#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This file implements the FFI part of the evaluator for Nim code.
import ast, types, options, msgs, lineinfos
from std/os import getAppFilename
import libffi/libffi
import std/[tables, dynlib]
when defined(windows):
const libcDll = "msvcrt.dll"
elif defined(linux):
const libcDll = "libc.so(.6|.5|)"
elif defined(openbsd):
const libcDll = "/usr/lib/libc.so(.95.1|)"
elif defined(bsd):
const libcDll = "/lib/libc.so.7"
elif defined(osx):
const libcDll = "/usr/lib/libSystem.dylib"
else:
{.error: "`libcDll` not implemented on this platform".}
type
TDllCache = tables.Table[string, LibHandle]
var
gDllCache = initTable[string, LibHandle]()
when defined(windows):
var gExeHandle = loadLib(getAppFilename())
else:
var gExeHandle = loadLib()
proc getDll(conf: ConfigRef, cache: var TDllCache; dll: string; info: TLineInfo): pointer =
result = nil
if dll in cache:
return cache[dll]
var libs: seq[string] = @[]
libCandidates(dll, libs)
for c in libs:
result = loadLib(c)
if not result.isNil: break
if result.isNil:
globalError(conf, info, "cannot load: " & dll)
cache[dll] = result
const
nkPtrLit = nkIntLit # hopefully we can get rid of this hack soon
proc importcSymbol*(conf: ConfigRef, sym: PSym): PNode =
let name = sym.cname # $sym.loc.r would point to internal name
# the AST does not support untyped pointers directly, so we use an nkIntLit
# that contains the address instead:
result = newNodeIT(nkPtrLit, sym.info, sym.typ)
when true:
var libPathMsg = ""
let lib = sym.annex
if lib != nil and lib.path.kind notin {nkStrLit..nkTripleStrLit}:
globalError(conf, sym.info, "dynlib needs to be a string lit")
var theAddr: pointer = nil
if (lib.isNil or lib.kind == libHeader) and not gExeHandle.isNil:
libPathMsg = "current exe: " & getAppFilename() & " nor libc: " & libcDll
# first try this exe itself:
theAddr = gExeHandle.symAddr(name.cstring)
# then try libc:
if theAddr.isNil:
let dllhandle = getDll(conf, gDllCache, libcDll, sym.info)
theAddr = dllhandle.symAddr(name.cstring)
elif not lib.isNil:
let dll = if lib.kind == libHeader: libcDll else: lib.path.strVal
libPathMsg = dll
let dllhandle = getDll(conf, gDllCache, dll, sym.info)
theAddr = dllhandle.symAddr(name.cstring)
if theAddr.isNil: globalError(conf, sym.info,
"cannot import symbol: " & name & " from " & libPathMsg)
result.intVal = cast[int](theAddr)
proc mapType(conf: ConfigRef, t: ast.PType): ptr libffi.Type =
if t == nil: return addr libffi.type_void
case t.kind
of tyBool, tyEnum, tyChar, tyInt..tyInt64, tyUInt..tyUInt64, tySet:
case getSize(conf, t)
of 1: result = addr libffi.type_uint8
of 2: result = addr libffi.type_sint16
of 4: result = addr libffi.type_sint32
of 8: result = addr libffi.type_sint64
else: result = nil
of tyFloat, tyFloat64: result = addr libffi.type_double
of tyFloat32: result = addr libffi.type_float
of tyVar, tyLent, tyPointer, tyPtr, tyRef, tyCstring, tySequence, tyString, tyUntyped,
tyTyped, tyTypeDesc, tyProc, tyArray, tyStatic, tyNil:
result = addr libffi.type_pointer
of tyDistinct, tyAlias, tySink:
result = mapType(conf, t.skipModifier)
else:
result = nil
# too risky:
#of tyFloat128: result = addr libffi.type_longdouble
proc mapCallConv(conf: ConfigRef, cc: TCallingConvention, info: TLineInfo): TABI =
case cc
of ccNimCall: result = DEFAULT_ABI
of ccStdCall: result = when defined(windows) and defined(x86): STDCALL else: DEFAULT_ABI
of ccCDecl: result = DEFAULT_ABI
else:
result = default(TABI)
globalError(conf, info, "cannot map calling convention to FFI")
template rd(typ, p: untyped): untyped = (cast[ptr typ](p))[]
template wr(typ, p, v: untyped): untyped = (cast[ptr typ](p))[] = v
template `+!`(x, y: untyped): untyped =
cast[pointer](cast[int](x) + y)
proc packSize(conf: ConfigRef, v: PNode, typ: PType): int =
## computes the size of the blob
case typ.kind
of tyPtr, tyRef, tyVar, tyLent:
if v.kind in {nkNilLit, nkPtrLit}:
result = sizeof(pointer)
else:
result = sizeof(pointer) + packSize(conf, v[0], typ.elementType)
of tyDistinct, tyGenericInst, tyAlias, tySink:
result = packSize(conf, v, typ.skipModifier)
of tyArray:
# consider: ptr array[0..1000_000, int] which is common for interfacing;
# we use the real length here instead
if v.kind in {nkNilLit, nkPtrLit}:
result = sizeof(pointer)
elif v.len != 0:
result = v.len * packSize(conf, v[0], typ.elementType)
else:
result = 0
else:
result = getSize(conf, typ).int
proc pack(conf: ConfigRef, v: PNode, typ: PType, res: pointer)
proc getField(conf: ConfigRef, n: PNode; position: int): PSym =
case n.kind
of nkRecList:
result = nil
for i in 0..<n.len:
result = getField(conf, n[i], position)
if result != nil: return
of nkRecCase:
result = getField(conf, n[0], position)
if result != nil: return
for i in 1..<n.len:
case n[i].kind
of nkOfBranch, nkElse:
result = getField(conf, lastSon(n[i]), position)
if result != nil: return
else: internalError(conf, n.info, "getField(record case branch)")
of nkSym:
if n.sym.position == position: result = n.sym
else: result = nil
else: result = nil
proc packObject(conf: ConfigRef, x: PNode, typ: PType, res: pointer) =
internalAssert conf, x.kind in {nkObjConstr, nkPar, nkTupleConstr}
# compute the field's offsets:
discard getSize(conf, typ)
for i in ord(x.kind == nkObjConstr)..<x.len:
var it = x[i]
if it.kind == nkExprColonExpr:
internalAssert conf, it[0].kind == nkSym
let field = it[0].sym
pack(conf, it[1], field.typ, res +! field.offset)
elif typ.n != nil:
let field = getField(conf, typ.n, i)
pack(conf, it, field.typ, res +! field.offset)
else:
# XXX: todo
globalError(conf, x.info, "cannot pack unnamed tuple")
const maxPackDepth = 20
var packRecCheck = 0
proc pack(conf: ConfigRef, v: PNode, typ: PType, res: pointer) =
template awr(typ, v: untyped): untyped =
wr(typ, res, v)
case typ.kind
of tyBool: awr(bool, v.intVal != 0)
of tyChar: awr(char, v.intVal.chr)
of tyInt: awr(int, v.intVal.int)
of tyInt8: awr(int8, v.intVal.int8)
of tyInt16: awr(int16, v.intVal.int16)
of tyInt32: awr(int32, v.intVal.int32)
of tyInt64: awr(int64, v.intVal.int64)
of tyUInt: awr(uint, v.intVal.uint)
of tyUInt8: awr(uint8, v.intVal.uint8)
of tyUInt16: awr(uint16, v.intVal.uint16)
of tyUInt32: awr(uint32, v.intVal.uint32)
of tyUInt64: awr(uint64, v.intVal.uint64)
of tyEnum, tySet:
case getSize(conf, v.typ)
of 1: awr(uint8, v.intVal.uint8)
of 2: awr(uint16, v.intVal.uint16)
of 4: awr(int32, v.intVal.int32)
of 8: awr(int64, v.intVal.int64)
else:
globalError(conf, v.info, "cannot map value to FFI (tyEnum, tySet)")
of tyFloat: awr(float, v.floatVal)
of tyFloat32: awr(float32, v.floatVal)
of tyFloat64: awr(float64, v.floatVal)
of tyPointer, tyProc, tyCstring, tyString:
if v.kind == nkNilLit:
# nothing to do since the memory is 0 initialized anyway
discard
elif v.kind == nkPtrLit:
awr(pointer, cast[pointer](v.intVal))
elif v.kind in {nkStrLit..nkTripleStrLit}:
awr(cstring, cstring(v.strVal))
else:
globalError(conf, v.info, "cannot map pointer/proc value to FFI")
of tyPtr, tyRef, tyVar, tyLent:
if v.kind == nkNilLit:
# nothing to do since the memory is 0 initialized anyway
discard
elif v.kind == nkPtrLit:
awr(pointer, cast[pointer](v.intVal))
else:
if packRecCheck > maxPackDepth:
packRecCheck = 0
globalError(conf, v.info, "cannot map value to FFI " & typeToString(v.typ))
inc packRecCheck
pack(conf, v[0], typ.elementType, res +! sizeof(pointer))
dec packRecCheck
awr(pointer, res +! sizeof(pointer))
of tyArray:
let baseSize = getSize(conf, typ.elementType)
for i in 0..<v.len:
pack(conf, v[i], typ.elementType, res +! i * baseSize)
of tyObject, tyTuple:
packObject(conf, v, typ, res)
of tyNil:
discard
of tyDistinct, tyGenericInst, tyAlias, tySink:
pack(conf, v, typ.skipModifier, res)
else:
globalError(conf, v.info, "cannot map value to FFI " & typeToString(v.typ))
proc unpack(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode
proc unpackObjectAdd(conf: ConfigRef, x: pointer, n, result: PNode) =
case n.kind
of nkRecList:
for i in 0..<n.len:
unpackObjectAdd(conf, x, n[i], result)
of nkRecCase:
globalError(conf, result.info, "case objects cannot be unpacked")
of nkSym:
var pair = newNodeI(nkExprColonExpr, result.info, 2)
pair[0] = n
pair[1] = unpack(conf, x +! n.sym.offset, n.sym.typ, nil)
#echo "offset: ", n.sym.name.s, " ", n.sym.offset
result.add pair
else: discard
proc unpackObject(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode =
# compute the field's offsets:
discard getSize(conf, typ)
# iterate over any actual field of 'n' ... if n is nil we need to create
# the nkPar node:
if n.isNil:
result = newNode(nkTupleConstr)
result.typ = typ
if typ.n.isNil:
internalError(conf, "cannot unpack unnamed tuple")
unpackObjectAdd(conf, x, typ.n, result)
else:
result = n
if result.kind notin {nkObjConstr, nkPar, nkTupleConstr}:
globalError(conf, n.info, "cannot map value from FFI")
if typ.n.isNil:
globalError(conf, n.info, "cannot unpack unnamed tuple")
for i in ord(n.kind == nkObjConstr)..<n.len:
var it = n[i]
if it.kind == nkExprColonExpr:
internalAssert conf, it[0].kind == nkSym
let field = it[0].sym
it[1] = unpack(conf, x +! field.offset, field.typ, it[1])
else:
let field = getField(conf, typ.n, i)
n[i] = unpack(conf, x +! field.offset, field.typ, it)
proc unpackArray(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode =
if n.isNil:
result = newNode(nkBracket)
result.typ = typ
newSeq(result.sons, lengthOrd(conf, typ).toInt)
else:
result = n
if result.kind != nkBracket:
globalError(conf, n.info, "cannot map value from FFI")
let baseSize = getSize(conf, typ.elementType)
for i in 0..<result.len:
result[i] = unpack(conf, x +! i * baseSize, typ.elementType, result[i])
proc canonNodeKind(k: TNodeKind): TNodeKind =
case k
of nkCharLit..nkUInt64Lit: result = nkIntLit
of nkFloatLit..nkFloat128Lit: result = nkFloatLit
of nkStrLit..nkTripleStrLit: result = nkStrLit
else: result = k
proc unpack(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode =
template aw(k, v, field: untyped): untyped =
if n.isNil:
result = newNode(k)
result.typ = typ
else:
# check we have the right field:
result = n
if result.kind.canonNodeKind != k.canonNodeKind:
#echo "expected ", k, " but got ", result.kind
#debug result
return newNodeI(nkExceptBranch, n.info)
#globalError(conf, n.info, "cannot map value from FFI")
result.field = v
template setNil() =
if n.isNil:
result = newNode(nkNilLit)
result.typ = typ
else:
reset n[]
result = n
result[] = TNode(kind: nkNilLit)
result.typ = typ
template awi(kind, v: untyped): untyped = aw(kind, v, intVal)
template awf(kind, v: untyped): untyped = aw(kind, v, floatVal)
template aws(kind, v: untyped): untyped = aw(kind, v, strVal)
case typ.kind
of tyBool: awi(nkIntLit, rd(bool, x).ord)
of tyChar: awi(nkCharLit, rd(char, x).ord)
of tyInt: awi(nkIntLit, rd(int, x))
of tyInt8: awi(nkInt8Lit, rd(int8, x))
of tyInt16: awi(nkInt16Lit, rd(int16, x))
of tyInt32: awi(nkInt32Lit, rd(int32, x))
of tyInt64: awi(nkInt64Lit, rd(int64, x))
of tyUInt: awi(nkUIntLit, rd(uint, x).BiggestInt)
of tyUInt8: awi(nkUInt8Lit, rd(uint8, x).BiggestInt)
of tyUInt16: awi(nkUInt16Lit, rd(uint16, x).BiggestInt)
of tyUInt32: awi(nkUInt32Lit, rd(uint32, x).BiggestInt)
of tyUInt64: awi(nkUInt64Lit, rd(uint64, x).BiggestInt)
of tyEnum:
case getSize(conf, typ)
of 1: awi(nkIntLit, rd(uint8, x).BiggestInt)
of 2: awi(nkIntLit, rd(uint16, x).BiggestInt)
of 4: awi(nkIntLit, rd(int32, x).BiggestInt)
of 8: awi(nkIntLit, rd(int64, x).BiggestInt)
else:
result = nil
globalError(conf, n.info, "cannot map value from FFI (tyEnum, tySet)")
of tyFloat: awf(nkFloatLit, rd(float, x))
of tyFloat32: awf(nkFloat32Lit, rd(float32, x))
of tyFloat64: awf(nkFloat64Lit, rd(float64, x))
of tyPointer, tyProc:
let p = rd(pointer, x)
if p.isNil:
setNil()
elif n != nil and n.kind == nkStrLit:
# we passed a string literal as a pointer; however strings are already
# in their unboxed representation so nothing it to be unpacked:
result = n
else:
awi(nkPtrLit, cast[int](p))
of tyPtr, tyRef, tyVar, tyLent:
let p = rd(pointer, x)
if p.isNil:
setNil()
elif n == nil or n.kind == nkPtrLit:
awi(nkPtrLit, cast[int](p))
elif n != nil and n.len == 1:
internalAssert(conf, n.kind == nkRefTy)
n[0] = unpack(conf, p, typ.elementType, n[0])
result = n
else:
result = nil
globalError(conf, n.info, "cannot map value from FFI " & typeToString(typ))
of tyObject, tyTuple:
result = unpackObject(conf, x, typ, n)
of tyArray:
result = unpackArray(conf, x, typ, n)
of tyCstring, tyString:
let p = rd(cstring, x)
if p.isNil:
setNil()
else:
aws(nkStrLit, $p)
of tyNil:
setNil()
of tyDistinct, tyGenericInst, tyAlias, tySink:
result = unpack(conf, x, typ.skipModifier, n)
else:
# XXX what to do with 'array' here?
result = nil
globalError(conf, n.info, "cannot map value from FFI " & typeToString(typ))
proc fficast*(conf: ConfigRef, x: PNode, destTyp: PType): PNode =
if x.kind == nkPtrLit and x.typ.kind in {tyPtr, tyRef, tyVar, tyLent, tyPointer,
tyProc, tyCstring, tyString,
tySequence}:
result = newNodeIT(x.kind, x.info, destTyp)
result.intVal = x.intVal
elif x.kind == nkNilLit:
result = newNodeIT(x.kind, x.info, destTyp)
else:
# we play safe here and allocate the max possible size:
let size = max(packSize(conf, x, x.typ), packSize(conf, x, destTyp))
var a = alloc0(size)
pack(conf, x, x.typ, a)
# cast through a pointer needs a new inner object:
let y = if x.kind == nkRefTy: newNodeI(nkRefTy, x.info, 1)
else: x.copyTree
y.typ = x.typ
result = unpack(conf, a, destTyp, y)
dealloc a
proc callForeignFunction*(conf: ConfigRef, call: PNode): PNode =
internalAssert conf, call[0].kind == nkPtrLit
var cif: TCif = default(TCif)
var sig: ParamList = default(ParamList)
# use the arguments' types for varargs support:
for i in 1..<call.len:
sig[i-1] = mapType(conf, call[i].typ)
if sig[i-1].isNil:
globalError(conf, call.info, "cannot map FFI type")
let typ = call[0].typ
if prep_cif(cif, mapCallConv(conf, typ.callConv, call.info), cuint(call.len-1),
mapType(conf, typ.returnType), sig) != OK:
globalError(conf, call.info, "error in FFI call")
var args: ArgList = default(ArgList)
let fn = cast[pointer](call[0].intVal)
for i in 1..<call.len:
var t = call[i].typ
args[i-1] = alloc0(packSize(conf, call[i], t))
pack(conf, call[i], t, args[i-1])
let retVal = if isEmptyType(typ.returnType): pointer(nil)
else: alloc(getSize(conf, typ.returnType).int)
libffi.call(cif, fn, retVal, args)
if retVal.isNil:
result = newNode(nkEmpty)
else:
result = unpack(conf, retVal, typ.returnType, nil)
result.info = call.info
if retVal != nil: dealloc retVal
for i in 1..<call.len:
call[i] = unpack(conf, args[i-1], typ[i], call[i])
dealloc args[i-1]
proc callForeignFunction*(conf: ConfigRef, fn: PNode, fntyp: PType,
args: var TNodeSeq, start, len: int,
info: TLineInfo): PNode =
internalAssert conf, fn.kind == nkPtrLit
var cif: TCif = default(TCif)
var sig: ParamList = default(ParamList)
for i in 0..len-1:
var aTyp = args[i+start].typ
if aTyp.isNil:
internalAssert conf, i+1 < fntyp.len
aTyp = fntyp[i+1]
args[i+start].typ = aTyp
sig[i] = mapType(conf, aTyp)
if sig[i].isNil: globalError(conf, info, "cannot map FFI type")
if prep_cif(cif, mapCallConv(conf, fntyp.callConv, info), cuint(len),
mapType(conf, fntyp[0]), sig) != OK:
globalError(conf, info, "error in FFI call")
var cargs: ArgList = default(ArgList)
let fn = cast[pointer](fn.intVal)
for i in 0..len-1:
let t = args[i+start].typ
cargs[i] = alloc0(packSize(conf, args[i+start], t))
pack(conf, args[i+start], t, cargs[i])
let retVal = if isEmptyType(fntyp[0]): pointer(nil)
else: alloc(getSize(conf, fntyp[0]).int)
libffi.call(cif, fn, retVal, cargs)
if retVal.isNil:
result = newNode(nkEmpty)
else:
result = unpack(conf, retVal, fntyp[0], nil)
result.info = info
if retVal != nil: dealloc retVal
for i in 0..len-1:
let t = args[i+start].typ
args[i+start] = unpack(conf, cargs[i], t, args[i+start])
dealloc cargs[i]