, n.typ), rdLoc(a)]))
else:
putIntoDest(p, d, n.typ, ropef("(*($1*) ($2))",
[getTypeDesc(p.module, dest), addrLoc(a)]))
proc downConv(p: BProc, n: PNode, d: var TLoc) =
if gCmd == cmdCompileToCpp:
expr(p, n.sons[0], d) # downcast does C++ for us
else:
var dest = skipTypes(n.typ, abstractPtrs)
var src = skipTypes(n.sons[0].typ, abstractPtrs)
var a: TLoc
initLocExpr(p, n.sons[0], a)
var r = rdLoc(a)
if skipTypes(n.sons[0].typ, abstractInst).kind in {tyRef, tyPtr, tyVar}:
app(r, "->Sup")
for i in countup(2, abs(inheritanceDiff(dest, src))): app(r, ".Sup")
r = con("&", r)
else:
for i in countup(1, abs(inheritanceDiff(dest, src))): app(r, ".Sup")
putIntoDest(p, d, n.typ, r)
proc exprComplexConst(p: BProc, n: PNode, d: var TLoc) =
var t = getUniqueType(n.typ)
discard getTypeDesc(p.module, t) # so that any fields are initialized
var id = NodeTableTestOrSet(p.module.dataCache, n, gBackendId)
var tmp = con("TMP", toRope(id))
if id == gBackendId:
# expression not found in the cache:
inc(gBackendId)
appf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n",
[getTypeDesc(p.module, t), tmp, genConstExpr(p, n)])
if d.k == locNone:
fillLoc(d, locData, t, tmp, OnHeap)
else:
putIntoDest(p, d, t, tmp)
proc genBlock(p: BProc, t: PNode, d: var TLoc)
proc expr(p: BProc, e: PNode, d: var TLoc) =
case e.kind
of nkSym:
var sym = e.sym
case sym.Kind
of skMethod:
if sym.getBody.kind == nkEmpty:
# we cannot produce code for the dispatcher yet:
fillProcLoc(sym)
genProcPrototype(p.module, sym)
else:
genProc(p.module, sym)
putLocIntoDest(p, d, sym.loc)
of skProc, skConverter:
genProc(p.module, sym)
if sym.loc.r == nil or sym.loc.t == nil:
InternalError(e.info, "expr: proc not init " & sym.name.s)
putLocIntoDest(p, d, sym.loc)
of skConst:
if sfFakeConst in sym.flags:
if sfGlobal in sym.flags: genVarPrototype(p.module, sym)
putLocIntoDest(p, d, sym.loc)
elif isSimpleConst(sym.typ):
putIntoDest(p, d, e.typ, genLiteral(p, sym.ast, sym.typ))
else:
genComplexConst(p, sym, d)
of skEnumField:
putIntoDest(p, d, e.typ, toRope(sym.position))
of skVar, skForVar, skResult, skLet:
if sfGlobal in sym.flags: genVarPrototype(p.module, sym)
if sym.loc.r == nil or sym.loc.t == nil:
InternalError(e.info, "expr: var not init " & sym.name.s)
if sfThread in sym.flags:
AccessThreadLocalVar(p, sym)
if emulatedThreadVars():
putIntoDest(p, d, sym.loc.t, con("NimTV->", sym.loc.r))
else:
putLocIntoDest(p, d, sym.loc)
else:
putLocIntoDest(p, d, sym.loc)
of skTemp:
if sym.loc.r == nil or sym.loc.t == nil:
InternalError(e.info, "expr: temp not init " & sym.name.s)
putLocIntoDest(p, d, sym.loc)
of skParam:
if sym.loc.r == nil or sym.loc.t == nil:
InternalError(e.info, "expr: param not init " & sym.name.s)
putLocIntoDest(p, d, sym.loc)
else: InternalError(e.info, "expr(" & $sym.kind & "); unknown symbol")
of nkStrLit..nkTripleStrLit, nkIntLit..nkUInt64Lit,
nkFloatLit..nkFloat128Lit, nkNilLit, nkCharLit:
putIntoDest(p, d, e.typ, genLiteral(p, e))
of nkCall, nkHiddenCallConv, nkInfix, nkPrefix, nkPostfix, nkCommand,
nkCallStrLit:
if e.sons[0].kind == nkSym and e.sons[0].sym.magic != mNone:
genMagicExpr(p, e, d, e.sons[0].sym.magic)
else:
genCall(p, e, d)
of nkCurly:
if isDeepConstExpr(e) and e.len != 0:
putIntoDest(p, d, e.typ, genSetNode(p, e))
else:
genSetConstr(p, e, d)
of nkBracket:
if isDeepConstExpr(e) and e.len != 0:
exprComplexConst(p, e, d)
elif skipTypes(e.typ, abstractVarRange).kind == tySequence:
genSeqConstr(p, e, d)
else:
genArrayConstr(p, e, d)
of nkPar:
if isDeepConstExpr(e) and e.len != 0:
exprComplexConst(p, e, d)
else:
genTupleConstr(p, e, d)
of nkCast: genCast(p, e, d)
of nkHiddenStdConv, nkHiddenSubConv, nkConv: genConv(p, e, d)
of nkHiddenAddr, nkAddr: genAddr(p, e, d)
of nkBracketExpr:
var ty = skipTypes(e.sons[0].typ, abstractVarRange)
if ty.kind in {tyRef, tyPtr}: ty = skipTypes(ty.sons[0], abstractVarRange)
case ty.kind
of tyArray, tyArrayConstr: genArrayElem(p, e, d)
of tyOpenArray, tyVarargs: genOpenArrayElem(p, e, d)
of tySequence, tyString: genSeqElem(p, e, d)
of tyCString: genCStringElem(p, e, d)
of tyTuple: genTupleElem(p, e, d)
else: InternalError(e.info, "expr(nkBracketExpr, " & $ty.kind & ')')
of nkDerefExpr, nkHiddenDeref: genDeref(p, e, d)
of nkDotExpr: genRecordField(p, e, d)
of nkCheckedFieldExpr: genCheckedRecordField(p, e, d)
of nkBlockExpr: genBlock(p, e, d)
of nkStmtListExpr: genStmtListExpr(p, e, d)
of nkIfExpr: genIfExpr(p, e, d)
of nkObjDownConv: downConv(p, e, d)
of nkObjUpConv: upConv(p, e, d)
of nkChckRangeF: genRangeChck(p, e, d, "chckRangeF")
of nkChckRange64: genRangeChck(p, e, d, "chckRange64")
of nkChckRange: genRangeChck(p, e, d, "chckRange")
of nkStringToCString: convStrToCStr(p, e, d)
of nkCStringToString: convCStrToStr(p, e, d)
of nkLambdaKinds:
var sym = e.sons[namePos].sym
genProc(p.module, sym)
if sym.loc.r == nil or sym.loc.t == nil:
InternalError(e.info, "expr: proc not init " & sym.name.s)
putLocIntoDest(p, d, sym.loc)
of nkClosure: genClosure(p, e, d)
of nkMetaNode: expr(p, e.sons[0], d)
else: InternalError(e.info, "expr(" & $e.kind & "); unknown node kind")
proc genNamedConstExpr(p: BProc, n: PNode): PRope =
if n.kind == nkExprColonExpr: result = genConstExpr(p, n.sons[1])
else: result = genConstExpr(p, n)
proc genConstSimpleList(p: BProc, n: PNode): PRope =
var length = sonsLen(n)
result = toRope("{")
for i in countup(0, length - 2):
appf(result, "$1,$n", [genNamedConstExpr(p, n.sons[i])])
if length > 0: app(result, genNamedConstExpr(p, n.sons[length - 1]))
appf(result, "}$n")
proc genConstSeq(p: BProc, n: PNode, t: PType): PRope =
var data = ropef("{{$1, $1}", n.len.toRope)
if n.len > 0:
# array part needs extra curlies:
data.app(", {")
for i in countup(0, n.len - 1):
if i > 0: data.appf(",$n")
data.app genConstExpr(p, n.sons[i])
data.app("}")
data.app("}")
inc(gBackendId)
result = con("CNSTSEQ", gBackendId.toRope)
appcg(p.module, cfsData,
"NIM_CONST struct {$n" &
" #TGenericSeq Sup;$n" &
" $1 data[$2];$n" &
"} $3 = $4;$n", [
getTypeDesc(p.module, t.sons[0]), n.len.toRope, result, data])
result = ropef("(($1)&$2)", [getTypeDesc(p.module, t), result])
proc genConstExpr(p: BProc, n: PNode): PRope =
case n.Kind
of nkHiddenStdConv, nkHiddenSubConv:
result = genConstExpr(p, n.sons[1])
of nkCurly:
var cs: TBitSet
toBitSet(n, cs)
result = genRawSetData(cs, int(getSize(n.typ)))
of nkBracket, nkPar, nkClosure:
var t = skipTypes(n.typ, abstractInst)
if t.kind == tySequence:
result = genConstSeq(p, n, t)
else:
result = genConstSimpleList(p, n)
else:
var d: TLoc
initLocExpr(p, n, d)
result = rdLoc(d)