#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements lifting for type-bound operations
## (`=sink`, `=copy`, `=destroy`, `=deepCopy`, `=wasMoved`, `=dup`).
import modulegraphs, lineinfos, idents, ast, renderer, semdata,
sighashes, lowerings, options, types, msgs, magicsys, tables, ccgutils
from trees import isCaseObj
when defined(nimPreviewSlimSystem):
import std/assertions
type
TLiftCtx = object
g: ModuleGraph
info: TLineInfo # for construction
kind: TTypeAttachedOp
fn: PSym
asgnForType: PType
recurse: bool
addMemReset: bool # add wasMoved() call after destructor call
canRaise: bool
filterDiscriminator: PSym # we generating destructor for case branch
c: PContext # c can be nil, then we are called from lambdalifting!
idgen: IdGenerator
template destructor*(t: PType): PSym = getAttachedOp(c.g, t, attachedDestructor)
template assignment*(t: PType): PSym = getAttachedOp(c.g, t, attachedAsgn)
template asink*(t: PType): PSym = getAttachedOp(c.g, t, attachedSink)
proc fillBody(c: var TLiftCtx; t: PType; body, x, y: PNode)
proc produceSym(g: ModuleGraph; c: PContext; typ: PType; kind: TTypeAttachedOp;
info: TLineInfo; idgen: IdGenerator): PSym
proc createTypeBoundOps*(g: ModuleGraph; c: PContext; orig: PType; info: TLineInfo;
idgen: IdGenerator)
proc at(a, i: PNode, elemType: PType): PNode =
result = newNodeI(nkBracketExpr, a.info, 2)
result[0] = a
result[1] = i
result.typ = elemType
proc destructorOverriden(g: ModuleGraph; t: PType): bool =
let op = getAttachedOp(g, t, attachedDestructor)
op != nil and sfOverriden in op.flags
proc fillBodyTup(c: var TLiftCtx; t: PType; body, x, y: PNode) =
for i in 0..<t.len:
let lit = lowerings.newIntLit(c.g, x.info, i)
let b = if c.kind == attachedTrace: y else: y.at(lit, t[i])
fillBody(c, t[i], body, x.at(lit, t[i]), b)
proc dotField(x: PNode, f: PSym): PNode =
result = newNodeI(nkDotExpr, x.info, 2)
if x.typ.skipTypes(abstractInst).kind == tyVar:
result[0] = x.newDeref
else:
result[0] = x
result[1] = newSymNode(f, x.info)
result.typ = f.typ
proc newAsgnStmt(le, ri: PNode): PNode =
result = newNodeI(nkAsgn, le.info, 2)
result[0] = le
result[1] = ri
proc genBuiltin*(g: ModuleGraph; idgen: IdGenerator; magic: TMagic; name: string; i: PNode): PNode =
result = newNodeI(nkCall, i.info)
result.add createMagic(g, idgen, name, magic).newSymNode
result.add i
proc genBuiltin(c: var TLiftCtx; magic: TMagic; name: string; i: PNode): PNode =
result = genBuiltin(c.g, c.idgen, magic, name, i)
proc defaultOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
if c.kind in {attachedAsgn, attachedDeepCopy, attachedSink}:
body.add newAsgnStmt(x, y)
elif c.kind == attachedDestructor and c.addMemReset:
let call = genBuiltin(c, mDefault, "default", x)
call.typ = t
body.add newAsgnStmt(x, call)
elif c.kind == attachedWasMoved:
body.add genBuiltin(c, mWasMoved, "wasMoved", x)
proc genAddr(c: var TLiftCtx; x: PNode): PNode =
if x.kind == nkHiddenDeref:
checkSonsLen(x, 1, c.g.config)
result = x[0]
else:
result = newNodeIT(nkHiddenAddr, x.info, makeVarType(x.typ.owner, x.typ, c.idgen))
result.add x
proc genWhileLoop(c: var TLiftCtx; i, dest: PNode): PNode =
result = newNodeI(nkWhileStmt, c.info, 2)
let cmp = genBuiltin(c, mLtI, "<", i)
cmp.add genLen(c.g, dest)
cmp.typ = getSysType(c.g, c.info, tyBool)
result[0] = cmp
result[1] = newNodeI(nkStmtList, c.info)
proc genIf(c: var TLiftCtx; cond, action: PNode): PNode =
result = newTree(nkIfStmt, newTree(nkElifBranch, cond, action))
proc genContainerOf(c: var TLiftCtx; objType: PType, field, x: PSym): PNode =
# generate: cast[ptr ObjType](cast[int](addr(x)) - offsetOf(objType.field))
let intType = getSysType(c.g, unknownLineInfo, tyInt)
let addrOf = newNodeIT(nkAddr, c.info, makePtrType(x.owner, x.typ, c.idgen))
addrOf.add newDeref(newSymNode(x))
let castExpr1 = newNodeIT(nkCast, c.info, intType)
castExpr1.add newNodeIT(nkType, c.info, intType)
castExpr1.add addrOf
let dotExpr = newNodeIT(nkDotExpr, c.info, x.typ)
dotExpr.add newNodeIT(nkType, c.info, objType)
dotExpr.add newSymNode(field)
let offsetOf = genBuiltin(c, mOffsetOf, "offsetof", dotExpr)
offsetOf.typ = intType
let minusExpr = genBuiltin(c, mSubI, "-", castExpr1)
minusExpr.typ = intType
minusExpr.add offsetOf
let objPtr = makePtrType(objType.owner, objType, c.idgen)
result = newNodeIT(nkCast, c.info, objPtr)
result.add newNodeIT(nkType, c.info, objPtr)
result.add minusExpr
proc destructorCall(c: var TLiftCtx; op: PSym; x: PNode): PNode =
var destroy = newNodeIT(nkCall, x.info, op.typ[0])
destroy.add(newSymNode(op))
destroy.add genAddr(c, x)
if sfNeverRaises notin op.flags:
c.canRaise = true
if c.addMemReset:
result = newTree(nkStmtList, destroy, genBuiltin(c, mWasMoved, "wasMoved", x))
else:
result = destroy
proc genWasMovedCall(c: var TLiftCtx; op: PSym; x: PNode): PNode =
result = newNodeIT(nkCall, x.info, op.typ[0])
result.add(newSymNode(op))
result.add genAddr(c, x)
proc fillBodyObj(c: var TLiftCtx; n, body, x, y: PNode; enforceDefaultOp: bool) =
case n.kind
of nkSym:
if c.filterDiscriminator != nil: return
let f = n.sym
let b = if c.kind == attachedTrace: y else: y.dotField(f)
if (sfCursor in f.flags and f.typ.skipTypes(abstractInst).kind in {tyRef, tyProc} and
c.g.config.selectedGC in {gcArc, gcAtomicArc, gcOrc, gcHooks}) or
enforceDefaultOp:
defaultOp(c, f.typ, body, x.dotField(f), b)
else:
fillBody(c, f.typ, body, x.dotField(f), b)
of nkNilLit: discard
of nkRecCase:
# XXX This is only correct for 'attachedSink'!
var localEnforceDefaultOp = enforceDefaultOp
if c.kind == attachedSink:
# the value needs to be destroyed before we assign the selector
# or the value is lost
let prevKind = c.kind
let prevAddMemReset = c.addMemReset
c.kind = attachedDestructor
c.addMemReset = true
fillBodyObj(c, n, body, x, y, enforceDefaultOp = false)
c.kind = prevKind
c.addMemReset = prevAddMemReset
localEnforceDefaultOp = true
if c.kind != attachedDestructor:
# copy the selector before case stmt, but destroy after case stmt
fillBodyObj(c, n[0], body, x, y, enforceDefaultOp = false)
let oldfilterDiscriminator = c.filterDiscriminator
if c.filterDiscriminator == n[0].sym:
c.filterDiscriminator = nil # we have found the case part, proceed as normal
# we need to generate a case statement:
var caseStmt = newNodeI(nkCaseStmt, c.info)
# XXX generate 'if' that checks same branches
# generate selector:
var access = dotField(x, n[0].sym)
caseStmt.add(access)
var emptyBranches = 0
# copy the branches over, but replace the fields with the for loop body:
for i in 1..<n.len:
var branch = copyTree(n[i])
branch[^1] = newNodeI(nkStmtList, c.info)
fillBodyObj(c, n[i].lastSon, branch[^1], x, y,
enforceDefaultOp = localEnforceDefaultOp)
if branch[^1].len == 0: inc emptyBranches
caseStmt.add(branch)
if emptyBranches != n.len-1:
body.add(caseStmt)
if c.kind == attachedDestructor:
# destructor for selector is done after case stmt
fillBodyObj(c, n[0], body, x, y, enforceDefaultOp = false)
c.filterDiscriminator = oldfilterDiscriminator
of nkRecList:
for t in items(n): fillBodyObj(c, t, body, x, y, enforceDefaultOp)
else:
illFormedAstLocal(n, c.g.config)
proc fillBodyObjTImpl(c: var TLiftCtx; t: PType, body, x, y: PNode) =
if t.len > 0 and t[0] != nil:
fillBody(c, skipTypes(t[0], abstractPtrs), body, x, y)
fillBodyObj(c, t.n, body, x, y, enforceDefaultOp = false)
proc fillBodyObjT(c: var TLiftCtx; t: PType, body, x, y: PNode) =
var hasCase = isCaseObj(t.n)
var obj = t
while obj.len > 0 and obj[0] != nil:
obj = skipTypes(obj[0], abstractPtrs)
hasCase = hasCase or isCaseObj(obj.n)
if hasCase and c.kind in {attachedAsgn, attachedDeepCopy}:
# assignment for case objects is complex, we do:
# =destroy(dest)
# wasMoved(dest)
# for every field:
# `=` dest.field, src.field
# ^ this is what we used to do, but for 'result = result.sons[0]' it
# destroys 'result' too early.
# So this is what we really need to do:
# let blob {.cursor.} = dest # remembers the old dest.kind
# wasMoved(dest)
# dest.kind = src.kind
# for every field (dependent on dest.kind):
# `=` dest.field, src.field
# =destroy(blob)
var dummy = newSym(skTemp, getIdent(c.g.cache, lowerings.genPrefix), c.idgen, c.fn, c.info)
dummy.typ = y.typ
if ccgIntroducedPtr(c.g.config, dummy, y.typ):
# Because of potential aliasing when the src param is passed by ref, we need to check for equality here,
# because the wasMoved(dest) call would zero out src, if dest aliases src.
var cond = newTree(nkCall, newSymNode(c.g.getSysMagic(c.info, "==", mEqRef)),
newTreeIT(nkAddr, c.info, makePtrType(c.fn, x.typ, c.idgen), x), newTreeIT(nkAddr, c.info, makePtrType(c.fn, y.typ, c.idgen), y))
cond.typ = getSysType(c.g, x.info, tyBool)
body.add genIf(c, cond, newTreeI(nkReturnStmt, c.info, newNodeI(nkEmpty, c.info)))
var temp = newSym(skTemp, getIdent(c.g.cache, lowerings.genPrefix), c.idgen, c.fn, c.info)
temp.typ = x.typ
incl(temp.flags, sfFromGeneric)
var v = newNodeI(nkVarSection, c.info)
let blob = newSymNode(temp)
v.addVar(blob, x)
body.add v
#body.add newAsgnStmt(blob, x)
var wasMovedCall = newNodeI(nkCall, c.info)
wasMovedCall.add(newSymNode(createMagic(c.g, c.idgen, "wasMoved", mWasMoved)))
wasMovedCall.add x # mWasMoved does not take the address
body.add wasMovedCall
fillBodyObjTImpl(c, t, body, x, y)
when false:
# does not work yet due to phase-ordering problems:
assert t.destructor != nil
body.add destructorCall(c.g, t.destructor, blob)
let prevKind = c.kind
c.kind = attachedDestructor
fillBodyObjTImpl(c, t, body, blob, y)
c.kind = prevKind
else:
fillBodyObjTImpl(c, t, body, x, y)
proc boolLit*(g: ModuleGraph; info: TLineInfo; value: bool): PNode =
result = newIntLit(g, info, ord value)
result.typ = getSysType(g, info, tyBool)
proc getCycleParam(c: TLiftCtx): PNode =
assert c.kind == attachedAsgn
if c.fn.typ.len == 4:
result = c.fn.typ.n.lastSon
assert result.kind == nkSym
assert result.sym.name.s == "cyclic"
else:
result = boolLit(c.g, c.info, true)
proc newHookCall(c: var TLiftCtx; op: PSym; x, y: PNode): PNode =
#if sfError in op.flags:
# localError(c.config, x.info, "usage of '$1' is a user-defined error" % op.name.s)
result = newNodeI(nkCall, x.info)
result.add newSymNode(op)
if sfNeverRaises notin op.flags:
c.canRaise = true
if op.typ.sons[1].kind == tyVar:
result.add genAddr(c, x)
else:
result.add x
if y != nil:
result.add y
if op.typ.len == 4:
assert y != nil
if c.fn.typ.len == 4:
result.add getCycleParam(c)
else:
# assume the worst: A cycle is created:
result.add boolLit(c.g, y.info, true)
proc newOpCall(c: var TLiftCtx; op: PSym; x: PNode): PNode =
result = newNodeIT(nkCall, x.info, op.typ[0])
result.add(newSymNode(op))
result.add x
if sfNeverRaises notin op.flags:
c.canRaise = true
proc newDeepCopyCall(c: var TLiftCtx; op: PSym; x, y: PNode): PNode =
result = newAsgnStmt(x, newOpCall(c, op, y))
proc usesBuiltinArc(t: PType): bool =
proc wrap(t: PType): bool {.nimcall.} = ast.isGCedMem(t)
result = types.searchTypeFor(t, wrap)
proc useNoGc(c: TLiftCtx; t: PType): bool {.inline.} =
result = optSeqDestructors in c.g.config.globalOptions and
({tfHasGCedMem, tfHasOwned} * t.flags != {} or usesBuiltinArc(t))
proc requiresDestructor(c: TLiftCtx; t: PType): bool {.inline.} =
result = optSeqDestructors in c.g.config.globalOptions and
containsGarbageCollectedRef(t)
proc instantiateGeneric(c: var TLiftCtx; op: PSym; t, typeInst: PType): PSym =
if c.c != nil and typeInst != nil:
result = c.c.instTypeBoundOp(c.c, op, typeInst, c.info, attachedAsgn, 1)
else:
localError(c.g.config, c.info,
"cannot generate destructor for generic type: " & typeToString(t))
result = nil
proc considerAsgnOrSink(c: var TLiftCtx; t: PType; body, x, y: PNode;
field: var PSym): bool =
if optSeqDestructors in c.g.config.globalOptions:
var op = field
let destructorOverriden = destructorOverriden(c.g, t)
if op != nil and op != c.fn and
(sfOverriden in op.flags or destructorOverriden):
if sfError in op.flags:
incl c.fn.flags, sfError
#else:
# markUsed(c.g.config, c.info, op, c.g.usageSym)
onUse(c.info, op)
body.add newHookCall(c, op, x, y)
result = true
elif op == nil and destructorOverriden:
op = produceSym(c.g, c.c, t, c.kind, c.info, c.idgen)
body.add newHookCall(c, op, x, y)
result = true
elif tfHasAsgn in t.flags:
var op: PSym
if sameType(t, c.asgnForType):
# generate recursive call:
if c.recurse:
op = c.fn
else:
c.recurse = true
return false
else:
op = field
if op == nil:
op = produceSym(c.g, c.c, t, c.kind, c.info, c.idgen)
if sfError in op.flags:
incl c.fn.flags, sfError
#else:
# markUsed(c.g.config, c.info, op, c.g.usageSym)
onUse(c.info, op)
# We also now do generic instantiations in the destructor lifting pass:
if op.ast.isGenericRoutine:
op = instantiateGeneric(c, op, t, t.typeInst)
field = op
#echo "trying to use ", op.ast
#echo "for ", op.name.s, " "
#debug(t)
#return false
assert op.ast[genericParamsPos].kind == nkEmpty
body.add newHookCall(c, op, x, y)
result = true
proc addDestructorCall(c: var TLiftCtx; orig: PType; body, x: PNode) =
let t = orig.skipTypes(abstractInst - {tyDistinct})
var op = t.destructor
if op != nil and sfOverriden in op.flags:
if op.ast.isGenericRoutine:
# patch generic destructor:
op = instantiateGeneric(c, op, t, t.typeInst)
setAttachedOp(c.g, c.idgen.module, t, attachedDestructor, op)
if op == nil and (useNoGc(c, t) or requiresDestructor(c, t)):
op = produceSym(c.g, c.c, t, attachedDestructor, c.info, c.idgen)
doAssert op != nil
doAssert op == t.destructor
if op != nil:
#markUsed(c.g.config, c.info, op, c.g.usageSym)
onUse(c.info, op)
body.add destructorCall(c, op, x)
elif useNoGc(c, t):
internalError(c.g.config, c.info,
"type-bound operator could not be resolved")
proc considerUserDefinedOp(c: var TLiftCtx; t: PType; body, x, y: PNode): bool =
case c.kind
of attachedDestructor:
var op = t.destructor
if op != nil and sfOverriden in op.flags:
if op.ast.isGenericRoutine:
# patch generic destructor:
op = instantiateGeneric(c, op, t, t.typeInst)
setAttachedOp(c.g, c.idgen.module, t, attachedDestructor, op)
#markUsed(c.g.config, c.info, op, c.g.usageSym)
onUse(c.info, op)
body.add destructorCall(c, op, x)
result = true
#result = addDestructorCall(c, t, body, x)
of attachedAsgn, attachedSink, attachedTrace:
var op = getAttachedOp(c.g, t, c.kind)
if op != nil and sfOverriden in op.flags:
if op.ast.isGenericRoutine:
# patch generic =trace:
op = instantiateGeneric(c, op, t, t.typeInst)
setAttachedOp(c.g, c.idgen.module, t, c.kind, op)
result = considerAsgnOrSink(c, t, body, x, y, op)
if op != nil:
setAttachedOp(c.g, c.idgen.module, t, c.kind, op)
of attachedDeepCopy:
let op = getAttachedOp(c.g, t, attachedDeepCopy)
if op != nil:
#markUsed(c.g.config, c.info, op, c.g.usageSym)
onUse(c.info, op)
body.add newDeepCopyCall(c, op, x, y)
result = true
of attachedWasMoved:
var op = getAttachedOp(c.g, t, attachedWasMoved)
if op != nil and sfOverriden in op.flags:
if op.ast.isGenericRoutine:
# patch generic destructor:
op = instantiateGeneric(c, op, t, t.typeInst)
setAttachedOp(c.g, c.idgen.module, t, attachedWasMoved, op)
#markUsed(c.g.config, c.info, op, c.g.usageSym)
onUse(c.info, op)
body.add genWasMovedCall(c, op, x)
result = true
of attachedDup:
assert false, "cannot happen"
proc declareCounter(c: var TLiftCtx; body: PNode; first: BiggestInt): PNode =
var temp = newSym(skTemp, getIdent(c.g.cache, lowerings.genPrefix), c.idgen, c.fn, c.info)
temp.typ = getSysType(c.g, body.info, tyInt)
incl(temp.flags, sfFromGeneric)
var v = newNodeI(nkVarSection, c.info)
result = newSymNode(temp)
v.addVar(result, lowerings.newIntLit(c.g, body.info, first))
body.add v
proc declareTempOf(c: var TLiftCtx; body: PNode; value: PNode): PNode =
var temp = newSym(skTemp, getIdent(c.g.cache, lowerings.genPrefix), c.idgen, c.fn, c.info)
temp.typ = value.typ
incl(temp.flags, sfFromGeneric)
var v = newNodeI(nkVarSection, c.info)
result = newSymNode(temp)
v.addVar(result, value)
body.add v
proc addIncStmt(c: var TLiftCtx; body, i: PNode) =
let incCall = genBuiltin(c, mInc, "inc", i)
incCall.add lowerings.newIntLit(c.g, c.info, 1)
body.add incCall
proc newSeqCall(c: var TLiftCtx; x, y: PNode): PNode =
# don't call genAddr(c, x) here:
result = genBuiltin(c, mNewSeq, "newSeq", x)
let lenCall = genBuiltin(c, mLengthSeq, "len", y)
lenCall.typ = getSysType(c.g, x.info, tyInt)
result.add lenCall
proc setLenStrCall(c: var TLiftCtx; x, y: PNode): PNode =
let lenCall = genBuiltin(c, mLengthStr, "len", y)
lenCall.typ = getSysType(c.g, x.info, tyInt)
result = genBuiltin(c, mSetLengthStr, "setLen", x) # genAddr(g, x))
result.add lenCall
proc setLenSeqCall(c: var TLiftCtx; t: PType; x, y: PNode): PNode =
let lenCall = genBuiltin(c, mLengthSeq, "len", y)
lenCall.typ = getSysType(c.g, x.info, tyInt)
var op = getSysMagic(c.g, x.info, "setLen", mSetLengthSeq)
op = instantiateGeneric(c, op, t, t)
result = newTree(nkCall, newSymNode(op, x.info), x, lenCall)
proc forallElements(c: var TLiftCtx; t: PType; body, x, y: PNode) =
let counterIdx = body.len
let i = declareCounter(c, body, toInt64(firstOrd(c.g.config, t)))
let whileLoop = genWhileLoop(c, i, x)
let elemType = t.lastSon
let b = if c.kind == attachedTrace: y else: y.at(i, elemType)
fillBody(c, elemType, whileLoop[1], x.at(i, elemType), b)
if whileLoop[1].len > 0:
addIncStmt(c, whileLoop[1], i)
body.add whileLoop
else:
body.sons.setLen counterIdx
proc fillSeqOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
case c.kind
of attachedAsgn, attachedDeepCopy:
# we generate:
# setLen(dest, y.len)
# var i = 0
# while i < y.len: dest[i] = y[i]; inc(i)
# This is usually more efficient than a destroy/create pair.
body.add setLenSeqCall(c, t, x, y)
forallElements(c, t, body, x, y)
of attachedSink:
let moveCall = genBuiltin(c, mMove, "move", x)
moveCall.add y
doAssert t.destructor != nil
moveCall.add destructorCall(c, t.destructor, x)
body.add moveCall
of attachedDestructor:
# destroy all elements:
forallElements(c, t, body, x, y)
body.add genBuiltin(c, mDestroy, "destroy", x)
of attachedTrace:
if canFormAcycle(c.g, t.elemType):
# follow all elements:
forallElements(c, t, body, x, y)
of attachedWasMoved: body.add genBuiltin(c, mWasMoved, "wasMoved", x)
of attachedDup:
assert false, "cannot happen"
proc useSeqOrStrOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
createTypeBoundOps(c.g, c.c, t, body.info, c.idgen)
# recursions are tricky, so we might need to forward the generated
# operation here:
var t = t
if t.assignment == nil or t.destructor == nil:
let h = sighashes.hashType(t,c.g.config, {CoType, CoConsiderOwned, CoDistinct})
let canon = c.g.canonTypes.getOrDefault(h)
if canon != nil: t = canon
case c.kind
of attachedAsgn, attachedDeepCopy:
# XXX: replace these with assertions.
if t.assignment == nil:
return # protect from recursion
body.add newHookCall(c, t.assignment, x, y)
of attachedSink:
# we always inline the move for better performance:
let moveCall = genBuiltin(c, mMove, "move", x)
moveCall.add y
doAssert t.destructor != nil
moveCall.add destructorCall(c, t.destructor, x)
body.add moveCall
# alternatively we could do this:
when false:
doAssert t.asink != nil
body.add newHookCall(c, t.asink, x, y)
of attachedDestructor:
doAssert t.destructor != nil
body.add destructorCall(c, t.destructor, x)
of attachedTrace:
if t.kind != tyString and canFormAcycle(c.g, t.elemType):
let op = getAttachedOp(c.g, t, c.kind)
if op == nil:
return # protect from recursion
body.add newHookCall(c, op, x, y)
of attachedWasMoved: body.add genBuiltin(c, mWasMoved, "wasMoved", x)
of attachedDup:
assert false, "cannot happen"
proc fillStrOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
case c.kind
of attachedAsgn, attachedDeepCopy:
body.add callCodegenProc(c.g, "nimAsgnStrV2", c.info, genAddr(c, x), y)
of attachedSink:
let moveCall = genBuiltin(c, mMove, "move", x)
moveCall.add y
doAssert t.destructor != nil
moveCall.add destructorCall(c, t.destructor, x)
body.add moveCall
of attachedDestructor:
body.add genBuiltin(c, mDestroy, "destroy", x)
of attachedTrace:
discard "strings are atomic and have no inner elements that are to trace"
of attachedWasMoved: body.add genBuiltin(c, mWasMoved, "wasMoved", x)
of attachedDup:
assert false, "cannot happen"
proc cyclicType*(g: ModuleGraph, t: PType): bool =
case t.kind
of tyRef: result = types.canFormAcycle(g, t.lastSon)
of tyProc: result = t.callConv == ccClosure
else: result = false
proc atomicRefOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
#[ bug #15753 is really subtle. Usually the classical write barrier for reference
counting looks like this::
incRef source # increment first; this takes care of self-assignments1
decRef dest
dest[] = source
However, 'decRef dest' might trigger a cycle collection and then the collector
traverses the graph. It is crucial that when it follows the pointers the assignment
'dest[] = source' already happened so that we don't do trial deletion on a wrong
graph -- this causes premature freeing of objects! The correct barrier looks like
this::
let tmp = dest
incRef source
dest[] = source
decRef tmp
]#
var actions = newNodeI(nkStmtList, c.info)
let elemType = t.lastSon
createTypeBoundOps(c.g, c.c, elemType, c.info, c.idgen)
let isCyclic = c.g.config.selectedGC == gcOrc and types.canFormAcycle(c.g, elemType)
let isInheritableAcyclicRef = c.g.config.selectedGC == gcOrc and
(not isPureObject(elemType)) and
tfAcyclic in skipTypes(elemType, abstractInst+{tyOwned}-{tyTypeDesc}).flags
# dynamic Acyclic refs need to use dyn decRef
let tmp =
if isCyclic and c.kind in {attachedAsgn, attachedSink}:
declareTempOf(c, body, x)
else:
x
if isFinal(elemType):
addDestructorCall(c, elemType, actions, genDeref(tmp, nkDerefExpr))
var alignOf = genBuiltin(c, mAlignOf, "alignof", newNodeIT(nkType, c.info, elemType))
alignOf.typ = getSysType(c.g, c.info, tyInt)
actions.add callCodegenProc(c.g, "nimRawDispose", c.info, tmp, alignOf)
else:
addDestructorCall(c, elemType, newNodeI(nkStmtList, c.info), genDeref(tmp, nkDerefExpr))
actions.add callCodegenProc(c.g, "nimDestroyAndDispose", c.info, tmp)
var cond: PNode
if isCyclic:
if isFinal(elemType):
let typInfo = genBuiltin(c, mGetTypeInfoV2, "getTypeInfoV2", newNodeIT(nkType, x.info, elemType))
typInfo.typ = getSysType(c.g, c.info, tyPointer)
cond = callCodegenProc(c.g, "nimDecRefIsLastCyclicStatic", c.info, tmp, typInfo)
else:
cond = callCodegenProc(c.g, "nimDecRefIsLastCyclicDyn", c.info, tmp)
elif isInheritableAcyclicRef:
cond = callCodegenProc(c.g, "nimDecRefIsLastDyn", c.info, x)
else:
cond = callCodegenProc(c.g, "nimDecRefIsLast", c.info, x)
cond.typ = getSysType(c.g, x.info, tyBool)
case c.kind
of attachedSink:
if isCyclic:
body.add newAsgnStmt(x, y)
body.add genIf(c, cond, actions)
else:
body.add genIf(c, cond, actions)
body.add newAsgnStmt(x, y)
of attachedAsgn:
if isCyclic:
body.add genIf(c, y, callCodegenProc(c.g,
"nimIncRefCyclic", c.info, y, getCycleParam(c)))
body.add newAsgnStmt(x, y)
body.add genIf(c, cond, actions)
else:
body.add genIf(c, y, callCodegenProc(c.g, "nimIncRef", c.info, y))
body.add genIf(c, cond, actions)
body.add newAsgnStmt(x, y)
of attachedDestructor:
body.add genIf(c, cond, actions)
of attachedDeepCopy: assert(false, "cannot happen")
of attachedTrace:
if isCyclic:
if isFinal(elemType):
let typInfo = genBuiltin(c, mGetTypeInfoV2, "getTypeInfoV2", newNodeIT(nkType, x.info, elemType))
typInfo.typ = getSysType(c.g, c.info, tyPointer)
body.add callCodegenProc(c.g, "nimTraceRef", c.info, genAddrOf(x, c.idgen), typInfo, y)
else:
# If the ref is polymorphic we have to account for this
body.add callCodegenProc(c.g, "nimTraceRefDyn", c.info, genAddrOf(x, c.idgen), y)
#echo "can follow ", elemType, " static ", isFinal(elemType)
of attachedWasMoved: body.add genBuiltin(c, mWasMoved, "wasMoved", x)
of attachedDup:
assert false, "cannot happen"
proc atomicClosureOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
## Closures are really like refs except they always use a virtual destructor
## and we need to do the refcounting only on the ref field which we call 'xenv':
let xenv = genBuiltin(c, mAccessEnv, "accessEnv", x)
xenv.typ = getSysType(c.g, c.info, tyPointer)
let isCyclic = c.g.config.selectedGC == gcOrc
let tmp =
if isCyclic and c.kind in {attachedAsgn, attachedSink}:
declareTempOf(c, body, xenv)
else:
xenv
var actions = newNodeI(nkStmtList, c.info)
actions.add callCodegenProc(c.g, "nimDestroyAndDispose", c.info, tmp)
let decRefProc =
if isCyclic: "nimDecRefIsLastCyclicDyn"
else: "nimDecRefIsLast"
let cond = callCodegenProc(c.g, decRefProc, c.info, tmp)
cond.typ = getSysType(c.g, x.info, tyBool)
case c.kind
of attachedSink:
if isCyclic:
body.add newAsgnStmt(x, y)
body.add genIf(c, cond, actions)
else:
body.add genIf(c, cond, actions)
body.add newAsgnStmt(x, y)
of attachedAsgn:
let yenv = genBuiltin(c, mAccessEnv, "accessEnv", y)
yenv.typ = getSysType(c.g, c.info, tyPointer)
if isCyclic:
body.add genIf(c, yenv, callCodegenProc(c.g, "nimIncRefCyclic", c.info, yenv, getCycleParam(c)))
body.add newAsgnStmt(x, y)
body.add genIf(c, cond, actions)
else:
body.add genIf(c, yenv, callCodegenProc(c.g, "nimIncRef", c.info, yenv))
body.add genIf(c, cond, actions)
body.add newAsgnStmt(x, y)
of attachedDestructor:
body.add genIf(c, cond, actions)
of attachedDeepCopy: assert(false, "cannot happen")
of attachedTrace:
body.add callCodegenProc(c.g, "nimTraceRefDyn", c.info, genAddrOf(xenv, c.idgen), y)
of attachedWasMoved: body.add genBuiltin(c, mWasMoved, "wasMoved", x)
of attachedDup:
assert false, "cannot happen"
proc weakrefOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
case c.kind
of attachedSink:
# we 'nil' y out afterwards so we *need* to take over its reference
# count value:
body.add genIf(c, x, callCodegenProc(c.g, "nimDecWeakRef", c.info, x))
body.add newAsgnStmt(x, y)
of attachedAsgn:
body.add genIf(c, y, callCodegenProc(c.g, "nimIncRef", c.info, y))
body.add genIf(c, x, callCodegenProc(c.g, "nimDecWeakRef", c.info, x))
body.add newAsgnStmt(x, y)
of attachedDestructor:
# it's better to prepend the destruction of weak refs in order to
# prevent wrong "dangling refs exist" problems:
var actions = newNodeI(nkStmtList, c.info)
actions.add callCodegenProc(c.g, "nimDecWeakRef", c.info, x)
let des = genIf(c, x, actions)
if body.len == 0:
body.add des
else:
body.sons.insert(des, 0)
of attachedDeepCopy: assert(false, "cannot happen")
of attachedTrace: discard
of attachedWasMoved: body.add genBuiltin(c, mWasMoved, "wasMoved", x)
of attachedDup:
assert false, "cannot happen"
proc ownedRefOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
var actions = newNodeI(nkStmtList, c.info)
let elemType = t.lastSon
#fillBody(c, elemType, actions, genDeref(x), genDeref(y))
#var disposeCall = genBuiltin(c, mDispose, "dispose", x)
if isFinal(elemType):
addDestructorCall(c, elemType, actions, genDeref(x, nkDerefExpr))
var alignOf = genBuiltin(c, mAlignOf, "alignof", newNodeIT(nkType, c.info, elemType))
alignOf.typ = getSysType(c.g, c.info, tyInt)
actions.add callCodegenProc(c.g, "nimRawDispose", c.info, x, alignOf)
else:
addDestructorCall(c, elemType, newNodeI(nkStmtList, c.info), genDeref(x, nkDerefExpr))
actions.add callCodegenProc(c.g, "nimDestroyAndDispose", c.info, x)
case c.kind
of attachedSink, attachedAsgn:
body.add genIf(c, x, actions)
body.add newAsgnStmt(x, y)
of attachedDestructor:
body.add genIf(c, x, actions)
of attachedDeepCopy: assert(false, "cannot happen")
of attachedTrace: discard
of attachedWasMoved: body.add genBuiltin(c, mWasMoved, "wasMoved", x)
of attachedDup:
assert false, "cannot happen"
proc closureOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
if c.kind == attachedDeepCopy:
# a big problem is that we don't know the environment's type here, so we
# have to go through some indirection; we delegate this to the codegen:
let call = newNodeI(nkCall, c.info, 2)
call.typ = t
call[0] = newSymNode(createMagic(c.g, c.idgen, "deepCopy", mDeepCopy))
call[1] = y
body.add newAsgnStmt(x, call)
elif (optOwnedRefs in c.g.config.globalOptions and
optRefCheck in c.g.config.options) or c.g.config.selectedGC in {gcArc, gcAtomicArc, gcOrc}:
let xx = genBuiltin(c, mAccessEnv, "accessEnv", x)
xx.typ = getSysType(c.g, c.info, tyPointer)
case c.kind
of attachedSink:
# we 'nil' y out afterwards so we *need* to take over its reference
# count value:
body.add genIf(c, xx, callCodegenProc(c.g, "nimDecWeakRef", c.info, xx))
body.add newAsgnStmt(x, y)
of attachedAsgn:
let yy = genBuiltin(c, mAccessEnv, "accessEnv", y)
yy.typ = getSysType(c.g, c.info, tyPointer)
body.add genIf(c, yy, callCodegenProc(c.g, "nimIncRef", c.info, yy))
body.add genIf(c, xx, callCodegenProc(c.g, "nimDecWeakRef", c.info, xx))
body.add newAsgnStmt(x, y)
of attachedDestructor:
let des = genIf(c, xx, callCodegenProc(c.g, "nimDecWeakRef", c.info, xx))
if body.len == 0:
body.add des
else:
body.sons.insert(des, 0)
of attachedDeepCopy: assert(false, "cannot happen")
of attachedTrace: discard
of attachedWasMoved: body.add genBuiltin(c, mWasMoved, "wasMoved", x)
of attachedDup:
assert false, "cannot happen"
proc ownedClosureOp(c: var TLiftCtx; t: PType; body, x, y: PNode) =
let xx = genBuiltin(c, mAccessEnv, "accessEnv", x)
xx.typ = getSysType(c.g, c.info, tyPointer)
var actions = newNodeI(nkStmtList, c.info)
#discard addDestructorCall(c, elemType, newNodeI(nkStmtList, c.info), genDeref(xx))
actions.add callCodegenProc(c.g, "nimDestroyAndDispose", c.info, xx)
case c.kind
of attachedSink, attachedAsgn:
body.add genIf(c, xx, actions)
body.add newAsgnStmt(x, y)
of attachedDestructor:
body.add genIf(c, xx, actions)
of attachedDeepCopy: assert(false, "cannot happen")
of attachedTrace: discard
of attachedWasMoved: body.add genBuiltin(c, mWasMoved, "wasMoved", x)
of attachedDup:
assert false, "cannot happen"
proc fillBody(c: var TLiftCtx; t: PType; body, x, y: PNode) =
case t.kind
of tyNone, tyEmpty, tyVoid: discard
of tyPointer, tySet, tyBool, tyChar, tyEnum, tyInt..tyUInt64, tyCstring,
tyPtr, tyUncheckedArray, tyVar, tyLent:
defaultOp(c, t, body, x, y)
of tyRef:
if c.g.config.selectedGC in {gcArc, gcOrc, gcAtomicArc}:
atomicRefOp(c, t, body, x, y)
elif (optOwnedRefs in c.g.config.globalOptions and
optRefCheck in c.g.config.options):
weakrefOp(c, t, body, x, y)
else:
defaultOp(c, t, body, x, y)
of tyProc:
if t.callConv == ccClosure:
if c.g.config.selectedGC in {gcArc, gcOrc, gcAtomicArc}:
atomicClosureOp(c, t, body, x, y)
else:
closureOp(c, t, body, x, y)
else:
defaultOp(c, t, body, x, y)
of tyOwned:
let base = t.skipTypes(abstractInstOwned)
if optOwnedRefs in c.g.config.globalOptions:
case base.kind
of tyRef:
ownedRefOp(c, base, body, x, y)
return
of tyProc:
if base.callConv == ccClosure:
ownedClosureOp(c, base, body, x, y)
return
else: discard
defaultOp(c, base, body, x, y)
of tyArray:
if tfHasAsgn in t.flags or useNoGc(c, t):
forallElements(c, t, body, x, y)
else:
defaultOp(c, t, body, x, y)
of tySequence:
if useNoGc(c, t):
useSeqOrStrOp(c, t, body, x, y)
elif optSeqDestructors in c.g.config.globalOptions:
# note that tfHasAsgn is propagated so we need the check on
# 'selectedGC' here to determine if we have the new runtime.
discard considerUserDefinedOp(c, t, body, x, y)
elif tfHasAsgn in t.flags:
if c.kind in {attachedAsgn, attachedSink, attachedDeepCopy}:
body.add newSeqCall(c, x, y)
forallElements(c, t, body, x, y)
else:
defaultOp(c, t, body, x, y)
of tyString:
if useNoGc(c, t):
useSeqOrStrOp(c, t, body, x, y)
elif tfHasAsgn in t.flags:
discard considerUserDefinedOp(c, t, body, x, y)
else:
defaultOp(c, t, body, x, y)
of tyObject:
if not considerUserDefinedOp(c, t, body, x, y):
if c.kind in {attachedAsgn, attachedSink} and t.sym != nil and sfImportc in t.sym.flags:
body.add newAsgnStmt(x, y)
else:
fillBodyObjT(c, t, body, x, y)
of tyDistinct:
if not considerUserDefinedOp(c, t, body, x, y):
fillBody(c, t[0], body, x, y)
of tyTuple:
fillBodyTup(c, t, body, x, y)
of tyVarargs, tyOpenArray:
if c.kind == attachedDestructor and (tfHasAsgn in t.flags or useNoGc(c, t)):
forallElements(c, t, body, x, y)
else:
discard "cannot copy openArray"
of tyFromExpr, tyProxy, tyBuiltInTypeClass, tyUserTypeClass,
tyUserTypeClassInst, tyCompositeTypeClass, tyAnd, tyOr, tyNot, tyAnything,
tyGenericParam, tyGenericBody, tyNil, tyUntyped, tyTyped,
tyTypeDesc, tyGenericInvocation, tyForward, tyStatic:
#internalError(c.g.config, c.info, "assignment requested for type: " & typeToString(t))
discard
of tyOrdinal, tyRange, tyInferred,
tyGenericInst, tyAlias, tySink:
fillBody(c, lastSon(t), body, x, y)
of tyConcept, tyIterable: doAssert false
proc produceSymDistinctType(g: ModuleGraph; c: PContext; typ: PType;
kind: TTypeAttachedOp; info: TLineInfo;
idgen: IdGenerator): PSym =
assert typ.kind == tyDistinct
let baseType = typ[0]
if getAttachedOp(g, baseType, kind) == nil:
discard produceSym(g, c, baseType, kind, info, idgen)
result = getAttachedOp(g, baseType, kind)
setAttachedOp(g, idgen.module, typ, kind, result)
proc symPrototype(g: ModuleGraph; typ: PType; owner: PSym; kind: TTypeAttachedOp;
info: TLineInfo; idgen: IdGenerator): PSym =
let procname = getIdent(g.cache, AttachedOpToStr[kind])
result = newSym(skProc, procname, idgen, owner, info)
let dest = newSym(skParam, getIdent(g.cache, "dest"), idgen, result, info)
let src = newSym(skParam, getIdent(g.cache, if kind == attachedTrace: "env" else: "src"),
idgen, result, info)
dest.typ = makeVarType(typ.owner, typ, idgen)
if kind == attachedTrace:
src.typ = getSysType(g, info, tyPointer)
else:
src.typ = typ
result.typ = newProcType(info, nextTypeId(idgen), owner)
result.typ.addParam dest
if kind notin {attachedDestructor, attachedWasMoved, attachedDup}:
result.typ.addParam src
if kind == attachedAsgn and g.config.selectedGC == gcOrc and
cyclicType(g, typ.skipTypes(abstractInst)):
let cycleParam = newSym(skParam, getIdent(g.cache, "cyclic"),
idgen, result, info)
cycleParam.typ = getSysType(g, info, tyBool)
result.typ.addParam cycleParam
var n = newNodeI(nkProcDef, info, bodyPos+1)
for i in 0..<n.len: n[i] = newNodeI(nkEmpty, info)
n[namePos] = newSymNode(result)
n[paramsPos] = result.typ.n
n[bodyPos] = newNodeI(nkStmtList, info)
result.ast = n
incl result.flags, sfFromGeneric
incl result.flags, sfGeneratedOp
proc genTypeFieldCopy(c: var TLiftCtx; t: PType; body, x, y: PNode) =
let xx = genBuiltin(c, mAccessTypeField, "accessTypeField", x)
let yy = genBuiltin(c, mAccessTypeField, "accessTypeField", y)
xx.typ = getSysType(c.g, c.info, tyPointer)
yy.typ = xx.typ
body.add newAsgnStmt(xx, yy)
proc produceSym(g: ModuleGraph; c: PContext; typ: PType; kind: TTypeAttachedOp;
info: TLineInfo; idgen: IdGenerator): PSym =
if typ.kind == tyDistinct:
return produceSymDistinctType(g, c, typ, kind, info, idgen)
result = getAttachedOp(g, typ, kind)
if result == nil:
result = symPrototype(g, typ, typ.owner, kind, info, idgen)
var a = TLiftCtx(info: info, g: g, kind: kind, c: c, asgnForType: typ, idgen: idgen,
fn: result)
let dest = result.typ.n[1].sym
let d = newDeref(newSymNode(dest))
let src = if kind in {attachedDestructor, attachedWasMoved, attachedDup}: newNodeIT(nkSym, info, getSysType(g, info, tyPointer))
else: newSymNode(result.typ.n[2].sym)
# register this operation already:
setAttachedOpPartial(g, idgen.module, typ, kind, result)
if kind == attachedSink and destructorOverriden(g, typ):
## compiler can use a combination of `=destroy` and memCopy for sink op
dest.flags.incl sfCursor
result.ast[bodyPos].add newOpCall(a, getAttachedOp(g, typ, attachedDestructor), d[0])
result.ast[bodyPos].add newAsgnStmt(d, src)
else:
var tk: TTypeKind
if g.config.selectedGC in {gcArc, gcOrc, gcHooks, gcAtomicArc}:
tk = skipTypes(typ, {tyOrdinal, tyRange, tyInferred, tyGenericInst, tyStatic, tyAlias, tySink}).kind
else:
tk = tyNone # no special casing for strings and seqs
case tk
of tySequence:
fillSeqOp(a, typ, result.ast[bodyPos], d, src)
of tyString:
fillStrOp(a, typ, result.ast[bodyPos], d, src)
else:
fillBody(a, typ, result.ast[bodyPos], d, src)
if tk == tyObject and a.kind in {attachedAsgn, attachedSink, attachedDeepCopy} and not lacksMTypeField(typ):
# bug #19205: Do not forget to also copy the hidden type field:
genTypeFieldCopy(a, typ, result.ast[bodyPos], d, src)
if not a.canRaise: incl result.flags, sfNeverRaises
completePartialOp(g, idgen.module, typ, kind, result)
proc produceDestructorForDiscriminator*(g: ModuleGraph; typ: PType; field: PSym,
info: TLineInfo; idgen: IdGenerator): PSym =
assert(typ.skipTypes({tyAlias, tyGenericInst}).kind == tyObject)
result = symPrototype(g, field.typ, typ.owner, attachedDestructor, info, idgen)
var a = TLiftCtx(info: info, g: g, kind: attachedDestructor, asgnForType: typ, idgen: idgen,
fn: result)
a.asgnForType = typ
a.filterDiscriminator = field
a.addMemReset = true
let discrimantDest = result.typ.n[1].sym
let dst = newSym(skVar, getIdent(g.cache, "dest"), idgen, result, info)
dst.typ = makePtrType(typ.owner, typ, idgen)
let dstSym = newSymNode(dst)
let d = newDeref(dstSym)
let v = newNodeI(nkVarSection, info)
v.addVar(dstSym, genContainerOf(a, typ, field, discrimantDest))
result.ast[bodyPos].add v
let placeHolder = newNodeIT(nkSym, info, getSysType(g, info, tyPointer))
fillBody(a, typ, result.ast[bodyPos], d, placeHolder)
if not a.canRaise: incl result.flags, sfNeverRaises
template liftTypeBoundOps*(c: PContext; typ: PType; info: TLineInfo) =
discard "now a nop"
proc patchBody(g: ModuleGraph; c: PContext; n: PNode; info: TLineInfo; idgen: IdGenerator) =
if n.kind in nkCallKinds:
if n[0].kind == nkSym and n[0].sym.magic == mDestroy:
let t = n[1].typ.skipTypes(abstractVar)
if getAttachedOp(g, t, attachedDestructor) == nil:
discard produceSym(g, c, t, attachedDestructor, info, idgen)
let op = getAttachedOp(g, t, attachedDestructor)
if op != nil:
if op.ast.isGenericRoutine:
internalError(g.config, info, "resolved destructor is generic")
if op.magic == mDestroy:
internalError(g.config, info, "patching mDestroy with mDestroy?")
n[0] = newSymNode(op)
for x in n: patchBody(g, c, x, info, idgen)
proc inst(g: ModuleGraph; c: PContext; t: PType; kind: TTypeAttachedOp; idgen: IdGenerator;
info: TLineInfo) =
let op = getAttachedOp(g, t, kind)
if op != nil and op.ast != nil and op.ast.isGenericRoutine:
if t.typeInst != nil:
var a = TLiftCtx(info: info, g: g, kind: kind, c: c, idgen: idgen)
let opInst = instantiateGeneric(a, op, t, t.typeInst)
if opInst.ast != nil:
patchBody(g, c, opInst.ast, info, a.idgen)
setAttachedOp(g, idgen.module, t, kind, opInst)
else:
localError(g.config, info, "unresolved generic parameter")
proc isTrival(s: PSym): bool {.inline.} =
s == nil or (s.ast != nil and s.ast[bodyPos].len == 0)
proc createTypeBoundOps(g: ModuleGraph; c: PContext; orig: PType; info: TLineInfo;
idgen: IdGenerator) =
## In the semantic pass this is called in strategic places
## to ensure we lift assignment, destructors and moves properly.
## The later 'injectdestructors' pass depends on it.
if orig == nil or {tfCheckedForDestructor, tfHasMeta} * orig.flags != {}: return
incl orig.flags, tfCheckedForDestructor
let skipped = orig.skipTypes({tyGenericInst, tyAlias, tySink})
if isEmptyContainer(skipped) or skipped.kind == tyStatic: return
let h = sighashes.hashType(skipped, g.config, {CoType, CoConsiderOwned, CoDistinct})
var canon = g.canonTypes.getOrDefault(h)
if canon == nil:
g.canonTypes[h] = skipped
canon = skipped
# multiple cases are to distinguish here:
# 1. we don't know yet if 'typ' has a nontrival destructor.
# 2. we have a nop destructor. --> mDestroy
# 3. we have a lifted destructor.
# 4. We have a custom destructor.
# 5. We have a (custom) generic destructor.
# we do not generate '=trace' procs if we
# have the cycle detection disabled, saves code size.
let lastAttached = if g.config.selectedGC == gcOrc: attachedTrace
else: attachedSink
# bug #15122: We need to produce all prototypes before entering the
# mind boggling recursion. Hacks like these imply we should rewrite
# this module.
var generics: array[attachedWasMoved..attachedTrace, bool]
for k in attachedWasMoved..lastAttached:
generics[k] = getAttachedOp(g, canon, k) != nil
if not generics[k]:
setAttachedOp(g, idgen.module, canon, k,
symPrototype(g, canon, canon.owner, k, info, idgen))
# we generate the destructor first so that other operators can depend on it:
for k in attachedWasMoved..lastAttached:
if not generics[k]:
discard produceSym(g, c, canon, k, info, idgen)
else:
inst(g, c, canon, k, idgen, info)
if canon != orig:
setAttachedOp(g, idgen.module, orig, k, getAttachedOp(g, canon, k))
if not isTrival(getAttachedOp(g, orig, attachedDestructor)):
#or not isTrival(orig.assignment) or
# not isTrival(orig.sink):
orig.flags.incl tfHasAsgn
# ^ XXX Breaks IC!