#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Data flow analysis for Nim.
## We transform the AST into a linear list of instructions first to
## make this easier to handle: There are only 2 different branching
## instructions: 'goto X' is an unconditional goto, 'fork X'
## is a conditional goto (either the next instruction or 'X' can be
## taken). Exhaustive case statements could be translated
## so that the last branch is transformed into an 'else' branch, but
## this is currently not done.
## ``return`` and ``break`` are all covered by 'goto'.
##
## Control flow through exception handling:
## Contrary to popular belief, exception handling doesn't cause
## many problems for this DFA representation, ``raise`` is a statement
## that ``goes to`` the outer ``finally`` or ``except`` if there is one,
## otherwise it is the same as ``return``. Every call is treated as
## a call that can potentially ``raise``. However, without a surrounding
## ``try`` we don't emit these ``fork ReturnLabel`` instructions in order
## to speed up the dataflow analysis passes.
##
## The data structures and algorithms used here are inspired by
## "A Graph–Free Approach to Data–Flow Analysis" by Markus Mohnen.
## https://link.springer.com/content/pdf/10.1007/3-540-45937-5_6.pdf
import ast, astalgo, types, intsets, tables, msgs, options, lineinfos
type
InstrKind* = enum
goto, fork, def, use
Instr* = object
n*: PNode
case kind*: InstrKind
of def, use: sym*: PSym
of goto, fork: dest*: int
ControlFlowGraph* = seq[Instr]
TPosition = distinct int
TBlock = object
label: PSym
fixups: seq[TPosition]
ValueKind = enum
undef, value, valueOrUndef
Con = object
code: ControlFlowGraph
inCall, inTryStmt: int
blocks: seq[TBlock]
tryStmtFixups: seq[TPosition]
owner: PSym
proc debugInfo(info: TLineInfo): string =
result = $info.line #info.toFilename & ":" & $info.line
proc codeListing(c: ControlFlowGraph, result: var string, start=0; last = -1) =
# for debugging purposes
# first iteration: compute all necessary labels:
var jumpTargets = initIntSet()
let last = if last < 0: c.len-1 else: min(last, c.len-1)
for i in start..last:
if c[i].kind in {goto, fork}:
jumpTargets.incl(i+c[i].dest)
var i = start
while i <= last:
if i in jumpTargets: result.add("L" & $i & ":\n")
result.add "\t"
result.add $c[i].kind
result.add "\t"
case c[i].kind
of def, use:
result.add c[i].sym.name.s
of goto, fork:
result.add "L"
result.add c[i].dest+i
result.add("\t#")
result.add(debugInfo(c[i].n.info))
result.add("\n")
inc i
if i in jumpTargets: result.add("L" & $i & ": End\n")
proc echoCfg*(c: ControlFlowGraph; start=0; last = -1) {.deprecated.} =
## echos the ControlFlowGraph for debugging purposes.
var buf = ""
codeListing(c, buf, start, last)
when declared(echo):
echo buf
proc forkI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: fork, dest: 0)
proc gotoI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: goto, dest: 0)
proc genLabel(c: Con): TPosition =
result = TPosition(c.code.len)
proc jmpBack(c: var Con, n: PNode, p = TPosition(0)) =
let dist = p.int - c.code.len
doAssert(-0x7fff < dist and dist < 0x7fff)
c.code.add Instr(n: n, kind: goto, dest: dist)
proc patch(c: var Con, p: TPosition) =
# patch with current index
let p = p.int
let diff = c.code.len - p
doAssert(-0x7fff < diff and diff < 0x7fff)
c.code[p].dest = diff
proc popBlock(c: var Con; oldLen: int) =
for f in c.blocks[oldLen].fixups:
c.patch(f)
c.blocks.setLen(oldLen)
template withBlock(labl: PSym; body: untyped) {.dirty.} =
var oldLen {.gensym.} = c.blocks.len
c.blocks.add TBlock(label: labl, fixups: @[])
body
popBlock(c, oldLen)
proc isTrue(n: PNode): bool =
n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
n.kind == nkIntLit and n.intVal != 0
proc gen(c: var Con; n: PNode) # {.noSideEffect.}
proc genWhile(c: var Con; n: PNode) =
# L1:
# cond, tmp
# fork tmp, L2
# body
# jmp L1
# L2:
let L1 = c.genLabel
withBlock(nil):
if isTrue(n.sons[0]):
c.gen(n.sons[1])
c.jmpBack(n, L1)
else:
c.gen(n.sons[0])
let L2 = c.forkI(n)
c.gen(n.sons[1])
c.jmpBack(n, L1)
c.patch(L2)
proc genBlock(c: var Con; n: PNode) =
withBlock(n.sons[0].sym):
c.gen(n.sons[1])
proc genBreak(c: var Con; n: PNode) =
let L1 = c.gotoI(n)
if n.sons[0].kind == nkSym:
#echo cast[int](n.sons[0].sym)
for i in countdown(c.blocks.len-1, 0):
if c.blocks[i].label == n.sons[0].sym:
c.blocks[i].fixups.add L1
return
#globalError(n.info, "VM problem: cannot find 'break' target")
else:
c.blocks[c.blocks.high].fixups.add L1
proc genIf(c: var Con, n: PNode) =
var endings: seq[TPosition] = @[]
for i in countup(0, len(n) - 1):
var it = n.sons[i]
c.gen(it.sons[0])
if it.len == 2:
let elsePos = c.forkI(it.sons[1])
c.gen(it.sons[1])
if i < sonsLen(n)-1:
endings.add(c.gotoI(it.sons[1]))
c.patch(elsePos)
for endPos in endings: c.patch(endPos)
proc genAndOr(c: var Con; n: PNode) =
# asgn dest, a
# fork L1
# asgn dest, b
# L1:
c.gen(n.sons[1])
let L1 = c.forkI(n)
c.gen(n.sons[2])
c.patch(L1)
proc genCase(c: var Con; n: PNode) =
# if (!expr1) goto L1;
# thenPart
# goto LEnd
# L1:
# if (!expr2) goto L2;
# thenPart2
# goto LEnd
# L2:
# elsePart
# Lend:
when false:
# XXX Exhaustiveness is not yet mapped to the control flow graph as
# it seems to offer no benefits for the 'last read of' question.
let isExhaustive = skipTypes(n.sons[0].typ,
abstractVarRange-{tyTypeDesc}).kind in {tyFloat..tyFloat128, tyString} or
lastSon(n).kind == nkElse
var endings: seq[TPosition] = @[]
c.gen(n.sons[0])
for i in 1 ..< n.len:
let it = n.sons[i]
if it.len == 1:
c.gen(it.sons[0])
else:
let elsePos = c.forkI(it.lastSon)
c.gen(it.lastSon)
if i < sonsLen(n)-1:
endings.add(c.gotoI(it.lastSon))
c.patch(elsePos)
for endPos in endings: c.patch(endPos)
proc genTry(c: var Con; n: PNode) =
var endings: seq[TPosition] = @[]
inc c.inTryStmt
var newFixups: seq[TPosition]
swap(newFixups, c.tryStmtFixups)
let elsePos = c.forkI(n)
c.gen(n.sons[0])
dec c.inTryStmt
for f in newFixups:
c.patch(f)
swap(newFixups, c.tryStmtFixups)
c.patch(elsePos)
for i in 1 ..< n.len:
let it = n.sons[i]
if it.kind != nkFinally:
var blen = len(it)
let endExcept = c.forkI(it)
c.gen(it.lastSon)
if i < sonsLen(n)-1:
endings.add(c.gotoI(it))
c.patch(endExcept)
for endPos in endings: c.patch(endPos)
let fin = lastSon(n)
if fin.kind == nkFinally:
c.gen(fin.sons[0])
proc genRaise(c: var Con; n: PNode) =
gen(c, n.sons[0])
if c.inTryStmt > 0:
c.tryStmtFixups.add c.gotoI(n)
else:
c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)
proc genImplicitReturn(c: var Con) =
if c.owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter} and resultPos < c.owner.ast.len:
gen(c, c.owner.ast.sons[resultPos])
proc genReturn(c: var Con; n: PNode) =
if n.sons[0].kind != nkEmpty:
gen(c, n.sons[0])
else:
genImplicitReturn(c)
c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)
const
InterestingSyms = {skVar, skResult, skLet, skParam}
proc genUse(c: var Con; n: PNode) =
var n = n
while n.kind in {nkDotExpr, nkCheckedFieldExpr,
nkBracketExpr, nkDerefExpr, nkHiddenDeref,
nkAddr, nkHiddenAddr}:
n = n[0]
if n.kind == nkSym and n.sym.kind in InterestingSyms:
c.code.add Instr(n: n, kind: use, sym: n.sym)
proc genDef(c: var Con; n: PNode) =
if n.kind == nkSym and n.sym.kind in InterestingSyms:
c.code.add Instr(n: n, kind: def, sym: n.sym)
proc genCall(c: var Con; n: PNode) =
gen(c, n[0])
var t = n[0].typ
if t != nil: t = t.skipTypes(abstractInst)
inc c.inCall
for i in 1..<n.len:
gen(c, n[i])
if t != nil and i < t.len and t.sons[i].kind == tyVar:
genDef(c, n[i])
# every call can potentially raise:
if c.inTryStmt > 0:
c.tryStmtFixups.add c.forkI(n)
dec c.inCall
proc genMagic(c: var Con; n: PNode; m: TMagic) =
case m
of mAnd, mOr: c.genAndOr(n)
of mNew, mNewFinalize:
genDef(c, n[1])
for i in 2..<n.len: gen(c, n[i])
of mExit:
genCall(c, n)
c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)
else:
genCall(c, n)
proc genVarSection(c: var Con; n: PNode) =
for a in n:
if a.kind == nkCommentStmt: continue
if a.kind == nkVarTuple:
gen(c, a.lastSon)
for i in 0 .. a.len-3: genDef(c, a[i])
else:
gen(c, a.lastSon)
if a.lastSon.kind != nkEmpty:
genDef(c, a.sons[0])
proc gen(c: var Con; n: PNode) =
case n.kind
of nkSym: genUse(c, n)
of nkCallKinds:
if n.sons[0].kind == nkSym:
let s = n.sons[0].sym
if s.magic != mNone:
genMagic(c, n, s.magic)
else:
genCall(c, n)
else:
genCall(c, n)
of nkCharLit..nkNilLit: discard
of nkAsgn, nkFastAsgn:
gen(c, n[1])
genDef(c, n[0])
of nkDotExpr, nkCheckedFieldExpr, nkBracketExpr,
nkDerefExpr, nkHiddenDeref, nkAddr, nkHiddenAddr:
gen(c, n[0])
of nkIfStmt, nkIfExpr: genIf(c, n)
of nkWhenStmt:
# This is "when nimvm" node. Chose the first branch.
gen(c, n.sons[0].sons[1])
of nkCaseStmt: genCase(c, n)
of nkWhileStmt: genWhile(c, n)
of nkBlockExpr, nkBlockStmt: genBlock(c, n)
of nkReturnStmt: genReturn(c, n)
of nkRaiseStmt: genRaise(c, n)
of nkBreakStmt: genBreak(c, n)
of nkTryStmt: genTry(c, n)
of nkStmtList, nkStmtListExpr, nkChckRangeF, nkChckRange64, nkChckRange,
nkBracket, nkCurly, nkPar, nkTupleConstr, nkClosure, nkObjConstr:
for x in n: gen(c, x)
of nkPragmaBlock: gen(c, n.lastSon)
of nkDiscardStmt: gen(c, n.sons[0])
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkExprColonExpr, nkExprEqExpr,
nkCast:
gen(c, n.sons[1])
of nkObjDownConv, nkStringToCString, nkCStringToString: gen(c, n.sons[0])
of nkVarSection, nkLetSection: genVarSection(c, n)
of nkDefer:
doAssert false, "dfa construction pass requires the elimination of 'defer'"
else: discard
proc dfa(code: seq[Instr]; conf: ConfigRef) =
var u = newSeq[IntSet](code.len) # usages
var d = newSeq[IntSet](code.len) # defs
var c = newSeq[IntSet](code.len) # consumed
var backrefs = initTable[int, int]()
for i in 0..<code.len:
u[i] = initIntSet()
d[i] = initIntSet()
c[i] = initIntSet()
case code[i].kind
of use: u[i].incl(code[i].sym.id)
of def: d[i].incl(code[i].sym.id)
of fork, goto:
let d = i+code[i].dest
backrefs.add(d, i)
var w = @[0]
var maxIters = 50
var someChange = true
var takenGotos = initIntSet()
var consuming = -1
while w.len > 0 and maxIters > 0: # and someChange:
dec maxIters
var pc = w.pop() # w[^1]
var prevPc = -1
# this simulates a single linear control flow execution:
while pc < code.len:
if prevPc >= 0:
someChange = false
# merge step and test for changes (we compute the fixpoints here):
# 'u' needs to be the union of prevPc, pc
# 'd' needs to be the intersection of 'pc'
for id in u[prevPc]:
if not u[pc].containsOrIncl(id):
someChange = true
# in (a; b) if ``a`` sets ``v`` so does ``b``. The intersection
# is only interesting on merge points:
for id in d[prevPc]:
if not d[pc].containsOrIncl(id):
someChange = true
# if this is a merge point, we take the intersection of the 'd' sets:
if backrefs.hasKey(pc):
var intersect = initIntSet()
assign(intersect, d[pc])
var first = true
for prevPc in backrefs.allValues(pc):
for def in d[pc]:
if def notin d[prevPc]:
excl(intersect, def)
someChange = true
when defined(debugDfa):
echo "Excluding ", pc, " prev ", prevPc
assign d[pc], intersect
if consuming >= 0:
if not c[pc].containsOrIncl(consuming):
someChange = true
consuming = -1
# our interpretation ![I!]:
prevPc = pc
case code[pc].kind
of goto:
# we must leave endless loops eventually:
if not takenGotos.containsOrIncl(pc) or someChange:
pc = pc + code[pc].dest
else:
inc pc
of fork:
# we follow the next instruction but push the dest onto our "work" stack:
#if someChange:
w.add pc + code[pc].dest
inc pc
of use:
#if not d[prevPc].missingOrExcl():
# someChange = true
consuming = code[pc].sym.id
inc pc
of def:
if not d[pc].containsOrIncl(code[pc].sym.id):
someChange = true
inc pc
when defined(useDfa) and defined(debugDfa):
for i in 0..<code.len:
echo "PC ", i, ": defs: ", d[i], "; uses ", u[i], "; consumes ", c[i]
# now check the condition we're interested in:
for i in 0..<code.len:
case code[i].kind
of use:
let s = code[i].sym
if s.id notin d[i]:
localError(conf, code[i].n.info, "usage of uninitialized variable: " & s.name.s)
if s.id in c[i]:
localError(conf, code[i].n.info, "usage of an already consumed variable: " & s.name.s)
else: discard
proc dataflowAnalysis*(s: PSym; body: PNode; conf: ConfigRef) =
var c = Con(code: @[], blocks: @[])
gen(c, body)
genImplicitReturn(c)
when defined(useDfa) and defined(debugDfa): echoCfg(c.code)
dfa(c.code, conf)
proc constructCfg*(s: PSym; body: PNode): ControlFlowGraph =
## constructs a control flow graph for ``body``.
var c = Con(code: @[], blocks: @[], owner: s)
gen(c, body)
genImplicitReturn(c)
shallowCopy(result, c.code)