#
#
# The Nimrod Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the 'implies' relation for guards.
import ast, astalgo, msgs, magicsys, nimsets, trees, types, renderer
const
someEq = {mEqI, mEqI64, mEqF64, mEqEnum, mEqCh, mEqB, mEqRef, mEqProc,
mEqUntracedRef, mEqStr, mEqSet, mEqCString}
# set excluded here as the semantics are vastly different:
someLe = {mLeI, mLeI64, mLeF64, mLeU, mLeU64, mLeEnum,
mLeCh, mLeB, mLePtr, mLeStr}
someLt = {mLtI, mLtI64, mLtF64, mLtU, mLtU64, mLtEnum,
mLtCh, mLtB, mLtPtr, mLtStr}
someLen = {mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq}
someIn = {mInRange, mInSet}
proc isValue(n: PNode): bool = n.kind in {nkCharLit..nkNilLit}
proc isLocation(n: PNode): bool = not n.isValue
proc isLet(n: PNode): bool =
if n.kind == nkSym:
if n.sym.kind in {skLet, skTemp, skForVar}:
result = true
elif n.sym.kind == skParam and skipTypes(n.sym.typ,
abstractInst).kind != tyVar:
result = true
proc isVar(n: PNode): bool =
n.kind == nkSym and n.sym.kind in {skResult, skVar} and
{sfGlobal, sfAddrTaken} * n.sym.flags == {}
proc isLetLocation(m: PNode, isApprox: bool): bool =
# consider: 'n[].kind' --> we really need to support 1 deref op even if this
# is technically wrong due to aliasing :-( We could introduce "soft" facts
# for this; this would still be very useful for warnings and also nicely
# solves the 'var' problems. For now we fix this by requiring much more
# restrictive expressions for the 'not nil' checking.
var n = m
var derefs = 0
while true:
case n.kind
of nkDotExpr, nkCheckedFieldExpr, nkObjUpConv, nkObjDownConv:
n = n.sons[0]
of nkDerefExpr, nkHiddenDeref:
n = n.sons[0]
inc derefs
of nkBracketExpr:
if isConstExpr(n.sons[1]) or isLet(n.sons[1]):
n = n.sons[0]
else: return
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
n = n.sons[1]
else:
break
result = n.isLet and derefs <= ord(isApprox)
if not result and isApprox:
result = isVar(n)
proc interestingCaseExpr*(m: PNode): bool = isLetLocation(m, true)
proc swapArgs(fact: PNode, newOp: string, m: TMagic): PNode =
result = newNodeI(nkCall, fact.info, 3)
result.sons[0] = newSymNode(getSysMagic(newOp, m))
result.sons[1] = fact.sons[2]
result.sons[2] = fact.sons[1]
proc neg(n: PNode): PNode =
if n == nil: return nil
case n.getMagic
of mNot:
result = n.sons[1]
of someLt:
# not (a < b) == a >= b == b <= a
result = swapArgs(n, "<=", mLeI)
of someLe:
result = swapArgs(n, "<", mLtI)
of mInSet:
if n.sons[1].kind != nkCurly: return nil
let t = n.sons[2].typ.skipTypes(abstractInst)
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = n.sons[0]
result.sons[2] = n.sons[2]
if t.kind == tyEnum:
var s = newNodeIT(nkCurly, n.info, n.sons[1].typ)
for e in t.n:
let eAsNode = newIntNode(nkIntLit, e.sym.position)
if not inSet(n.sons[1], eAsNode): s.add eAsNode
result.sons[1] = s
elif lengthOrd(t) < 1000:
result.sons[1] = complement(n.sons[1])
else:
# not ({2, 3, 4}.contains(x)) x != 2 and x != 3 and x != 4
# XXX todo
result = nil
of mOr:
# not (a or b) --> not a and not b
let
a = n.sons[1].neg
b = n.sons[2].neg
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(getSysMagic("and", mAnd))
result.sons[1] = a
result.sons[2] = b
elif a != nil:
result = a
elif b != nil:
result = b
else:
# leave not (a == 4) as it is
result = newNodeI(nkCall, n.info, 2)
result.sons[0] = newSymNode(getSysMagic("not", mNot))
result.sons[1] = n
proc buildIsNil(arg: PNode): PNode =
result = newNodeI(nkCall, arg.info, 2)
result.sons[0] = newSymNode(getSysMagic("isNil", mIsNil))
result.sons[1] = arg
proc usefulFact(n: PNode): PNode =
case n.getMagic
of someEq:
if skipConv(n.sons[2]).kind == nkNilLit and (
isLetLocation(n.sons[1], false) or isVar(n.sons[1])):
result = buildIsNil(n.sons[1])
else:
if isLetLocation(n.sons[1], true) or isLetLocation(n.sons[2], true):
# XXX algebraic simplifications! 'i-1 < a.len' --> 'i < a.len+1'
result = n
of someLe+someLt:
if isLetLocation(n.sons[1], true) or isLetLocation(n.sons[2], true):
# XXX algebraic simplifications! 'i-1 < a.len' --> 'i < a.len+1'
result = n
of mIsNil:
if isLetLocation(n.sons[1], false) or isVar(n.sons[1]):
result = n
of someIn:
if isLetLocation(n.sons[1], true):
result = n
of mAnd:
let
a = usefulFact(n.sons[1])
b = usefulFact(n.sons[2])
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(getSysMagic("and", mAnd))
result.sons[1] = a
result.sons[2] = b
elif a != nil:
result = a
elif b != nil:
result = b
of mNot:
let a = usefulFact(n.sons[1])
if a != nil:
result = a.neg
of mOr:
# 'or' sucks! (p.isNil or q.isNil) --> hard to do anything
# with that knowledge...
# DeMorgan helps a little though:
# not a or not b --> not (a and b)
# (x == 3) or (y == 2) ---> not ( not (x==3) and not (y == 2))
# not (x != 3 and y != 2)
let
a = usefulFact(n.sons[1]).neg
b = usefulFact(n.sons[2]).neg
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(getSysMagic("and", mAnd))
result.sons[1] = a
result.sons[2] = b
result = result.neg
elif n.kind == nkSym and n.sym.kind == skLet:
# consider:
# let a = 2 < x
# if a:
# ...
# We make can easily replace 'a' by '2 < x' here:
if n.sym.ast != nil:
result = usefulFact(n.sym.ast)
elif n.kind == nkStmtListExpr:
result = usefulFact(n.lastSon)
type
TModel* = seq[PNode] # the "knowledge base"
proc addFact*(m: var TModel, n: PNode) =
let n = usefulFact(n)
if n != nil: m.add n
proc addFactNeg*(m: var TModel, n: PNode) =
let n = n.neg
if n != nil: addFact(m, n)
proc sameTree(a, b: PNode): bool =
result = false
if a == b:
result = true
elif (a != nil) and (b != nil) and (a.kind == b.kind):
case a.kind
of nkSym: result = a.sym == b.sym
of nkIdent: result = a.ident.id == b.ident.id
of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
of nkType: result = a.typ == b.typ
of nkEmpty, nkNilLit: result = true
else:
if sonsLen(a) == sonsLen(b):
for i in countup(0, sonsLen(a) - 1):
if not sameTree(a.sons[i], b.sons[i]): return
result = true
proc hasSubTree(n, x: PNode): bool =
if n.sameTree(x): result = true
else:
for i in 0..safeLen(n)-1:
if hasSubTree(n.sons[i], x): return true
proc invalidateFacts*(m: var TModel, n: PNode) =
# We are able to guard local vars (as opposed to 'let' variables)!
# 'while p != nil: f(p); p = p.next'
# This is actually quite easy to do:
# Re-assignments (incl. pass to a 'var' param) trigger an invalidation
# of every fact that contains 'v'.
#
# if x < 4:
# if y < 5
# x = unknown()
# # we invalidate 'x' here but it's known that x >= 4
# # for the else anyway
# else:
# echo x
#
# The same mechanism could be used for more complex data stored on the heap;
# procs that 'write: []' cannot invalidate 'n.kind' for instance. In fact, we
# could CSE these expressions then and help C's optimizer.
for i in 0..high(m):
if m[i] != nil and m[i].hasSubTree(n): m[i] = nil
proc valuesUnequal(a, b: PNode): bool =
if a.isValue and b.isValue:
result = not sameValue(a, b)
proc pred(n: PNode): PNode =
if n.kind in {nkCharLit..nkUInt64Lit} and n.intVal != low(BiggestInt):
result = copyNode(n)
dec result.intVal
else:
result = n
type
TImplication* = enum
impUnknown, impNo, impYes
proc impliesEq(fact, eq: PNode): TImplication =
let (loc, val) = if isLocation(eq.sons[1]): (1, 2) else: (2, 1)
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], eq.sons[loc]):
# this is not correct; consider: a == b; a == 1 --> unknown!
if sameTree(fact.sons[2], eq.sons[val]): result = impYes
elif valuesUnequal(fact.sons[2], eq.sons[val]): result = impNo
elif sameTree(fact.sons[2], eq.sons[loc]):
if sameTree(fact.sons[1], eq.sons[val]): result = impYes
elif valuesUnequal(fact.sons[1], eq.sons[val]): result = impNo
of mInSet:
# remember: mInSet is 'contains' so the set comes first!
if sameTree(fact.sons[2], eq.sons[loc]) and isValue(eq.sons[val]):
if inSet(fact.sons[1], eq.sons[val]): result = impYes
else: result = impNo
of mNot, mOr, mAnd: internalError(eq.info, "impliesEq")
else: discard
proc leImpliesIn(x, c, aSet: PNode): TImplication =
if c.kind in {nkCharLit..nkUInt64Lit}:
# fact: x <= 4; question x in {56}?
# --> true if every value <= 4 is in the set {56}
#
var value = newIntNode(c.kind, firstOrd(x.typ))
# don't iterate too often:
if c.intVal - value.intVal < 1000:
var i, pos, neg: int
while value.intVal <= c.intVal:
if inSet(aSet, value): inc pos
else: inc neg
inc i; inc value.intVal
if pos == i: result = impYes
elif neg == i: result = impNo
proc geImpliesIn(x, c, aSet: PNode): TImplication =
if c.kind in {nkCharLit..nkUInt64Lit}:
# fact: x >= 4; question x in {56}?
# --> true iff every value >= 4 is in the set {56}
#
var value = newIntNode(c.kind, c.intVal)
let max = lastOrd(x.typ)
# don't iterate too often:
if max - value.intVal < 1000:
var i, pos, neg: int
while value.intVal <= max:
if inSet(aSet, value): inc pos
else: inc neg
inc i; inc value.intVal
if pos == i: result = impYes
elif neg == i: result = impNo
proc compareSets(a, b: PNode): TImplication =
if equalSets(a, b): result = impYes
elif intersectSets(a, b).len == 0: result = impNo
proc impliesIn(fact, loc, aSet: PNode): TImplication =
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], loc):
if inSet(aSet, fact.sons[2]): result = impYes
else: result = impNo
elif sameTree(fact.sons[2], loc):
if inSet(aSet, fact.sons[1]): result = impYes
else: result = impNo
of mInSet:
if sameTree(fact.sons[2], loc):
result = compareSets(fact.sons[1], aSet)
of someLe:
if sameTree(fact.sons[1], loc):
result = leImpliesIn(fact.sons[1], fact.sons[2], aSet)
elif sameTree(fact.sons[2], loc):
result = geImpliesIn(fact.sons[2], fact.sons[1], aSet)
of someLt:
if sameTree(fact.sons[1], loc):
result = leImpliesIn(fact.sons[1], fact.sons[2].pred, aSet)
elif sameTree(fact.sons[2], loc):
# 4 < x --> 3 <= x
result = geImpliesIn(fact.sons[2], fact.sons[1].pred, aSet)
of mNot, mOr, mAnd: internalError(loc.info, "impliesIn")
else: discard
proc valueIsNil(n: PNode): TImplication =
if n.kind == nkNilLit: impYes
elif n.kind in {nkStrLit..nkTripleStrLit, nkBracket, nkObjConstr}: impNo
else: impUnknown
proc impliesIsNil(fact, eq: PNode): TImplication =
case fact.sons[0].sym.magic
of mIsNil:
if sameTree(fact.sons[1], eq.sons[1]):
result = impYes
of someEq:
if sameTree(fact.sons[1], eq.sons[1]):
result = valueIsNil(fact.sons[2].skipConv)
elif sameTree(fact.sons[2], eq.sons[1]):
result = valueIsNil(fact.sons[1].skipConv)
of mNot, mOr, mAnd: internalError(eq.info, "impliesIsNil")
else: discard
proc impliesGe(fact, x, c: PNode): TImplication =
internalAssert isLocation(x)
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x = 4; question x >= 56? --> true iff 4 >= 56
if leValue(c, fact.sons[2]): result = impYes
else: result = impNo
elif sameTree(fact.sons[2], x):
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1]): result = impYes
else: result = impNo
of someLt:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x < 4; question N <= x? --> false iff N <= 4
if leValue(fact.sons[2], c): result = impNo
# fact: x < 4; question 2 <= x? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 < x; question: N-1 < x ? --> true iff N-1 <= 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c.pred, fact.sons[1]): result = impYes
of someLe:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x <= 4; question x >= 56? --> false iff 4 <= 56
if leValue(fact.sons[2], c): result = impNo
# fact: x <= 4; question x >= 2? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 <= x; question: x >= 2 ? --> true iff 2 <= 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1]): result = impYes
of mNot, mOr, mAnd: internalError(x.info, "impliesGe")
else: discard
proc impliesLe(fact, x, c: PNode): TImplication =
if not isLocation(x):
return impliesGe(fact, c, x)
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x = 4; question x <= 56? --> true iff 4 <= 56
if leValue(fact.sons[2], c): result = impYes
else: result = impNo
elif sameTree(fact.sons[2], x):
if isValue(fact.sons[1]) and isValue(c):
if leValue(fact.sons[1], c): result = impYes
else: result = impNo
of someLt:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x < 4; question x <= N? --> true iff N-1 <= 4
if leValue(fact.sons[2], c.pred): result = impYes
# fact: x < 4; question x <= 2? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 < x; question: x <= 1 ? --> false iff 1 <= 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1]): result = impNo
of someLe:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x <= 4; question x <= 56? --> true iff 4 <= 56
if leValue(fact.sons[2], c): result = impYes
# fact: x <= 4; question x <= 2? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 <= x; question: x <= 2 ? --> false iff 2 < 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1].pred): result = impNo
of mNot, mOr, mAnd: internalError(x.info, "impliesLe")
else: discard
proc impliesLt(fact, x, c: PNode): TImplication =
# x < 3 same as x <= 2:
let p = c.pred
if p != c:
result = impliesLe(fact, x, p)
else:
# 4 < x same as 3 <= x
let q = x.pred
if q != x:
result = impliesLe(fact, q, c)
proc `~`(x: TImplication): TImplication =
case x
of impUnknown: impUnknown
of impNo: impYes
of impYes: impNo
proc factImplies(fact, prop: PNode): TImplication =
case fact.getMagic
of mNot:
# Consider:
# enum nkBinary, nkTernary, nkStr
# fact: not (k <= nkBinary)
# question: k in {nkStr}
# --> 'not' for facts is entirely different than 'not' for questions!
# it's provably wrong if every value > 4 is in the set {56}
# That's because we compute the implication and 'a -> not b' cannot
# be treated the same as 'not a -> b'
# (not a) -> b compute as not (a -> b) ???
# == not a or not b == not (a and b)
let arg = fact.sons[1]
case arg.getMagic
of mIsNil:
return ~factImplies(arg, prop)
of mAnd:
# not (a and b) means not a or not b:
# a or b --> both need to imply 'prop'
let a = factImplies(arg.sons[1], prop)
let b = factImplies(arg.sons[2], prop)
if a == b: return ~a
return impUnknown
else:
internalError(fact.info, "invalid fact")
of mAnd:
result = factImplies(fact.sons[1], prop)
if result != impUnknown: return result
return factImplies(fact.sons[2], prop)
else: discard
case prop.sons[0].sym.magic
of mNot: result = ~fact.factImplies(prop.sons[1])
of mIsNil: result = impliesIsNil(fact, prop)
of someEq: result = impliesEq(fact, prop)
of someLe: result = impliesLe(fact, prop.sons[1], prop.sons[2])
of someLt: result = impliesLt(fact, prop.sons[1], prop.sons[2])
of mInSet: result = impliesIn(fact, prop.sons[2], prop.sons[1])
else: internalError(prop.info, "invalid proposition")
proc doesImply*(facts: TModel, prop: PNode): TImplication =
assert prop.kind in nkCallKinds
for f in facts:
# facts can be invalidated, in which case they are 'nil':
if not f.isNil:
result = f.factImplies(prop)
if result != impUnknown: return
proc impliesNotNil*(facts: TModel, arg: PNode): TImplication =
result = doesImply(facts, buildIsNil(arg).neg)
proc settype(n: PNode): PType =
result = newType(tySet, n.typ.owner)
addSonSkipIntLit(result, n.typ)
proc buildOf(it, loc: PNode): PNode =
var s = newNodeI(nkCurly, it.info, it.len-1)
s.typ = settype(loc)
for i in 0..it.len-2: s.sons[i] = it.sons[i]
result = newNodeI(nkCall, it.info, 3)
result.sons[0] = newSymNode(getSysMagic("contains", mInSet))
result.sons[1] = s
result.sons[2] = loc
proc buildElse(n: PNode): PNode =
var s = newNodeIT(nkCurly, n.info, settype(n.sons[0]))
for i in 1..n.len-2:
let branch = n.sons[i]
assert branch.kind == nkOfBranch
for j in 0..branch.len-2:
s.add(branch.sons[j])
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(getSysMagic("contains", mInSet))
result.sons[1] = s
result.sons[2] = n.sons[0]
proc addDiscriminantFact*(m: var TModel, n: PNode) =
var fact = newNodeI(nkCall, n.info, 3)
fact.sons[0] = newSymNode(getSysMagic("==", mEqI))
fact.sons[1] = n.sons[0]
fact.sons[2] = n.sons[1]
m.add fact
proc addAsgnFact*(m: var TModel, key, value: PNode) =
var fact = newNodeI(nkCall, key.info, 3)
fact.sons[0] = newSymNode(getSysMagic("==", mEqI))
fact.sons[1] = key
fact.sons[2] = value
m.add fact
proc addCaseBranchFacts*(m: var TModel, n: PNode, i: int) =
let branch = n.sons[i]
if branch.kind == nkOfBranch:
m.add buildOf(branch, n.sons[0])
else:
m.add n.buildElse.neg
proc buildProperFieldCheck(access, check: PNode): PNode =
if check.sons[1].kind == nkCurly:
result = copyTree(check)
if access.kind == nkDotExpr:
var a = copyTree(access)
a.sons[1] = check.sons[2]
result.sons[2] = a
# 'access.kind != nkDotExpr' can happen for object constructors
# which we don't check yet
else:
# it is some 'not'
assert check.getMagic == mNot
result = buildProperFieldCheck(access, check.sons[1]).neg
proc checkFieldAccess*(m: TModel, n: PNode) =
for i in 1..n.len-1:
let check = buildProperFieldCheck(n.sons[0], n.sons[i])
if m.doesImply(check) != impYes:
message(n.info, warnProveField, renderTree(n.sons[0])); break