#
#
# The Nim Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the pattern matching features for term rewriting
## macro support.
import strutils, ast, types, msgs, idents, renderer, wordrecg, trees,
options
# we precompile the pattern here for efficiency into some internal
# stack based VM :-) Why? Because it's fun; I did no benchmarks to see if that
# actually improves performance.
type
TAliasRequest* = enum # first byte of the bytecode determines alias checking
aqNone = 1, # no alias analysis requested
aqShouldAlias, # with some other param
aqNoAlias # request noalias
TOpcode = enum
ppEof = 1, # end of compiled pattern
ppOr, # we could short-cut the evaluation for 'and' and 'or',
ppAnd, # but currently we don't
ppNot,
ppSym,
ppAtom,
ppLit,
ppIdent,
ppCall,
ppSymKind,
ppNodeKind,
ppLValue,
ppLocal,
ppSideEffect,
ppNoSideEffect
TPatternCode = string
const
MaxStackSize* = 64 ## max required stack size by the VM
proc patternError(n: PNode; conf: ConfigRef) =
localError(conf, n.info, "illformed AST: " & renderTree(n, {renderNoComments}))
proc add(code: var TPatternCode, op: TOpcode) {.inline.} =
code.add chr(ord(op))
proc whichAlias*(p: PSym): TAliasRequest =
if p.constraint != nil:
result = TAliasRequest(p.constraint.strVal[0].ord)
else:
result = aqNone
proc compileConstraints(p: PNode, result: var TPatternCode; conf: ConfigRef) =
case p.kind
of nkCallKinds:
if p[0].kind != nkIdent:
patternError(p[0], conf)
return
let op = p[0].ident
if p.len == 3:
if op.s == "|" or op.id == ord(wOr):
compileConstraints(p[1], result, conf)
compileConstraints(p[2], result, conf)
result.add(ppOr)
elif op.s == "&" or op.id == ord(wAnd):
compileConstraints(p[1], result, conf)
compileConstraints(p[2], result, conf)
result.add(ppAnd)
else:
patternError(p, conf)
elif p.len == 2 and (op.s == "~" or op.id == ord(wNot)):
compileConstraints(p[1], result, conf)
result.add(ppNot)
else:
patternError(p, conf)
of nkAccQuoted, nkPar:
if p.len == 1:
compileConstraints(p[0], result, conf)
else:
patternError(p, conf)
of nkIdent:
let spec = p.ident.s.normalize
case spec
of "atom": result.add(ppAtom)
of "lit": result.add(ppLit)
of "sym": result.add(ppSym)
of "ident": result.add(ppIdent)
of "call": result.add(ppCall)
of "alias": result[0] = chr(aqShouldAlias.ord)
of "noalias": result[0] = chr(aqNoAlias.ord)
of "lvalue": result.add(ppLValue)
of "local": result.add(ppLocal)
of "sideeffect": result.add(ppSideEffect)
of "nosideeffect": result.add(ppNoSideEffect)
else:
# check all symkinds:
internalAssert conf, int(high(TSymKind)) < 255
for i in TSymKind:
if cmpIgnoreStyle(i.toHumanStr, spec) == 0:
result.add(ppSymKind)
result.add(chr(i.ord))
return
# check all nodekinds:
internalAssert conf, int(high(TNodeKind)) < 255
for i in TNodeKind:
if cmpIgnoreStyle($i, spec) == 0:
result.add(ppNodeKind)
result.add(chr(i.ord))
return
patternError(p, conf)
else:
patternError(p, conf)
proc semNodeKindConstraints*(n: PNode; conf: ConfigRef; start: Natural): PNode =
## does semantic checking for a node kind pattern and compiles it into an
## efficient internal format.
result = newNodeI(nkStrLit, n.info)
result.strVal = newStringOfCap(10)
result.strVal.add(chr(aqNone.ord))
if n.len >= 2:
for i in start..<n.len:
compileConstraints(n[i], result.strVal, conf)
if result.strVal.len > MaxStackSize-1:
internalError(conf, n.info, "parameter pattern too complex")
else:
patternError(n, conf)
result.strVal.add(ppEof)
type
TSideEffectAnalysis* = enum
seUnknown, seSideEffect, seNoSideEffect
proc checkForSideEffects*(n: PNode): TSideEffectAnalysis =
case n.kind
of nkCallKinds:
# only calls can produce side effects:
let op = n[0]
if op.kind == nkSym and isRoutine(op.sym):
let s = op.sym
if sfSideEffect in s.flags:
return seSideEffect
elif tfNoSideEffect in op.typ.flags:
result = seNoSideEffect
else:
# assume side effect:
result = seSideEffect
elif tfNoSideEffect in op.typ.flags:
# indirect call without side effects:
result = seNoSideEffect
else:
# indirect call: assume side effect:
return seSideEffect
# we need to check n[0] too: (FwithSideEffectButReturnsProcWithout)(args)
for i in 0..<n.len:
let ret = checkForSideEffects(n[i])
if ret == seSideEffect: return ret
elif ret == seUnknown and result == seNoSideEffect:
result = seUnknown
of nkNone..nkNilLit:
# an atom cannot produce a side effect:
result = seNoSideEffect
else:
# assume no side effect:
result = seNoSideEffect
for i in 0..<n.len:
let ret = checkForSideEffects(n[i])
if ret == seSideEffect: return ret
elif ret == seUnknown and result == seNoSideEffect:
result = seUnknown
type
TAssignableResult* = enum
arNone, # no l-value and no discriminant
arLValue, # is an l-value
arLocalLValue, # is an l-value, but local var; must not escape
# its stack frame!
arDiscriminant, # is a discriminant
arAddressableConst, # an addressable const
arLentValue, # lent value
arStrange # it is a strange beast like 'typedesc[var T]'
proc exprRoot*(n: PNode; allowCalls = true): PSym =
var it = n
while true:
case it.kind
of nkSym: return it.sym
of nkHiddenDeref, nkDerefExpr:
if it[0].typ.skipTypes(abstractInst).kind in {tyPtr, tyRef}:
# 'ptr' is unsafe anyway and 'ref' is always on the heap,
# so allow these derefs:
break
else:
it = it[0]
of nkDotExpr, nkBracketExpr, nkHiddenAddr,
nkObjUpConv, nkObjDownConv, nkCheckedFieldExpr:
it = it[0]
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
it = it[1]
of nkStmtList, nkStmtListExpr:
if it.len > 0 and it.typ != nil: it = it.lastSon
else: break
of nkCallKinds:
if allowCalls and it.typ != nil and it.typ.kind in {tyVar, tyLent} and it.len > 1:
# See RFC #7373, calls returning 'var T' are assumed to
# return a view into the first argument (if there is one):
it = it[1]
else:
break
else:
break
proc isAssignable*(owner: PSym, n: PNode): TAssignableResult =
## 'owner' can be nil!
result = arNone
case n.kind
of nkEmpty:
if n.typ != nil and n.typ.kind in {tyVar}:
result = arLValue
of nkSym:
const kinds = {skVar, skResult, skTemp, skParam, skLet, skForVar}
if n.sym.kind == skParam:
result = if n.sym.typ.kind in {tyVar, tySink}: arLValue else: arAddressableConst
elif n.sym.kind == skConst and dontInlineConstant(n, n.sym.astdef):
result = arAddressableConst
elif n.sym.kind in kinds:
if n.sym.kind in {skParam, skLet, skForVar}:
result = arAddressableConst
else:
if owner != nil and owner == n.sym.owner and
sfGlobal notin n.sym.flags:
result = arLocalLValue
else:
result = arLValue
elif n.sym.kind == skType:
let t = n.sym.typ.skipTypes({tyTypeDesc})
if t.kind in {tyVar}: result = arStrange
of nkDotExpr:
let t = skipTypes(n[0].typ, abstractInst-{tyTypeDesc})
if t.kind in {tyVar, tySink, tyPtr, tyRef}:
result = arLValue
elif t.kind == tyLent:
result = arAddressableConst
else:
result = isAssignable(owner, n[0])
if result != arNone and n[1].kind == nkSym and
sfDiscriminant in n[1].sym.flags:
result = arDiscriminant
of nkBracketExpr:
let t = skipTypes(n[0].typ, abstractInst-{tyTypeDesc})
if t.kind in {tyVar, tySink, tyPtr, tyRef}:
result = arLValue
elif t.kind == tyLent:
result = arAddressableConst
else:
result = isAssignable(owner, n[0])
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
# Object and tuple conversions are still addressable, so we skip them
# XXX why is 'tyOpenArray' allowed here?
if skipTypes(n.typ, abstractPtrs-{tyTypeDesc}).kind in
{tyOpenArray, tyTuple, tyObject}:
result = isAssignable(owner, n[1])
elif compareTypes(n.typ, n[1].typ, dcEqIgnoreDistinct):
# types that are equal modulo distinction preserve l-value:
result = isAssignable(owner, n[1])
of nkHiddenDeref:
let n0 = n[0]
if n0.typ.kind == tyLent:
if n0.kind == nkSym and n0.sym.kind == skResult:
result = arLValue
else:
result = arLentValue
else:
result = arLValue
of nkDerefExpr, nkHiddenAddr:
result = arLValue
of nkObjUpConv, nkObjDownConv, nkCheckedFieldExpr:
result = isAssignable(owner, n[0])
of nkCallKinds:
# builtin slice keeps lvalue-ness:
if getMagic(n) in {mArrGet, mSlice}:
result = isAssignable(owner, n[1])
elif n.typ != nil:
case n.typ.kind
of tyVar: result = arLValue
of tyLent: result = arLentValue
else: discard
of nkStmtList, nkStmtListExpr:
if n.typ != nil:
result = isAssignable(owner, n.lastSon)
of nkVarTy:
# XXX: The fact that this is here is a bit of a hack.
# The goal is to allow the use of checks such as "foo(var T)"
# within concepts. Semantically, it's not correct to say that
# nkVarTy denotes an lvalue, but the example above is the only
# possible code which will get us here
result = arLValue
else:
discard
proc isLValue*(n: PNode): bool =
isAssignable(nil, n) in {arLValue, arLocalLValue, arStrange}
proc matchNodeKinds*(p, n: PNode): bool =
# matches the parameter constraint 'p' against the concrete AST 'n'.
# Efficiency matters here.
var stack {.noinit.}: array[0..MaxStackSize, bool]
# empty patterns are true:
stack[0] = true
var sp = 1
template push(x: bool) =
stack[sp] = x
inc sp
let code = p.strVal
var pc = 1
while true:
case TOpcode(code[pc])
of ppEof: break
of ppOr:
stack[sp-2] = stack[sp-1] or stack[sp-2]
dec sp
of ppAnd:
stack[sp-2] = stack[sp-1] and stack[sp-2]
dec sp
of ppNot: stack[sp-1] = not stack[sp-1]
of ppSym: push n.kind == nkSym
of ppAtom: push isAtom(n)
of ppLit: push n.kind in {nkCharLit..nkNilLit}
of ppIdent: push n.kind == nkIdent
of ppCall: push n.kind in nkCallKinds
of ppSymKind:
let kind = TSymKind(code[pc+1])
push n.kind == nkSym and n.sym.kind == kind
inc pc
of ppNodeKind:
let kind = TNodeKind(code[pc+1])
push n.kind == kind
inc pc
of ppLValue: push isAssignable(nil, n) in {arLValue, arLocalLValue}
of ppLocal: push isAssignable(nil, n) == arLocalLValue
of ppSideEffect: push checkForSideEffects(n) == seSideEffect
of ppNoSideEffect: push checkForSideEffects(n) != seSideEffect
inc pc
result = stack[sp-1]