#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the 'implies' relation for guards.
import ast, astalgo, msgs, magicsys, nimsets, trees, types, renderer, idents,
saturate, modulegraphs, options, configuration
const
someEq = {mEqI, mEqF64, mEqEnum, mEqCh, mEqB, mEqRef, mEqProc,
mEqUntracedRef, mEqStr, mEqSet, mEqCString}
# set excluded here as the semantics are vastly different:
someLe = {mLeI, mLeF64, mLeU, mLeU64, mLeEnum,
mLeCh, mLeB, mLePtr, mLeStr}
someLt = {mLtI, mLtF64, mLtU, mLtU64, mLtEnum,
mLtCh, mLtB, mLtPtr, mLtStr}
someLen = {mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq,
mXLenStr, mXLenSeq}
someIn = {mInRange, mInSet}
someHigh = {mHigh}
# we don't list unsigned here because wrap around semantics suck for
# proving anything:
someAdd = {mAddI, mAddF64, mSucc}
someSub = {mSubI, mSubF64, mPred}
someMul = {mMulI, mMulF64}
someDiv = {mDivI, mDivF64}
someMod = {mModI}
someMax = {mMaxI, mMaxF64}
someMin = {mMinI, mMinF64}
someBinaryOp = someAdd+someSub+someMul+someMax+someMin
proc isValue(n: PNode): bool = n.kind in {nkCharLit..nkNilLit}
proc isLocation(n: PNode): bool = not n.isValue
proc isLet(n: PNode): bool =
if n.kind == nkSym:
if n.sym.kind in {skLet, skTemp, skForVar}:
result = true
elif n.sym.kind == skParam and skipTypes(n.sym.typ,
abstractInst).kind != tyVar:
result = true
proc isVar(n: PNode): bool =
n.kind == nkSym and n.sym.kind in {skResult, skVar} and
{sfAddrTaken} * n.sym.flags == {}
proc isLetLocation(m: PNode, isApprox: bool): bool =
# consider: 'n[].kind' --> we really need to support 1 deref op even if this
# is technically wrong due to aliasing :-( We could introduce "soft" facts
# for this; this would still be very useful for warnings and also nicely
# solves the 'var' problems. For now we fix this by requiring much more
# restrictive expressions for the 'not nil' checking.
var n = m
var derefs = 0
while true:
case n.kind
of nkDotExpr, nkCheckedFieldExpr, nkObjUpConv, nkObjDownConv:
n = n.sons[0]
of nkDerefExpr, nkHiddenDeref:
n = n.sons[0]
inc derefs
of nkBracketExpr:
if isConstExpr(n.sons[1]) or isLet(n.sons[1]):
n = n.sons[0]
else: return
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
n = n.sons[1]
else:
break
result = n.isLet and derefs <= ord(isApprox)
if not result and isApprox:
result = isVar(n)
proc interestingCaseExpr*(m: PNode): bool = isLetLocation(m, true)
type
Operators* = object
opNot, opContains, opLe, opLt, opAnd, opOr, opIsNil, opEq: PSym
opAdd, opSub, opMul, opDiv, opLen: PSym
proc initOperators*(g: ModuleGraph): Operators =
result.opLe = createMagic(g, "<=", mLeI)
result.opLt = createMagic(g, "<", mLtI)
result.opAnd = createMagic(g, "and", mAnd)
result.opOr = createMagic(g, "or", mOr)
result.opIsNil = createMagic(g, "isnil", mIsNil)
result.opEq = createMagic(g, "==", mEqI)
result.opAdd = createMagic(g, "+", mAddI)
result.opSub = createMagic(g, "-", mSubI)
result.opMul = createMagic(g, "*", mMulI)
result.opDiv = createMagic(g, "div", mDivI)
result.opLen = createMagic(g, "len", mLengthSeq)
result.opNot = createMagic(g, "not", mNot)
result.opContains = createMagic(g, "contains", mInSet)
proc swapArgs(fact: PNode, newOp: PSym): PNode =
result = newNodeI(nkCall, fact.info, 3)
result.sons[0] = newSymNode(newOp)
result.sons[1] = fact.sons[2]
result.sons[2] = fact.sons[1]
proc neg(n: PNode; o: Operators): PNode =
if n == nil: return nil
case n.getMagic
of mNot:
result = n.sons[1]
of someLt:
# not (a < b) == a >= b == b <= a
result = swapArgs(n, o.opLe)
of someLe:
result = swapArgs(n, o.opLt)
of mInSet:
if n.sons[1].kind != nkCurly: return nil
let t = n.sons[2].typ.skipTypes(abstractInst)
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = n.sons[0]
result.sons[2] = n.sons[2]
if t.kind == tyEnum:
var s = newNodeIT(nkCurly, n.info, n.sons[1].typ)
for e in t.n:
let eAsNode = newIntNode(nkIntLit, e.sym.position)
if not inSet(n.sons[1], eAsNode): s.add eAsNode
result.sons[1] = s
elif t.kind notin {tyString, tySequence} and lengthOrd(t) < 1000:
result.sons[1] = complement(n.sons[1])
else:
# not ({2, 3, 4}.contains(x)) x != 2 and x != 3 and x != 4
# XXX todo
result = nil
of mOr:
# not (a or b) --> not a and not b
let
a = n.sons[1].neg(o)
b = n.sons[2].neg(o)
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(o.opAnd)
result.sons[1] = a
result.sons[2] = b
elif a != nil:
result = a
elif b != nil:
result = b
else:
# leave not (a == 4) as it is
result = newNodeI(nkCall, n.info, 2)
result.sons[0] = newSymNode(o.opNot)
result.sons[1] = n
proc buildCall(op: PSym; a: PNode): PNode =
result = newNodeI(nkCall, a.info, 2)
result.sons[0] = newSymNode(op)
result.sons[1] = a
proc buildCall(op: PSym; a, b: PNode): PNode =
result = newNodeI(nkInfix, a.info, 3)
result.sons[0] = newSymNode(op)
result.sons[1] = a
result.sons[2] = b
proc `|+|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |+| b.intVal
else: result.floatVal = a.floatVal + b.floatVal
proc `|-|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |-| b.intVal
else: result.floatVal = a.floatVal - b.floatVal
proc `|*|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |*| b.intVal
else: result.floatVal = a.floatVal * b.floatVal
proc `|div|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal div b.intVal
else: result.floatVal = a.floatVal / b.floatVal
proc negate(a, b, res: PNode; o: Operators): PNode =
if b.kind in {nkCharLit..nkUInt64Lit} and b.intVal != low(BiggestInt):
var b = copyNode(b)
b.intVal = -b.intVal
if a.kind in {nkCharLit..nkUInt64Lit}:
b.intVal = b.intVal |+| a.intVal
result = b
else:
result = buildCall(o.opAdd, a, b)
elif b.kind in {nkFloatLit..nkFloat64Lit}:
var b = copyNode(b)
b.floatVal = -b.floatVal
result = buildCall(o.opAdd, a, b)
else:
result = res
proc zero(): PNode = nkIntLit.newIntNode(0)
proc one(): PNode = nkIntLit.newIntNode(1)
proc minusOne(): PNode = nkIntLit.newIntNode(-1)
proc lowBound*(x: PNode): PNode =
result = nkIntLit.newIntNode(firstOrd(x.typ))
result.info = x.info
proc highBound*(x: PNode; o: Operators): PNode =
let typ = x.typ.skipTypes(abstractInst)
result = if typ.kind == tyArray:
nkIntLit.newIntNode(lastOrd(typ))
elif typ.kind == tySequence and x.kind == nkSym and
x.sym.kind == skConst:
nkIntLit.newIntNode(x.sym.ast.len-1)
else:
o.opAdd.buildCall(o.opLen.buildCall(x), minusOne())
result.info = x.info
proc reassociation(n: PNode; o: Operators): PNode =
result = n
# (foo+5)+5 --> foo+10; same for '*'
case result.getMagic
of someAdd:
if result[2].isValue and
result[1].getMagic in someAdd and result[1][2].isValue:
result = o.opAdd.buildCall(result[1][1], result[1][2] |+| result[2])
if result[2].intVal == 0:
result = result[1]
of someMul:
if result[2].isValue and
result[1].getMagic in someMul and result[1][2].isValue:
result = o.opMul.buildCall(result[1][1], result[1][2] |*| result[2])
if result[2].intVal == 1:
result = result[1]
elif result[2].intVal == 0:
result = zero()
else: discard
proc pred(n: PNode): PNode =
if n.kind in {nkCharLit..nkUInt64Lit} and n.intVal != low(BiggestInt):
result = copyNode(n)
dec result.intVal
else:
result = n
proc canon*(n: PNode; o: Operators): PNode =
# XXX for now only the new code in 'semparallel' uses this
if n.safeLen >= 1:
result = shallowCopy(n)
for i in 0 ..< n.len:
result.sons[i] = canon(n.sons[i], o)
elif n.kind == nkSym and n.sym.kind == skLet and
n.sym.ast.getMagic in (someEq + someAdd + someMul + someMin +
someMax + someHigh + {mUnaryLt} + someSub + someLen + someDiv):
result = n.sym.ast.copyTree
else:
result = n
case result.getMagic
of someEq, someAdd, someMul, someMin, someMax:
# these are symmetric; put value as last:
if result.sons[1].isValue and not result.sons[2].isValue:
result = swapArgs(result, result.sons[0].sym)
# (4 + foo) + 2 --> (foo + 4) + 2
of someHigh:
# high == len+(-1)
result = o.opAdd.buildCall(o.opLen.buildCall(result[1]), minusOne())
of mUnaryLt:
result = buildCall(o.opAdd, result[1], minusOne())
of someSub:
# x - 4 --> x + (-4)
result = negate(result[1], result[2], result, o)
of someLen:
result.sons[0] = o.opLen.newSymNode
of someLt:
# x < y same as x <= y-1:
let y = n[2].canon(o)
let p = pred(y)
let minus = if p != y: p else: o.opAdd.buildCall(y, minusOne()).canon(o)
result = o.opLe.buildCall(n[1].canon(o), minus)
else: discard
result = skipConv(result)
result = reassociation(result, o)
# most important rule: (x-4) <= a.len --> x <= a.len+4
case result.getMagic
of someLe:
let x = result[1]
let y = result[2]
if x.kind in nkCallKinds and x.len == 3 and x[2].isValue and
isLetLocation(x[1], true):
case x.getMagic
of someSub:
result = buildCall(result[0].sym, x[1],
reassociation(o.opAdd.buildCall(y, x[2]), o))
of someAdd:
# Rule A:
let plus = negate(y, x[2], nil, o).reassociation(o)
if plus != nil: result = buildCall(result[0].sym, x[1], plus)
else: discard
elif y.kind in nkCallKinds and y.len == 3 and y[2].isValue and
isLetLocation(y[1], true):
# a.len < x-3
case y.getMagic
of someSub:
result = buildCall(result[0].sym, y[1],
reassociation(o.opAdd.buildCall(x, y[2]), o))
of someAdd:
let plus = negate(x, y[2], nil, o).reassociation(o)
# ensure that Rule A will not trigger afterwards with the
# additional 'not isLetLocation' constraint:
if plus != nil and not isLetLocation(x, true):
result = buildCall(result[0].sym, plus, y[1])
else: discard
elif x.isValue and y.getMagic in someAdd and y[2].isValue:
# 0 <= a.len + 3
# -3 <= a.len
result.sons[1] = x |-| y[2]
result.sons[2] = y[1]
elif x.isValue and y.getMagic in someSub and y[2].isValue:
# 0 <= a.len - 3
# 3 <= a.len
result.sons[1] = x |+| y[2]
result.sons[2] = y[1]
else: discard
proc buildAdd*(a: PNode; b: BiggestInt; o: Operators): PNode =
canon(if b != 0: o.opAdd.buildCall(a, nkIntLit.newIntNode(b)) else: a, o)
proc usefulFact(n: PNode; o: Operators): PNode =
case n.getMagic
of someEq:
if skipConv(n.sons[2]).kind == nkNilLit and (
isLetLocation(n.sons[1], false) or isVar(n.sons[1])):
result = o.opIsNil.buildCall(n.sons[1])
else:
if isLetLocation(n.sons[1], true) or isLetLocation(n.sons[2], true):
# XXX algebraic simplifications! 'i-1 < a.len' --> 'i < a.len+1'
result = n
of someLe+someLt:
if isLetLocation(n.sons[1], true) or isLetLocation(n.sons[2], true):
# XXX algebraic simplifications! 'i-1 < a.len' --> 'i < a.len+1'
result = n
elif n[1].getMagic in someLen or n[2].getMagic in someLen:
# XXX Rethink this whole idea of 'usefulFact' for semparallel
result = n
of mIsNil:
if isLetLocation(n.sons[1], false) or isVar(n.sons[1]):
result = n
of someIn:
if isLetLocation(n.sons[1], true):
result = n
of mAnd:
let
a = usefulFact(n.sons[1], o)
b = usefulFact(n.sons[2], o)
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(o.opAnd)
result.sons[1] = a
result.sons[2] = b
elif a != nil:
result = a
elif b != nil:
result = b
of mNot:
let a = usefulFact(n.sons[1], o)
if a != nil:
result = a.neg(o)
of mOr:
# 'or' sucks! (p.isNil or q.isNil) --> hard to do anything
# with that knowledge...
# DeMorgan helps a little though:
# not a or not b --> not (a and b)
# (x == 3) or (y == 2) ---> not ( not (x==3) and not (y == 2))
# not (x != 3 and y != 2)
let
a = usefulFact(n.sons[1], o).neg(o)
b = usefulFact(n.sons[2], o).neg(o)
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(o.opAnd)
result.sons[1] = a
result.sons[2] = b
result = result.neg(o)
elif n.kind == nkSym and n.sym.kind == skLet:
# consider:
# let a = 2 < x
# if a:
# ...
# We make can easily replace 'a' by '2 < x' here:
if n.sym.ast != nil:
result = usefulFact(n.sym.ast, o)
elif n.kind == nkStmtListExpr:
result = usefulFact(n.lastSon, o)
type
TModel* = object
s*: seq[PNode] # the "knowledge base"
o*: Operators
proc addFact*(m: var TModel, nn: PNode) =
let n = usefulFact(nn, m.o)
if n != nil: m.s.add n
proc addFactNeg*(m: var TModel, n: PNode) =
let n = n.neg(m.o)
if n != nil: addFact(m, n)
proc sameOpr(a, b: PSym): bool =
case a.magic
of someEq: result = b.magic in someEq
of someLe: result = b.magic in someLe
of someLt: result = b.magic in someLt
of someLen: result = b.magic in someLen
of someAdd: result = b.magic in someAdd
of someSub: result = b.magic in someSub
of someMul: result = b.magic in someMul
of someDiv: result = b.magic in someDiv
else: result = a == b
proc sameTree*(a, b: PNode): bool =
result = false
if a == b:
result = true
elif a != nil and b != nil and a.kind == b.kind:
case a.kind
of nkSym:
result = a.sym == b.sym
if not result and a.sym.magic != mNone:
result = a.sym.magic == b.sym.magic or sameOpr(a.sym, b.sym)
of nkIdent: result = a.ident.id == b.ident.id
of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
of nkType: result = a.typ == b.typ
of nkEmpty, nkNilLit: result = true
else:
if sonsLen(a) == sonsLen(b):
for i in countup(0, sonsLen(a) - 1):
if not sameTree(a.sons[i], b.sons[i]): return
result = true
proc hasSubTree(n, x: PNode): bool =
if n.sameTree(x): result = true
else:
for i in 0..safeLen(n)-1:
if hasSubTree(n.sons[i], x): return true
proc invalidateFacts*(m: var TModel, n: PNode) =
# We are able to guard local vars (as opposed to 'let' variables)!
# 'while p != nil: f(p); p = p.next'
# This is actually quite easy to do:
# Re-assignments (incl. pass to a 'var' param) trigger an invalidation
# of every fact that contains 'v'.
#
# if x < 4:
# if y < 5
# x = unknown()
# # we invalidate 'x' here but it's known that x >= 4
# # for the else anyway
# else:
# echo x
#
# The same mechanism could be used for more complex data stored on the heap;
# procs that 'write: []' cannot invalidate 'n.kind' for instance. In fact, we
# could CSE these expressions then and help C's optimizer.
for i in 0..high(m.s):
if m.s[i] != nil and m.s[i].hasSubTree(n): m.s[i] = nil
proc valuesUnequal(a, b: PNode): bool =
if a.isValue and b.isValue:
result = not sameValue(a, b)
proc impliesEq(fact, eq: PNode): TImplication =
let (loc, val) = if isLocation(eq.sons[1]): (1, 2) else: (2, 1)
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], eq.sons[loc]):
# this is not correct; consider: a == b; a == 1 --> unknown!
if sameTree(fact.sons[2], eq.sons[val]): result = impYes
elif valuesUnequal(fact.sons[2], eq.sons[val]): result = impNo
elif sameTree(fact.sons[2], eq.sons[loc]):
if sameTree(fact.sons[1], eq.sons[val]): result = impYes
elif valuesUnequal(fact.sons[1], eq.sons[val]): result = impNo
of mInSet:
# remember: mInSet is 'contains' so the set comes first!
if sameTree(fact.sons[2], eq.sons[loc]) and isValue(eq.sons[val]):
if inSet(fact.sons[1], eq.sons[val]): result = impYes
else: result = impNo
of mNot, mOr, mAnd: assert(false, "impliesEq")
else: discard
proc leImpliesIn(x, c, aSet: PNode): TImplication =
if c.kind in {nkCharLit..nkUInt64Lit}:
# fact: x <= 4; question x in {56}?
# --> true if every value <= 4 is in the set {56}
#
var value = newIntNode(c.kind, firstOrd(x.typ))
# don't iterate too often:
if c.intVal - value.intVal < 1000:
var i, pos, neg: int
while value.intVal <= c.intVal:
if inSet(aSet, value): inc pos
else: inc neg
inc i; inc value.intVal
if pos == i: result = impYes
elif neg == i: result = impNo
proc geImpliesIn(x, c, aSet: PNode): TImplication =
if c.kind in {nkCharLit..nkUInt64Lit}:
# fact: x >= 4; question x in {56}?
# --> true iff every value >= 4 is in the set {56}
#
var value = newIntNode(c.kind, c.intVal)
let max = lastOrd(x.typ)
# don't iterate too often:
if max - value.intVal < 1000:
var i, pos, neg: int
while value.intVal <= max:
if inSet(aSet, value): inc pos
else: inc neg
inc i; inc value.intVal
if pos == i: result = impYes
elif neg == i: result = impNo
proc compareSets(a, b: PNode): TImplication =
if equalSets(a, b): result = impYes
elif intersectSets(a, b).len == 0: result = impNo
proc impliesIn(fact, loc, aSet: PNode): TImplication =
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], loc):
if inSet(aSet, fact.sons[2]): result = impYes
else: result = impNo
elif sameTree(fact.sons[2], loc):
if inSet(aSet, fact.sons[1]): result = impYes
else: result = impNo
of mInSet:
if sameTree(fact.sons[2], loc):
result = compareSets(fact.sons[1], aSet)
of someLe:
if sameTree(fact.sons[1], loc):
result = leImpliesIn(fact.sons[1], fact.sons[2], aSet)
elif sameTree(fact.sons[2], loc):
result = geImpliesIn(fact.sons[2], fact.sons[1], aSet)
of someLt:
if sameTree(fact.sons[1], loc):
result = leImpliesIn(fact.sons[1], fact.sons[2].pred, aSet)
elif sameTree(fact.sons[2], loc):
# 4 < x --> 3 <= x
result = geImpliesIn(fact.sons[2], fact.sons[1].pred, aSet)
of mNot, mOr, mAnd: assert(false, "impliesIn")
else: discard
proc valueIsNil(n: PNode): TImplication =
if n.kind == nkNilLit: impYes
elif n.kind in {nkStrLit..nkTripleStrLit, nkBracket, nkObjConstr}: impNo
else: impUnknown
proc impliesIsNil(fact, eq: PNode): TImplication =
case fact.sons[0].sym.magic
of mIsNil:
if sameTree(fact.sons[1], eq.sons[1]):
result = impYes
of someEq:
if sameTree(fact.sons[1], eq.sons[1]):
result = valueIsNil(fact.sons[2].skipConv)
elif sameTree(fact.sons[2], eq.sons[1]):
result = valueIsNil(fact.sons[1].skipConv)
of mNot, mOr, mAnd: assert(false, "impliesIsNil")
else: discard
proc impliesGe(fact, x, c: PNode): TImplication =
assert isLocation(x)
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x = 4; question x >= 56? --> true iff 4 >= 56
if leValue(c, fact.sons[2]): result = impYes
else: result = impNo
elif sameTree(fact.sons[2], x):
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1]): result = impYes
else: result = impNo
of someLt:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x < 4; question N <= x? --> false iff N <= 4
if leValue(fact.sons[2], c): result = impNo
# fact: x < 4; question 2 <= x? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 < x; question: N-1 < x ? --> true iff N-1 <= 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c.pred, fact.sons[1]): result = impYes
of someLe:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x <= 4; question x >= 56? --> false iff 4 <= 56
if leValue(fact.sons[2], c): result = impNo
# fact: x <= 4; question x >= 2? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 <= x; question: x >= 2 ? --> true iff 2 <= 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1]): result = impYes
of mNot, mOr, mAnd: assert(false, "impliesGe")
else: discard
proc impliesLe(fact, x, c: PNode): TImplication =
if not isLocation(x):
return impliesGe(fact, c, x)
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x = 4; question x <= 56? --> true iff 4 <= 56
if leValue(fact.sons[2], c): result = impYes
else: result = impNo
elif sameTree(fact.sons[2], x):
if isValue(fact.sons[1]) and isValue(c):
if leValue(fact.sons[1], c): result = impYes
else: result = impNo
of someLt:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x < 4; question x <= N? --> true iff N-1 <= 4
if leValue(fact.sons[2], c.pred): result = impYes
# fact: x < 4; question x <= 2? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 < x; question: x <= 1 ? --> false iff 1 <= 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1]): result = impNo
of someLe:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x <= 4; question x <= 56? --> true iff 4 <= 56
if leValue(fact.sons[2], c): result = impYes
# fact: x <= 4; question x <= 2? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 <= x; question: x <= 2 ? --> false iff 2 < 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1].pred): result = impNo
of mNot, mOr, mAnd: assert(false, "impliesLe")
else: discard
proc impliesLt(fact, x, c: PNode): TImplication =
# x < 3 same as x <= 2:
let p = c.pred
if p != c:
result = impliesLe(fact, x, p)
else:
# 4 < x same as 3 <= x
let q = x.pred
if q != x:
result = impliesLe(fact, q, c)
proc `~`(x: TImplication): TImplication =
case x
of impUnknown: impUnknown
of impNo: impYes
of impYes: impNo
proc factImplies(fact, prop: PNode): TImplication =
case fact.getMagic
of mNot:
# Consider:
# enum nkBinary, nkTernary, nkStr
# fact: not (k <= nkBinary)
# question: k in {nkStr}
# --> 'not' for facts is entirely different than 'not' for questions!
# it's provably wrong if every value > 4 is in the set {56}
# That's because we compute the implication and 'a -> not b' cannot
# be treated the same as 'not a -> b'
# (not a) -> b compute as not (a -> b) ???
# == not a or not b == not (a and b)
let arg = fact.sons[1]
case arg.getMagic
of mIsNil, mEqRef:
return ~factImplies(arg, prop)
of mAnd:
# not (a and b) means not a or not b:
# a or b --> both need to imply 'prop'
let a = factImplies(arg.sons[1], prop)
let b = factImplies(arg.sons[2], prop)
if a == b: return ~a
return impUnknown
else:
return impUnknown
of mAnd:
result = factImplies(fact.sons[1], prop)
if result != impUnknown: return result
return factImplies(fact.sons[2], prop)
else: discard
case prop.sons[0].sym.magic
of mNot: result = ~fact.factImplies(prop.sons[1])
of mIsNil: result = impliesIsNil(fact, prop)
of someEq: result = impliesEq(fact, prop)
of someLe: result = impliesLe(fact, prop.sons[1], prop.sons[2])
of someLt: result = impliesLt(fact, prop.sons[1], prop.sons[2])
of mInSet: result = impliesIn(fact, prop.sons[2], prop.sons[1])
else: result = impUnknown
proc doesImply*(facts: TModel, prop: PNode): TImplication =
assert prop.kind in nkCallKinds
for f in facts.s:
# facts can be invalidated, in which case they are 'nil':
if not f.isNil:
result = f.factImplies(prop)
if result != impUnknown: return
proc impliesNotNil*(m: TModel, arg: PNode): TImplication =
result = doesImply(m, m.o.opIsNil.buildCall(arg).neg(m.o))
proc simpleSlice*(a, b: PNode): BiggestInt =
# returns 'c' if a..b matches (i+c)..(i+c), -1 otherwise. (i)..(i) is matched
# as if it is (i+0)..(i+0).
if guards.sameTree(a, b):
if a.getMagic in someAdd and a[2].kind in {nkCharLit..nkUInt64Lit}:
result = a[2].intVal
else:
result = 0
else:
result = -1
template isMul(x): untyped = x.getMagic in someMul
template isDiv(x): untyped = x.getMagic in someDiv
template isAdd(x): untyped = x.getMagic in someAdd
template isSub(x): untyped = x.getMagic in someSub
template isVal(x): untyped = x.kind in {nkCharLit..nkUInt64Lit}
template isIntVal(x, y): untyped = x.intVal == y
import macros
macro `=~`(x: PNode, pat: untyped): bool =
proc m(x, pat, conds: NimNode) =
case pat.kind
of nnkInfix:
case $pat[0]
of "*": conds.add getAst(isMul(x))
of "/": conds.add getAst(isDiv(x))
of "+": conds.add getAst(isAdd(x))
of "-": conds.add getAst(isSub(x))
else:
error("invalid pattern")
m(newTree(nnkBracketExpr, x, newLit(1)), pat[1], conds)
m(newTree(nnkBracketExpr, x, newLit(2)), pat[2], conds)
of nnkPar:
if pat.len == 1:
m(x, pat[0], conds)
else:
error("invalid pattern")
of nnkIdent:
let c = newTree(nnkStmtListExpr, newLetStmt(pat, x))
conds.add c
# XXX why is this 'isVal(pat)' and not 'isVal(x)'?
if ($pat)[^1] == 'c': c.add(getAst(isVal(x)))
else: c.add bindSym"true"
of nnkIntLit:
conds.add(getAst(isIntVal(x, pat.intVal)))
else:
error("invalid pattern")
var conds = newTree(nnkBracket)
m(x, pat, conds)
when compiles(nestList(ident"and", conds)):
result = nestList(ident"and", conds)
#elif declared(macros.toNimIdent):
# result = nestList(toNimIdent"and", conds)
else:
result = nestList(!"and", conds)
proc isMinusOne(n: PNode): bool =
n.kind in {nkCharLit..nkUInt64Lit} and n.intVal == -1
proc pleViaModel(model: TModel; aa, bb: PNode): TImplication
proc ple(m: TModel; a, b: PNode): TImplication =
template `<=?`(a,b): untyped = ple(m,a,b) == impYes
template `>=?`(a,b): untyped = ple(m, nkIntLit.newIntNode(b), a) == impYes
# 0 <= 3
if a.isValue and b.isValue:
return if leValue(a, b): impYes else: impNo
# use type information too: x <= 4 iff high(x) <= 4
if b.isValue and a.typ != nil and a.typ.isOrdinalType:
if lastOrd(a.typ) <= b.intVal: return impYes
# 3 <= x iff low(x) <= 3
if a.isValue and b.typ != nil and b.typ.isOrdinalType:
if firstOrd(b.typ) <= a.intVal: return impYes
# x <= x
if sameTree(a, b): return impYes
# 0 <= x.len
if b.getMagic in someLen and a.isValue:
if a.intVal <= 0: return impYes
# x <= y+c if 0 <= c and x <= y
# x <= y+(-c) if c <= 0 and y >= x
if b.getMagic in someAdd and zero() <=? b[2] and a <=? b[1]: return impYes
# x+c <= y if c <= 0 and x <= y
if a.getMagic in someAdd and a[2] <=? zero() and a[1] <=? b: return impYes
# x <= y*c if 1 <= c and x <= y and 0 <= y
if b.getMagic in someMul:
if a <=? b[1] and one() <=? b[2] and zero() <=? b[1]: return impYes
if a.getMagic in someMul and a[2].isValue and a[1].getMagic in someDiv and
a[1][2].isValue:
# simplify (x div 4) * 2 <= y to x div (c div d) <= y
if ple(m, buildCall(m.o.opDiv, a[1][1], `|div|`(a[1][2], a[2])), b) == impYes:
return impYes
# x*3 + x == x*4. It follows that:
# x*3 + y <= x*4 if y <= x and 3 <= 4
if a =~ x*dc + y and b =~ x2*ec:
if sameTree(x, x2):
let ec1 = m.o.opAdd.buildCall(ec, minusOne())
if x >=? 1 and ec >=? 1 and dc >=? 1 and dc <=? ec1 and y <=? x:
return impYes
elif a =~ x*dc and b =~ x2*ec + y:
#echo "BUG cam ehrer e ", a, " <=? ", b
if sameTree(x, x2):
let ec1 = m.o.opAdd.buildCall(ec, minusOne())
if x >=? 1 and ec >=? 1 and dc >=? 1 and dc <=? ec1 and y <=? zero():
return impYes
# x+c <= x+d if c <= d. Same for *, - etc.
if a.getMagic in someBinaryOp and a.getMagic == b.getMagic:
if sameTree(a[1], b[1]) and a[2] <=? b[2]: return impYes
elif sameTree(a[2], b[2]) and a[1] <=? b[1]: return impYes
# x div c <= y if 1 <= c and 0 <= y and x <= y:
if a.getMagic in someDiv:
if one() <=? a[2] and zero() <=? b and a[1] <=? b: return impYes
# x div c <= x div d if d <= c
if b.getMagic in someDiv:
if sameTree(a[1], b[1]) and b[2] <=? a[2]: return impYes
# x div z <= x - 1 if z <= x
if a[2].isValue and b.getMagic in someAdd and b[2].isMinusOne:
if a[2] <=? a[1] and sameTree(a[1], b[1]): return impYes
# slightly subtle:
# x <= max(y, z) iff x <= y or x <= z
# note that 'x <= max(x, z)' is a special case of the above rule
if b.getMagic in someMax:
if a <=? b[1] or a <=? b[2]: return impYes
# min(x, y) <= z iff x <= z or y <= z
if a.getMagic in someMin:
if a[1] <=? b or a[2] <=? b: return impYes
# use the knowledge base:
return pleViaModel(m, a, b)
#return doesImply(m, o.opLe.buildCall(a, b))
type TReplacements = seq[tuple[a, b: PNode]]
proc replaceSubTree(n, x, by: PNode): PNode =
if sameTree(n, x):
result = by
elif hasSubTree(n, x):
result = shallowCopy(n)
for i in 0 .. safeLen(n)-1:
result.sons[i] = replaceSubTree(n.sons[i], x, by)
else:
result = n
proc applyReplacements(n: PNode; rep: TReplacements): PNode =
result = n
for x in rep: result = result.replaceSubTree(x.a, x.b)
proc pleViaModelRec(m: var TModel; a, b: PNode): TImplication =
# now check for inferrable facts: a <= b and b <= c implies a <= c
for i in 0..m.s.high:
let fact = m.s[i]
if fact != nil and fact.getMagic in someLe:
# mark as used:
m.s[i] = nil
# i <= len-100
# i <=? len-1
# --> true if (len-100) <= (len-1)
let x = fact[1]
let y = fact[2]
if sameTree(x, a) and y.getMagic in someAdd and b.getMagic in someAdd and
sameTree(y[1], b[1]):
if ple(m, b[2], y[2]) == impYes:
return impYes
# x <= y implies a <= b if a <= x and y <= b
if ple(m, a, x) == impYes:
if ple(m, y, b) == impYes:
return impYes
#if pleViaModelRec(m, y, b): return impYes
# fact: 16 <= i
# x y
# question: i <= 15? no!
result = impliesLe(fact, a, b)
if result != impUnknown:
return result
when false:
# given: x <= y; y==a; x <= a this means: a <= b if x <= b
if sameTree(y, a):
result = ple(m, b, x)
if result != impUnknown:
return result
proc pleViaModel(model: TModel; aa, bb: PNode): TImplication =
# compute replacements:
var replacements: TReplacements = @[]
for fact in model.s:
if fact != nil and fact.getMagic in someEq:
let a = fact[1]
let b = fact[2]
if a.kind == nkSym: replacements.add((a,b))
else: replacements.add((b,a))
var m: TModel
var a = aa
var b = bb
if replacements.len > 0:
m.s = @[]
m.o = model.o
# make the other facts consistent:
for fact in model.s:
if fact != nil and fact.getMagic notin someEq:
# XXX 'canon' should not be necessary here, but it is
m.s.add applyReplacements(fact, replacements).canon(m.o)
a = applyReplacements(aa, replacements)
b = applyReplacements(bb, replacements)
else:
# we have to make a copy here, because the model will be modified:
m = model
result = pleViaModelRec(m, a, b)
proc proveLe*(m: TModel; a, b: PNode): TImplication =
let x = canon(m.o.opLe.buildCall(a, b), m.o)
#echo "ROOT ", renderTree(x[1]), " <=? ", renderTree(x[2])
result = ple(m, x[1], x[2])
if result == impUnknown:
# try an alternative: a <= b iff not (b < a) iff not (b+1 <= a):
let y = canon(m.o.opLe.buildCall(m.o.opAdd.buildCall(b, one()), a), m.o)
result = ~ple(m, y[1], y[2])
proc addFactLe*(m: var TModel; a, b: PNode) =
m.s.add canon(m.o.opLe.buildCall(a, b), m.o)
proc settype(n: PNode): PType =
result = newType(tySet, n.typ.owner)
addSonSkipIntLit(result, n.typ)
proc buildOf(it, loc: PNode; o: Operators): PNode =
var s = newNodeI(nkCurly, it.info, it.len-1)
s.typ = settype(loc)
for i in 0..it.len-2: s.sons[i] = it.sons[i]
result = newNodeI(nkCall, it.info, 3)
result.sons[0] = newSymNode(o.opContains)
result.sons[1] = s
result.sons[2] = loc
proc buildElse(n: PNode; o: Operators): PNode =
var s = newNodeIT(nkCurly, n.info, settype(n.sons[0]))
for i in 1..n.len-2:
let branch = n.sons[i]
assert branch.kind == nkOfBranch
for j in 0..branch.len-2:
s.add(branch.sons[j])
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(o.opContains)
result.sons[1] = s
result.sons[2] = n.sons[0]
proc addDiscriminantFact*(m: var TModel, n: PNode) =
var fact = newNodeI(nkCall, n.info, 3)
fact.sons[0] = newSymNode(m.o.opEq)
fact.sons[1] = n.sons[0]
fact.sons[2] = n.sons[1]
m.s.add fact
proc addAsgnFact*(m: var TModel, key, value: PNode) =
var fact = newNodeI(nkCall, key.info, 3)
fact.sons[0] = newSymNode(m.o.opEq)
fact.sons[1] = key
fact.sons[2] = value
m.s.add fact
proc sameSubexprs*(m: TModel; a, b: PNode): bool =
# This should be used to check whether two *path expressions* refer to the
# same memory location according to 'm'. This is tricky:
# lock a[i].guard:
# ...
# access a[i].guarded
#
# Here a[i] is the same as a[i] iff 'i' and 'a' are not changed via '...'.
# However, nil checking requires exactly the same mechanism! But for now
# we simply use sameTree and live with the unsoundness of the analysis.
var check = newNodeI(nkCall, a.info, 3)
check.sons[0] = newSymNode(m.o.opEq)
check.sons[1] = a
check.sons[2] = b
result = m.doesImply(check) == impYes
proc addCaseBranchFacts*(m: var TModel, n: PNode, i: int) =
let branch = n.sons[i]
if branch.kind == nkOfBranch:
m.s.add buildOf(branch, n.sons[0], m.o)
else:
m.s.add n.buildElse(m.o).neg(m.o)
proc buildProperFieldCheck(access, check: PNode; o: Operators): PNode =
if check.sons[1].kind == nkCurly:
result = copyTree(check)
if access.kind == nkDotExpr:
var a = copyTree(access)
a.sons[1] = check.sons[2]
result.sons[2] = a
# 'access.kind != nkDotExpr' can happen for object constructors
# which we don't check yet
else:
# it is some 'not'
assert check.getMagic == mNot
result = buildProperFieldCheck(access, check.sons[1], o).neg(o)
proc checkFieldAccess*(m: TModel, n: PNode; conf: ConfigRef) =
for i in 1..n.len-1:
let check = buildProperFieldCheck(n.sons[0], n.sons[i], m.o)
if check != nil and m.doesImply(check) != impYes:
message(conf, n.info, warnProveField, renderTree(n.sons[0])); break