#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This include file implements lambda lifting for the transformator.
import
intsets, strutils, lists, options, ast, astalgo, trees, treetab, msgs, os,
idents, renderer, types, magicsys, rodread, lowerings
discard """
The basic approach is that captured vars need to be put on the heap and
that the calling chain needs to be explicitly modelled. Things to consider:
proc a =
var v = 0
proc b =
var w = 2
for x in 0..3:
proc c = capture v, w, x
c()
b()
for x in 0..4:
proc d = capture x
d()
Needs to be translated into:
proc a =
var cl: *
new cl
cl.v = 0
proc b(cl) =
var bcl: *
new bcl
bcl.w = 2
bcl.up = cl
for x in 0..3:
var bcl2: *
new bcl2
bcl2.up = bcl
bcl2.up2 = cl
bcl2.x = x
proc c(cl) = capture cl.up2.v, cl.up.w, cl.x
c(bcl2)
c(bcl)
b(cl)
for x in 0..4:
var acl2: *
new acl2
acl2.x = x
proc d(cl) = capture cl.x
d(acl2)
Closures as interfaces:
proc outer: T =
var captureMe: TObject # value type required for efficiency
proc getter(): int = result = captureMe.x
proc setter(x: int) = captureMe.x = x
result = (getter, setter)
Is translated to:
proc outer: T =
var cl: *
new cl
proc getter(cl): int = result = cl.captureMe.x
proc setter(cl: *, x: int) = cl.captureMe.x = x
result = ((cl, getter), (cl, setter))
For 'byref' capture, the outer proc needs to access the captured var through
the indirection too. For 'bycopy' capture, the outer proc accesses the var
not through the indirection.
Possible optimizations:
1) If the closure contains a single 'ref' and this
reference is not re-assigned (check ``sfAddrTaken`` flag) make this the
closure. This is an important optimization if closures are used as
interfaces.
2) If the closure does not escape, put it onto the stack, not on the heap.
3) Dataflow analysis would help to eliminate the 'up' indirections.
4) If the captured var is not actually used in the outer proc (common?),
put it into an inner proc.
"""
# Important things to keep in mind:
# * Don't base the analysis on nkProcDef et al. This doesn't work for
# instantiated (formerly generic) procs. The analysis has to look at nkSym.
# This also means we need to prevent the same proc is processed multiple
# times via the 'processed' set.
# * Keep in mind that the owner of some temporaries used to be unreliable.
# * For closure iterators we merge the "real" potential closure with the
# local storage requirements for efficiency. This means closure iterators
# have slightly different semantics from ordinary closures.
const
upName* = ":up" # field name for the 'up' reference
paramName* = ":envP"
envName* = ":env"
type
POuterContext = ref TOuterContext
TIter = object
fn, closureParam, state, resultSym: PSym # most are only valid if
# fn.kind == skClosureIterator
obj: PType
PEnv = ref TEnv
TEnv {.final.} = object of RootObj
attachedNode, replacementNode: PNode
createdVar: PNode # if != nil it is a used environment; for closure
# iterators this can be 'envParam.env'
createdVarComesFromIter: bool
capturedVars: seq[PSym] # captured variables in this environment
up, next: PEnv # outer scope and next to keep all in a list
upField: PSym # if != nil the dependency to the outer scope is used
obj: PType
fn: PSym # function that belongs to this scope;
# if up.fn != fn then we cross function boundaries.
# This is an important case to consider.
vars: IntSet # variables belonging to this environment
TOuterContext = object
fn: PSym # may also be a module!
head: PEnv
capturedVars, processed: IntSet
localsToAccess: TIdNodeTable
lambdasToEnv: TIdTable # PSym->PEnv mapping
proc getStateType(iter: PSym): PType =
var n = newNodeI(nkRange, iter.info)
addSon(n, newIntNode(nkIntLit, -1))
addSon(n, newIntNode(nkIntLit, 0))
result = newType(tyRange, iter)
result.n = n
var intType = nilOrSysInt()
if intType.isNil: intType = newType(tyInt, iter)
rawAddSon(result, intType)
proc createStateField(iter: PSym): PSym =
result = newSym(skField, getIdent(":state"), iter, iter.info)
result.typ = getStateType(iter)
proc createEnvObj(owner: PSym): PType =
# YYY meh, just add the state field for every closure for now, it's too
# hard to figure out if it comes from a closure iterator:
result = createObj(owner, owner.info)
rawAddField(result, createStateField(owner))
proc newIterResult(iter: PSym): PSym =
if resultPos < iter.ast.len:
result = iter.ast.sons[resultPos].sym
else:
# XXX a bit hacky:
result = newSym(skResult, getIdent":result", iter, iter.info)
result.typ = iter.typ.sons[0]
incl(result.flags, sfUsed)
iter.ast.add newSymNode(result)
proc addHiddenParam(routine: PSym, param: PSym) =
assert param.kind == skParam
var params = routine.ast.sons[paramsPos]
# -1 is correct here as param.position is 0 based but we have at position 0
# some nkEffect node:
param.position = params.len-1
addSon(params, newSymNode(param))
incl(routine.typ.flags, tfCapturesEnv)
assert sfFromGeneric in param.flags
#echo "produced environment: ", param.id, " for ", routine.name.s
proc getHiddenParam(routine: PSym): PSym =
let params = routine.ast.sons[paramsPos]
let hidden = lastSon(params)
internalAssert hidden.kind == nkSym and hidden.sym.kind == skParam
result = hidden.sym
assert sfFromGeneric in result.flags
proc getEnvParam(routine: PSym): PSym =
let params = routine.ast.sons[paramsPos]
let hidden = lastSon(params)
if hidden.kind == nkSym and hidden.sym.name.s == paramName:
result = hidden.sym
assert sfFromGeneric in result.flags
proc initIter(iter: PSym): TIter =
result.fn = iter
if iter.kind == skClosureIterator:
var cp = getEnvParam(iter)
if cp == nil:
result.obj = createEnvObj(iter)
cp = newSym(skParam, getIdent(paramName), iter, iter.info)
incl(cp.flags, sfFromGeneric)
cp.typ = newType(tyRef, iter)
rawAddSon(cp.typ, result.obj)
addHiddenParam(iter, cp)
else:
result.obj = cp.typ.sons[0]
assert result.obj.kind == tyObject
internalAssert result.obj.n.len > 0
result.state = result.obj.n[0].sym
result.closureParam = cp
if iter.typ.sons[0] != nil:
result.resultSym = newIterResult(iter)
#iter.ast.add(newSymNode(c.resultSym))
proc newOuterContext(fn: PSym): POuterContext =
new(result)
result.fn = fn
result.capturedVars = initIntSet()
result.processed = initIntSet()
initIdNodeTable(result.localsToAccess)
initIdTable(result.lambdasToEnv)
proc newEnv(o: POuterContext; up: PEnv, n: PNode; owner: PSym): PEnv =
new(result)
result.capturedVars = @[]
result.up = up
result.attachedNode = n
result.fn = owner
result.vars = initIntSet()
result.next = o.head
o.head = result
if owner.kind != skModule and (up == nil or up.fn != owner):
let param = getEnvParam(owner)
if param != nil:
result.obj = param.typ.sons[0]
assert result.obj.kind == tyObject
if result.obj.isNil:
result.obj = createEnvObj(owner)
proc addCapturedVar(e: PEnv, v: PSym) =
for x in e.capturedVars:
if x == v: return
e.capturedVars.add(v)
addField(e.obj, v)
proc newCall(a: PSym, b: PNode): PNode =
result = newNodeI(nkCall, a.info)
result.add newSymNode(a)
result.add b
proc isInnerProc(s, outerProc: PSym): bool =
if s.kind in {skProc, skMethod, skConverter, skClosureIterator}:
var owner = s.skipGenericOwner
while true:
if owner.isNil: return false
if owner == outerProc: return true
owner = owner.owner
#s.typ.callConv == ccClosure
proc addClosureParam(fn: PSym; e: PEnv) =
var cp = getEnvParam(fn)
if cp == nil:
cp = newSym(skParam, getIdent(paramName), fn, fn.info)
incl(cp.flags, sfFromGeneric)
cp.typ = newType(tyRef, fn)
rawAddSon(cp.typ, e.obj)
addHiddenParam(fn, cp)
#else:
#cp.typ.sons[0] = e.obj
#assert e.obj.kind == tyObject
proc illegalCapture(s: PSym): bool {.inline.} =
result = skipTypes(s.typ, abstractInst).kind in
{tyVar, tyOpenArray, tyVarargs} or
s.kind == skResult
proc interestingVar(s: PSym): bool {.inline.} =
result = s.kind in {skVar, skLet, skTemp, skForVar, skParam, skResult} and
sfGlobal notin s.flags
proc nestedAccess(top: PEnv; local: PSym): PNode =
# Parts after the transformation are in []:
#
# proc main =
# var [:env.]foo = 23
# proc outer(:paramO) =
# [var :envO; createClosure(:envO); :envO.up = paramO]
# proc inner(:paramI) =
# echo [:paramI.up.]foo
# inner([:envO])
# outer([:env])
if not interestingVar(local) or top.fn == local.owner:
return nil
# check it's in fact a captured variable:
var it = top
while it != nil:
if it.vars.contains(local.id): break
it = it.up
if it == nil: return nil
let envParam = top.fn.getEnvParam
internalAssert(not envParam.isNil)
var access = newSymNode(envParam)
it = top.up
while it != nil:
if it.vars.contains(local.id):
access = indirectAccess(access, local, local.info)
return access
internalAssert it.upField != nil
access = indirectAccess(access, it.upField, local.info)
it = it.up
when false:
# Type based expression construction works too, but turned out to hide
# other bugs:
while true:
let obj = access.typ.sons[0]
let field = getFieldFromObj(obj, local)
if field != nil:
return rawIndirectAccess(access, field, local.info)
let upField = lookupInRecord(obj.n, getIdent(upName))
if upField == nil: break
access = rawIndirectAccess(access, upField, local.info)
return nil
proc createUpField(obj, fieldType: PType): PSym =
let pos = obj.n.len
result = newSym(skField, getIdent(upName), obj.owner, obj.owner.info)
result.typ = newType(tyRef, obj.owner)
result.position = pos
rawAddSon(result.typ, fieldType)
#rawAddField(obj, result)
addField(obj, result)
proc captureVar(o: POuterContext; top: PEnv; local: PSym;
info: TLineInfo): bool =
# first check if we should be concerned at all:
var it = top
while it != nil:
if it.vars.contains(local.id): break
it = it.up
if it == nil: return false
# yes, so mark every 'up' pointer as taken:
if illegalCapture(local) or top.fn.typ.callConv notin {ccClosure, ccDefault}:
localError(info, errIllegalCaptureX, local.name.s)
it = top
while it != nil:
if it.vars.contains(local.id): break
# keep in mind that the first element of the chain belong to top.fn itself
# and these don't need any upFields
if it.upField == nil and it.up != nil and it.fn != top.fn:
it.upField = createUpField(it.obj, it.up.obj)
if it.fn != local.owner:
it.fn.typ.callConv = ccClosure
incl(it.fn.typ.flags, tfCapturesEnv)
var u = it.up
while u != nil and u.fn == it.fn: u = u.up
addClosureParam(it.fn, u)
if idTableGet(o.lambdasToEnv, it.fn) == nil:
if u != nil: idTablePut(o.lambdasToEnv, it.fn, u)
it = it.up
# don't do this: 'top' might not require a closure:
#if idTableGet(o.lambdasToEnv, it.fn) == nil:
# idTablePut(o.lambdasToEnv, it.fn, top)
# mark as captured:
#if top.iter != nil:
# if not containsOrIncl(o.capturedVars, local.id):
# #addField(top.iter.obj, local)
# addCapturedVar(it, local)
#else:
incl(o.capturedVars, local.id)
addCapturedVar(it, local)
result = true
proc semCaptureSym*(s, owner: PSym) =
if interestingVar(s) and owner.id != s.owner.id and s.kind != skResult:
if owner.typ != nil and not isGenericRoutine(owner):
# XXX: is this really safe?
# if we capture a var from another generic routine,
# it won't be consider captured.
owner.typ.callConv = ccClosure
#echo "semCaptureSym ", owner.name.s, owner.id, " ", s.name.s, s.id
# since the analysis is not entirely correct, we don't set 'tfCapturesEnv'
# here
proc gatherVars(o: POuterContext; e: PEnv; n: PNode): int =
# gather used vars for closure generation; returns number of captured vars
if n == nil: return 0
case n.kind
of nkSym:
var s = n.sym
if interestingVar(s) and e.fn != s.owner:
if captureVar(o, e, s, n.info): result = 1
of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit, nkClosure, nkProcDef,
nkMethodDef, nkConverterDef, nkMacroDef, nkTemplateDef, nkTypeSection:
discard
else:
for k in countup(0, sonsLen(n) - 1):
result += gatherVars(o, e, n.sons[k])
proc generateThunk(prc: PNode, dest: PType): PNode =
## Converts 'prc' into '(thunk, nil)' so that it's compatible with
## a closure.
# we cannot generate a proper thunk here for GC-safety reasons (see internal
# documentation):
if gCmd == cmdCompileToJS: return prc
result = newNodeIT(nkClosure, prc.info, dest)
var conv = newNodeIT(nkHiddenStdConv, prc.info, dest)
conv.add(emptyNode)
conv.add(prc)
result.add(conv)
result.add(newNodeIT(nkNilLit, prc.info, getSysType(tyNil)))
proc transformOuterConv(n: PNode): PNode =
# numeric types need range checks:
var dest = skipTypes(n.typ, abstractVarRange)
var source = skipTypes(n.sons[1].typ, abstractVarRange)
if dest.kind == tyProc:
if dest.callConv == ccClosure and source.callConv == ccDefault:
result = generateThunk(n.sons[1], dest)
proc makeClosure(prc: PSym; env: PNode; info: TLineInfo): PNode =
result = newNodeIT(nkClosure, info, prc.typ)
result.add(newSymNode(prc))
if env == nil:
result.add(newNodeIT(nkNilLit, info, getSysType(tyNil)))
else:
result.add(env)
proc newClosureCreationVar(e: PEnv): PNode =
var v = newSym(skVar, getIdent(envName), e.fn, e.attachedNode.info)
incl(v.flags, sfShadowed)
v.typ = newType(tyRef, e.fn)
v.typ.rawAddSon(e.obj)
if e.fn.kind == skClosureIterator:
let it = initIter(e.fn)
addUniqueField(it.obj, v)
result = indirectAccess(newSymNode(it.closureParam), v, v.info)
else:
result = newSymNode(v)
proc getClosureVar(e: PEnv): PNode =
if e.createdVar == nil:
result = newClosureCreationVar(e)
e.createdVar = result
else:
result = e.createdVar
proc findEnv(o: POuterContext; s: PSym): PEnv =
var env = o.head
while env != nil:
if env.fn == s: break
env = env.next
internalAssert env != nil and env.up != nil
result = env.up
while result.fn == s: result = result.up
proc transformInnerProc(o: POuterContext; e: PEnv, n: PNode): PNode =
case n.kind
of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: discard
of nkSym:
let s = n.sym
if s == e.fn:
# recursive calls go through (lambda, hiddenParam):
result = makeClosure(s, getEnvParam(s).newSymNode, n.info)
elif isInnerProc(s, o.fn) and s.typ.callConv == ccClosure:
# ugh: call to some other inner proc;
result = makeClosure(s, findEnv(o, s).getClosureVar, n.info)
else:
# captured symbol?
result = nestedAccess(e, n.sym)
#result = idNodeTableGet(i.localsToAccess, n.sym)
#of nkLambdaKinds, nkIteratorDef:
# if n.typ != nil:
# result = transformInnerProc(o, e, n.sons[namePos])
#of nkClosure:
# let x = transformInnerProc(o, e, n.sons[0])
# if x != nil: n.sons[0] = x
of nkProcDef, nkMethodDef, nkConverterDef, nkMacroDef, nkTemplateDef,
nkLambdaKinds, nkIteratorDef, nkClosure:
# don't recurse here:
discard
else:
for j in countup(0, sonsLen(n) - 1):
let x = transformInnerProc(o, e, n.sons[j])
if x != nil: n.sons[j] = x
proc closureCreationPoint(n: PNode): PNode =
if n.kind == nkStmtList and n.len >= 1 and n[0].kind == nkEmpty:
# we already have a free slot
result = n
else:
result = newNodeI(nkStmtList, n.info)
result.add(emptyNode)
result.add(n)
#result.flags.incl nfLL
proc addParamsToEnv(fn: PSym; env: PEnv) =
let params = fn.typ.n
for i in 1.. <params.len:
if params.sons[i].kind != nkSym:
internalError(params.info, "liftLambdas: strange params")
let param = params.sons[i].sym
env.vars.incl(param.id)
# put the 'result' into the environment so it can be captured:
let ast = fn.ast
if resultPos < sonsLen(ast) and ast.sons[resultPos].kind == nkSym:
env.vars.incl(ast.sons[resultPos].sym.id)
proc searchForInnerProcs(o: POuterContext, n: PNode, env: PEnv) =
if n == nil: return
case n.kind
of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit:
discard
of nkSym:
let fn = n.sym
if isInnerProc(fn, o.fn) and not containsOrIncl(o.processed, fn.id):
let body = fn.getBody
# handle deeply nested captures:
let ex = closureCreationPoint(body)
let envB = newEnv(o, env, ex, fn)
addParamsToEnv(fn, envB)
searchForInnerProcs(o, body, envB)
fn.ast.sons[bodyPos] = ex
let capturedCounter = gatherVars(o, envB, body)
# dummy closure param needed?
if capturedCounter == 0 and fn.typ.callConv == ccClosure:
#assert tfCapturesEnv notin n.sym.typ.flags
if idTableGet(o.lambdasToEnv, fn) == nil:
idTablePut(o.lambdasToEnv, fn, env)
addClosureParam(fn, env)
elif fn.getEnvParam != nil:
# only transform if it really needs a closure:
let ti = transformInnerProc(o, envB, body)
if ti != nil: fn.ast.sons[bodyPos] = ti
of nkLambdaKinds, nkIteratorDef:
if n.typ != nil:
searchForInnerProcs(o, n.sons[namePos], env)
of nkWhileStmt, nkForStmt, nkParForStmt, nkBlockStmt:
# some nodes open a new scope, so they are candidates for the insertion
# of closure creation; however for simplicity we merge closures between
# branches, in fact, only loop bodies are of interest here as only they
# yield observable changes in semantics. For Zahary we also
# include ``nkBlock``. We don't do this for closure iterators because
# 'yield' can produce wrong code otherwise (XXX show example):
if env.fn.kind != skClosureIterator:
var body = n.len-1
for i in countup(0, body - 1): searchForInnerProcs(o, n.sons[i], env)
# special handling for the loop body:
let ex = closureCreationPoint(n.sons[body])
searchForInnerProcs(o, n.sons[body], newEnv(o, env, ex, env.fn))
n.sons[body] = ex
else:
for i in countup(0, sonsLen(n) - 1):
searchForInnerProcs(o, n.sons[i], env)
of nkVarSection, nkLetSection:
# we need to compute a mapping var->declaredBlock. Note: The definition
# counts, not the block where it is captured!
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
if it.kind == nkCommentStmt: discard
elif it.kind == nkIdentDefs:
var L = sonsLen(it)
if it.sons[0].kind == nkSym:
# this can be false for recursive invocations that already
# transformed it into 'env.varName':
env.vars.incl(it.sons[0].sym.id)
searchForInnerProcs(o, it.sons[L-1], env)
elif it.kind == nkVarTuple:
var L = sonsLen(it)
for j in countup(0, L-3):
#echo "set: ", it.sons[j].sym.name.s, " ", o.currentBlock == nil
if it.sons[j].kind == nkSym:
env.vars.incl(it.sons[j].sym.id)
searchForInnerProcs(o, it.sons[L-1], env)
else:
internalError(it.info, "searchForInnerProcs")
of nkClosure:
searchForInnerProcs(o, n.sons[0], env)
of nkProcDef, nkMethodDef, nkConverterDef, nkMacroDef, nkTemplateDef,
nkTypeSection:
# don't recurse here:
discard
else:
for i in countup(0, sonsLen(n) - 1):
searchForInnerProcs(o, n.sons[i], env)
proc newAsgnStmt(le, ri: PNode, info: TLineInfo): PNode =
# Bugfix: unfortunately we cannot use 'nkFastAsgn' here as that would
# mean to be able to capture string literals which have no GC header.
# However this can only happen if the capture happens through a parameter,
# which is however the only case when we generate an assignment in the first
# place.
result = newNodeI(nkAsgn, info, 2)
result.sons[0] = le
result.sons[1] = ri
proc rawClosureCreation(o: POuterContext, scope: PEnv; env: PNode): PNode =
result = newNodeI(nkStmtList, env.info)
if env.kind == nkSym:
var v = newNodeI(nkVarSection, env.info)
addVar(v, env)
result.add(v)
# add 'new' statement:
result.add(newCall(getSysSym"internalNew", env))
# add assignment statements:
for local in scope.capturedVars:
let fieldAccess = indirectAccess(env, local, env.info)
if local.kind == skParam:
# maybe later: (sfByCopy in local.flags)
# add ``env.param = param``
result.add(newAsgnStmt(fieldAccess, newSymNode(local), env.info))
# it can happen that we already captured 'local' in some other environment
# then we capture by copy for now. This is not entirely correct but better
# than nothing:
let existing = idNodeTableGet(o.localsToAccess, local)
if existing.isNil:
idNodeTablePut(o.localsToAccess, local, fieldAccess)
else:
result.add(newAsgnStmt(fieldAccess, existing, env.info))
if scope.upField != nil:
# "up" chain has been used:
if scope.up.fn != scope.fn:
# crosses function boundary:
result.add(newAsgnStmt(indirectAccess(env, scope.upField, env.info),
newSymNode(getEnvParam(scope.fn)), env.info))
else:
result.add(newAsgnStmt(indirectAccess(env, scope.upField, env.info),
getClosureVar(scope.up), env.info))
proc generateClosureCreation(o: POuterContext, scope: PEnv): PNode =
var env = getClosureVar(scope)
result = rawClosureCreation(o, scope, env)
proc generateIterClosureCreation(o: POuterContext; env: PEnv;
scope: PNode): PNode =
if env.createdVarComesFromIter or env.createdVar.isNil:
# we have to create a new closure:
result = newClosureCreationVar(env)
let cc = rawClosureCreation(o, env, result)
var insertPoint = scope.sons[0]
if insertPoint.kind == nkEmpty: scope.sons[0] = cc
else:
assert cc.kind == nkStmtList and insertPoint.kind == nkStmtList
for x in cc: insertPoint.add(x)
if env.createdVar == nil: env.createdVar = result
else:
result = env.createdVar
env.createdVarComesFromIter = true
proc interestingIterVar(s: PSym): bool {.inline.} =
result = s.kind in {skVar, skLet, skTemp, skForVar} and sfGlobal notin s.flags
proc transformOuterProc(o: POuterContext, n: PNode, it: TIter): PNode
proc transformYield(c: POuterContext, n: PNode, it: TIter): PNode =
assert it.state != nil
assert it.state.typ != nil
assert it.state.typ.n != nil
inc it.state.typ.n.sons[1].intVal
let stateNo = it.state.typ.n.sons[1].intVal
var stateAsgnStmt = newNodeI(nkAsgn, n.info)
stateAsgnStmt.add(rawIndirectAccess(newSymNode(it.closureParam),
it.state, n.info))
stateAsgnStmt.add(newIntTypeNode(nkIntLit, stateNo, getSysType(tyInt)))
var retStmt = newNodeI(nkReturnStmt, n.info)
if n.sons[0].kind != nkEmpty:
var a = newNodeI(nkAsgn, n.sons[0].info)
var retVal = transformOuterProc(c, n.sons[0], it)
addSon(a, newSymNode(it.resultSym))
addSon(a, if retVal.isNil: n.sons[0] else: retVal)
retStmt.add(a)
else:
retStmt.add(emptyNode)
var stateLabelStmt = newNodeI(nkState, n.info)
stateLabelStmt.add(newIntTypeNode(nkIntLit, stateNo, getSysType(tyInt)))
result = newNodeI(nkStmtList, n.info)
result.add(stateAsgnStmt)
result.add(retStmt)
result.add(stateLabelStmt)
proc transformReturn(c: POuterContext, n: PNode, it: TIter): PNode =
result = newNodeI(nkStmtList, n.info)
var stateAsgnStmt = newNodeI(nkAsgn, n.info)
stateAsgnStmt.add(rawIndirectAccess(newSymNode(it.closureParam), it.state,
n.info))
stateAsgnStmt.add(newIntTypeNode(nkIntLit, -1, getSysType(tyInt)))
result.add(stateAsgnStmt)
result.add(n)
proc outerProcSons(o: POuterContext, n: PNode, it: TIter) =
for i in countup(0, sonsLen(n) - 1):
let x = transformOuterProc(o, n.sons[i], it)
if x != nil: n.sons[i] = x
proc liftIterSym(n: PNode; owner: PSym): PNode =
# transforms (iter) to (let env = newClosure[iter](); (iter, env))
let iter = n.sym
assert iter.kind == skClosureIterator
result = newNodeIT(nkStmtListExpr, n.info, n.typ)
let hp = getHiddenParam(iter)
let env = newSym(skLet, iter.name, owner, n.info)
env.typ = hp.typ
env.flags = hp.flags
var v = newNodeI(nkVarSection, n.info)
addVar(v, newSymNode(env))
result.add(v)
# add 'new' statement:
let envAsNode = env.newSymNode
result.add newCall(getSysSym"internalNew", envAsNode)
result.add makeClosure(iter, envAsNode, n.info)
when false:
proc transformRemainingLocals(n: PNode; it: TIter): PNode =
assert it.fn.kind == skClosureIterator
result = n
case n.kind
of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: discard
of nkSym:
let local = n.sym
if interestingIterVar(local) and it.fn == local.owner:
addUniqueField(it.obj, local)
result = indirectAccess(newSymNode(it.closureParam), local, n.info)
else:
result = newNodeI(n.kind, n.info, n.len)
for i in 0.. <n.safeLen:
result.sons[i] = transformRemainingLocals(n.sons[i], it)
template envActive(env): expr =
(env.capturedVars.len > 0 or env.upField != nil)
# We have to split up environment creation in 2 steps:
# 1. Generate it and store it in env.replacementNode
# 2. Insert replacementNode into its forseen slot.
# This split is necessary so that assignments belonging to closure
# creation like 'env.param = param' are not transformed
# into 'env.param = env.param'.
proc createEnvironments(o: POuterContext) =
var env = o.head
while env != nil:
if envActive(env):
var scope = env.attachedNode
assert scope.kind == nkStmtList
if scope.sons[0].kind == nkEmpty:
# prepare for closure construction:
env.replacementNode = generateClosureCreation(o, env)
env = env.next
proc finishEnvironments(o: POuterContext) =
var env = o.head
while env != nil:
if env.replacementNode != nil:
var scope = env.attachedNode
assert scope.kind == nkStmtList
if scope.sons[0].kind == nkEmpty:
# change the empty node to contain the closure construction:
scope.sons[0] = env.replacementNode
when false:
if env.fn.kind == skClosureIterator:
scope.sons[0] = transformRemainingLocals(env.replacementNode,
initIter(env.fn))
else:
scope.sons[0] = env.replacementNode
env = env.next
proc transformOuterProcBody(o: POuterContext, n: PNode; it: TIter): PNode =
if nfLL in n.flags:
result = nil
elif it.fn.kind == skClosureIterator:
# unfortunately control flow is still convoluted and we can end up
# multiple times here for the very same iterator. We shield against this
# with some rather primitive check for now:
if n.kind == nkStmtList and n.len > 0:
if n.sons[0].kind == nkGotoState: return nil
if n.len > 1 and n[1].kind == nkStmtList and n[1].len > 0 and
n[1][0].kind == nkGotoState:
return nil
result = newNodeI(nkStmtList, it.fn.info)
var gs = newNodeI(nkGotoState, it.fn.info)
assert it.closureParam != nil
assert it.state != nil
gs.add(rawIndirectAccess(newSymNode(it.closureParam), it.state, it.fn.info))
result.add(gs)
var state0 = newNodeI(nkState, it.fn.info)
state0.add(newIntNode(nkIntLit, 0))
result.add(state0)
let newBody = transformOuterProc(o, n, it)
if newBody != nil:
result.add(newBody)
else:
result.add(n)
var stateAsgnStmt = newNodeI(nkAsgn, it.fn.info)
stateAsgnStmt.add(rawIndirectAccess(newSymNode(it.closureParam),
it.state, it.fn.info))
stateAsgnStmt.add(newIntTypeNode(nkIntLit, -1, getSysType(tyInt)))
result.add(stateAsgnStmt)
result.flags.incl nfLL
else:
result = transformOuterProc(o, n, it)
if result != nil: result.flags.incl nfLL
proc transformOuterProc(o: POuterContext, n: PNode; it: TIter): PNode =
if n == nil or nfLL in n.flags: return nil
case n.kind
of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: discard
of nkSym:
var local = n.sym
if isInnerProc(local, o.fn) and o.processed.contains(local.id):
o.processed.excl(local.id)
let body = local.getBody
let newBody = transformOuterProcBody(o, body, initIter(local))
if newBody != nil:
local.ast.sons[bodyPos] = newBody
if it.fn.kind == skClosureIterator and interestingIterVar(local) and
it.fn == local.owner:
# every local goes through the closure:
#if not containsOrIncl(o.capturedVars, local.id):
# addField(it.obj, local)
if contains(o.capturedVars, local.id):
# change 'local' to 'closure.local', unless it's a 'byCopy' variable:
# if sfByCopy notin local.flags:
result = idNodeTableGet(o.localsToAccess, local)
assert result != nil, "cannot find: " & local.name.s
return result
else:
addUniqueField(it.obj, local)
return indirectAccess(newSymNode(it.closureParam), local, n.info)
if local.kind == skClosureIterator:
# consider: [i1, i2, i1] Since we merged the iterator's closure
# with the captured owning variables, we need to generate the
# closure generation code again:
if local == o.fn or local == it.fn:
message(n.info, errRecursiveDependencyX, local.name.s)
# XXX why doesn't this work?
var closure = PEnv(idTableGet(o.lambdasToEnv, local))
if closure.isNil:
return liftIterSym(n, o.fn)
else:
let createdVar = generateIterClosureCreation(o, closure,
closure.attachedNode)
let lpt = getHiddenParam(local).typ
if lpt != createdVar.typ:
assert lpt.kind == tyRef and createdVar.typ.kind == tyRef
# fix bug 'tshallowcopy_closures' but report if this gets any weirder:
if createdVar.typ.sons[0].len == 1 and lpt.sons[0].len >= 1:
createdVar.typ = lpt
if createdVar.kind == nkSym: createdVar.sym.typ = lpt
closure.obj = lpt.sons[0]
else:
internalError(n.info, "environment computation failed")
return makeClosure(local, createdVar, n.info)
var closure = PEnv(idTableGet(o.lambdasToEnv, local))
if closure != nil:
# we need to replace the lambda with '(lambda, env)':
let a = closure.createdVar
if a != nil:
return makeClosure(local, a, n.info)
else:
# can happen for dummy closures:
var scope = closure.attachedNode
assert scope.kind == nkStmtList
if scope.sons[0].kind == nkEmpty:
# change the empty node to contain the closure construction:
scope.sons[0] = generateClosureCreation(o, closure)
let x = closure.createdVar
assert x != nil
return makeClosure(local, x, n.info)
if not contains(o.capturedVars, local.id): return
# change 'local' to 'closure.local', unless it's a 'byCopy' variable:
# if sfByCopy notin local.flags:
result = idNodeTableGet(o.localsToAccess, local)
assert result != nil, "cannot find: " & local.name.s
# else it is captured by copy and this means that 'outer' should continue
# to access the local as a local.
of nkLambdaKinds, nkIteratorDef:
if n.typ != nil:
result = transformOuterProc(o, n.sons[namePos], it)
of nkProcDef, nkMethodDef, nkConverterDef, nkMacroDef, nkTemplateDef:
# don't recurse here:
discard
of nkClosure:
if n.sons[0].kind == nkSym:
var local = n.sons[0].sym
if isInnerProc(local, o.fn) and o.processed.contains(local.id):
o.processed.excl(local.id)
let body = local.getBody
let newBody = transformOuterProcBody(o, body, initIter(local))
if newBody != nil:
local.ast.sons[bodyPos] = newBody
when false:
if n.sons[1].kind == nkSym:
var local = n.sons[1].sym
if it.fn.kind == skClosureIterator and interestingIterVar(local) and
it.fn == local.owner:
# every local goes through the closure:
addUniqueField(it.obj, local)
n.sons[1] = indirectAccess(newSymNode(it.closureParam), local, n.info)
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
let x = transformOuterProc(o, n.sons[1], it)
if x != nil: n.sons[1] = x
result = transformOuterConv(n)
of nkYieldStmt:
if it.fn.kind == skClosureIterator: result = transformYield(o, n, it)
else: outerProcSons(o, n, it)
of nkReturnStmt:
if it.fn.kind == skClosureIterator: result = transformReturn(o, n, it)
else: outerProcSons(o, n, it)
else:
outerProcSons(o, n, it)
proc liftLambdas*(fn: PSym, body: PNode): PNode =
# XXX gCmd == cmdCompileToJS does not suffice! The compiletime stuff needs
# the transformation even when compiling to JS ...
if body.kind == nkEmpty or gCmd == cmdCompileToJS or
fn.skipGenericOwner.kind != skModule:
# ignore forward declaration:
result = body
else:
#if fn.name.s == "sort":
# echo rendertree(fn.ast, {renderIds})
var o = newOuterContext(fn)
let ex = closureCreationPoint(body)
let env = newEnv(o, nil, ex, fn)
addParamsToEnv(fn, env)
searchForInnerProcs(o, body, env)
createEnvironments(o)
if fn.kind == skClosureIterator:
result = transformOuterProcBody(o, body, initIter(fn))
else:
discard transformOuterProcBody(o, body, initIter(fn))
result = ex
finishEnvironments(o)
#if fn.name.s == "parseLong":
# echo rendertree(result, {renderIds})
proc liftLambdasForTopLevel*(module: PSym, body: PNode): PNode =
if body.kind == nkEmpty or gCmd == cmdCompileToJS:
result = body
else:
var o = newOuterContext(module)
let ex = closureCreationPoint(body)
let env = newEnv(o, nil, ex, module)
searchForInnerProcs(o, body, env)
createEnvironments(o)
discard transformOuterProc(o, body, initIter(module))
finishEnvironments(o)
result = ex
# ------------------- iterator transformation --------------------------------
proc liftForLoop*(body: PNode): PNode =
# problem ahead: the iterator could be invoked indirectly, but then
# we don't know what environment to create here:
#
# iterator count(): int =
# yield 0
#
# iterator count2(): int =
# var x = 3
# yield x
# inc x
# yield x
#
# proc invoke(iter: iterator(): int) =
# for x in iter(): echo x
#
# --> When to create the closure? --> for the (count) occurrence!
discard """
for i in foo(): ...
Is transformed to:
cl = createClosure()
while true:
let i = foo(cl)
nkBreakState(cl.state)
...
"""
var L = body.len
internalAssert body.kind == nkForStmt and body[L-2].kind in nkCallKinds
var call = body[L-2]
result = newNodeI(nkStmtList, body.info)
# static binding?
var env: PSym
if call[0].kind == nkSym and call[0].sym.kind == skClosureIterator:
# createClosure()
let iter = call[0].sym
assert iter.kind == skClosureIterator
env = copySym(getHiddenParam(iter))
var v = newNodeI(nkVarSection, body.info)
addVar(v, newSymNode(env))
result.add(v)
# add 'new' statement:
result.add(newCall(getSysSym"internalNew", env.newSymNode))
var loopBody = newNodeI(nkStmtList, body.info, 3)
var whileLoop = newNodeI(nkWhileStmt, body.info, 2)
whileLoop.sons[0] = newIntTypeNode(nkIntLit, 1, getSysType(tyBool))
whileLoop.sons[1] = loopBody
result.add whileLoop
# setup loopBody:
# gather vars in a tuple:
var v2 = newNodeI(nkLetSection, body.info)
var vpart = newNodeI(if L == 3: nkIdentDefs else: nkVarTuple, body.info)
for i in 0 .. L-3:
assert body[i].kind == nkSym
body[i].sym.kind = skLet
addSon(vpart, body[i])
addSon(vpart, ast.emptyNode) # no explicit type
if not env.isNil:
call.sons[0] = makeClosure(call.sons[0].sym, env.newSymNode, body.info)
addSon(vpart, call)
addSon(v2, vpart)
loopBody.sons[0] = v2
var bs = newNodeI(nkBreakState, body.info)
bs.addSon(call.sons[0])
loopBody.sons[1] = bs
loopBody.sons[2] = body[L-1]