#
#
# The Nim Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the pattern matching features for term rewriting
## macro support.
import
ast, astalgo, types, semdata, sigmatch, msgs, idents, aliases, parampatterns,
trees
type
TPatternContext = object
owner: PSym
mapping: seq[PNode] # maps formal parameters to nodes
formals: int
c: PContext
subMatch: bool # subnode matches are special
PPatternContext = var TPatternContext
proc getLazy(c: PPatternContext, sym: PSym): PNode =
if not isNil(c.mapping):
result = c.mapping[sym.position]
proc putLazy(c: PPatternContext, sym: PSym, n: PNode) =
if isNil(c.mapping): newSeq(c.mapping, c.formals)
c.mapping[sym.position] = n
proc matches(c: PPatternContext, p, n: PNode): bool
proc canonKind(n: PNode): TNodeKind =
## nodekind canonilization for pattern matching
result = n.kind
case result
of nkCallKinds: result = nkCall
of nkStrLit..nkTripleStrLit: result = nkStrLit
of nkFastAsgn: result = nkAsgn
else: discard
proc sameKinds(a, b: PNode): bool {.inline.} =
result = a.kind == b.kind or a.canonKind == b.canonKind
proc sameTrees(a, b: PNode): bool =
if sameKinds(a, b):
case a.kind
of nkSym: result = a.sym == b.sym
of nkIdent: result = a.ident.id == b.ident.id
of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
of nkEmpty, nkNilLit: result = true
of nkType: result = sameTypeOrNil(a.typ, b.typ)
else:
if sonsLen(a) == sonsLen(b):
for i in countup(0, sonsLen(a) - 1):
if not sameTrees(a.sons[i], b.sons[i]): return
result = true
proc inSymChoice(sc, x: PNode): bool =
if sc.kind == nkClosedSymChoice:
for i in 0..<sc.len:
if sc.sons[i].sym == x.sym: return true
elif sc.kind == nkOpenSymChoice:
# same name suffices for open sym choices!
result = sc.sons[0].sym.name.id == x.sym.name.id
proc checkTypes(c: PPatternContext, p: PSym, n: PNode): bool =
# check param constraints first here as this is quite optimized:
if p.constraint != nil:
result = matchNodeKinds(p.constraint, n)
if not result: return
if isNil(n.typ):
result = p.typ.kind in {tyVoid, tyStmt}
else:
result = sigmatch.argtypeMatches(c.c, p.typ, n.typ)
proc isPatternParam(c: PPatternContext, p: PNode): bool {.inline.} =
result = p.kind == nkSym and p.sym.kind == skParam and p.sym.owner == c.owner
proc matchChoice(c: PPatternContext, p, n: PNode): bool =
for i in 1 ..< p.len:
if matches(c, p.sons[i], n): return true
proc bindOrCheck(c: PPatternContext, param: PSym, n: PNode): bool =
var pp = getLazy(c, param)
if pp != nil:
# check if we got the same pattern (already unified):
result = sameTrees(pp, n) #matches(c, pp, n)
elif n.kind == nkArgList or checkTypes(c, param, n):
putLazy(c, param, n)
result = true
proc gather(c: PPatternContext, param: PSym, n: PNode) =
var pp = getLazy(c, param)
if pp != nil and pp.kind == nkArgList:
pp.add(n)
else:
pp = newNodeI(nkArgList, n.info, 1)
pp.sons[0] = n
putLazy(c, param, pp)
proc matchNested(c: PPatternContext, p, n: PNode, rpn: bool): bool =
# match ``op * param`` or ``op *| param``
proc matchStarAux(c: PPatternContext, op, n, arglist: PNode,
rpn: bool): bool =
result = true
if n.kind in nkCallKinds and matches(c, op.sons[1], n.sons[0]):
for i in 1..sonsLen(n)-1:
if not matchStarAux(c, op, n[i], arglist, rpn): return false
if rpn: arglist.add(n.sons[0])
elif n.kind == nkHiddenStdConv and n.sons[1].kind == nkBracket:
let n = n.sons[1]
for i in 0..<n.len:
if not matchStarAux(c, op, n[i], arglist, rpn): return false
elif checkTypes(c, p.sons[2].sym, n):
add(arglist, n)
else:
result = false
if n.kind notin nkCallKinds: return false
if matches(c, p.sons[1], n.sons[0]):
var arglist = newNodeI(nkArgList, n.info)
if matchStarAux(c, p, n, arglist, rpn):
result = bindOrCheck(c, p.sons[2].sym, arglist)
proc matches(c: PPatternContext, p, n: PNode): bool =
let n = skipHidden(n)
if nfNoRewrite in n.flags:
result = false
elif isPatternParam(c, p):
result = bindOrCheck(c, p.sym, n)
elif n.kind == nkSym and p.kind == nkIdent:
result = p.ident.id == n.sym.name.id
elif n.kind == nkSym and inSymChoice(p, n):
result = true
elif n.kind == nkSym and n.sym.kind == skConst:
# try both:
if p.kind == nkSym: result = p.sym == n.sym
elif matches(c, p, n.sym.ast): result = true
elif p.kind == nkPattern:
# pattern operators: | *
let opr = p.sons[0].ident.s
case opr
of "|": result = matchChoice(c, p, n)
of "*": result = matchNested(c, p, n, rpn=false)
of "**": result = matchNested(c, p, n, rpn=true)
of "~": result = not matches(c, p.sons[1], n)
else: doAssert(false, "invalid pattern")
# template {add(a, `&` * b)}(a: string{noalias}, b: varargs[string]) =
# add(a, b)
elif p.kind == nkCurlyExpr:
if p.sons[1].kind == nkPrefix:
if matches(c, p.sons[0], n):
gather(c, p.sons[1].sons[1].sym, n)
result = true
else:
assert isPatternParam(c, p.sons[1])
if matches(c, p.sons[0], n):
result = bindOrCheck(c, p.sons[1].sym, n)
elif sameKinds(p, n):
case p.kind
of nkSym: result = p.sym == n.sym
of nkIdent: result = p.ident.id == n.ident.id
of nkCharLit..nkInt64Lit: result = p.intVal == n.intVal
of nkFloatLit..nkFloat64Lit: result = p.floatVal == n.floatVal
of nkStrLit..nkTripleStrLit: result = p.strVal == n.strVal
of nkEmpty, nkNilLit, nkType:
result = true
else:
var plen = sonsLen(p)
# special rule for p(X) ~ f(...); this also works for stuff like
# partial case statements, etc! - Not really ... :-/
let v = lastSon(p)
if isPatternParam(c, v) and v.sym.typ.kind == tyVarargs:
var arglist: PNode
if plen <= sonsLen(n):
for i in countup(0, plen - 2):
if not matches(c, p.sons[i], n.sons[i]): return
if plen == sonsLen(n) and lastSon(n).kind == nkHiddenStdConv and
lastSon(n).sons[1].kind == nkBracket:
# unpack varargs:
let n = lastSon(n).sons[1]
arglist = newNodeI(nkArgList, n.info, n.len)
for i in 0..<n.len: arglist.sons[i] = n.sons[i]
else:
arglist = newNodeI(nkArgList, n.info, sonsLen(n) - plen + 1)
# f(1, 2, 3)
# p(X)
for i in countup(0, sonsLen(n) - plen):
arglist.sons[i] = n.sons[i + plen - 1]
return bindOrCheck(c, v.sym, arglist)
elif plen-1 == sonsLen(n):
for i in countup(0, plen - 2):
if not matches(c, p.sons[i], n.sons[i]): return
arglist = newNodeI(nkArgList, n.info)
return bindOrCheck(c, v.sym, arglist)
if plen == sonsLen(n):
for i in countup(0, sonsLen(p) - 1):
if not matches(c, p.sons[i], n.sons[i]): return
result = true
proc matchStmtList(c: PPatternContext, p, n: PNode): PNode =
proc matchRange(c: PPatternContext, p, n: PNode, i: int): bool =
for j in 0 ..< p.len:
if not matches(c, p.sons[j], n.sons[i+j]):
# we need to undo any bindings:
if not isNil(c.mapping): c.mapping = nil
return false
result = true
if p.kind == nkStmtList and n.kind == p.kind and p.len < n.len:
let n = flattenStmts(n)
# no need to flatten 'p' here as that has already been done
for i in 0 .. n.len - p.len:
if matchRange(c, p, n, i):
c.subMatch = true
result = newNodeI(nkStmtList, n.info, 3)
result.sons[0] = extractRange(nkStmtList, n, 0, i-1)
result.sons[1] = extractRange(nkStmtList, n, i, i+p.len-1)
result.sons[2] = extractRange(nkStmtList, n, i+p.len, n.len-1)
break
elif matches(c, p, n):
result = n
proc aliasAnalysisRequested(params: PNode): bool =
if params.len >= 2:
for i in 1 ..< params.len:
let param = params.sons[i].sym
if whichAlias(param) != aqNone: return true
proc addToArgList(result, n: PNode) =
if n.typ != nil and n.typ.kind != tyStmt:
if n.kind != nkArgList: result.add(n)
else:
for i in 0 ..< n.len: result.add(n.sons[i])
proc applyRule*(c: PContext, s: PSym, n: PNode): PNode =
## returns a tree to semcheck if the rule triggered; nil otherwise
var ctx: TPatternContext
ctx.owner = s
ctx.c = c
ctx.formals = sonsLen(s.typ)-1
var m = matchStmtList(ctx, s.ast.sons[patternPos], n)
if isNil(m): return nil
# each parameter should have been bound; we simply setup a call and
# let semantic checking deal with the rest :-)
result = newNodeI(nkCall, n.info)
result.add(newSymNode(s, n.info))
let params = s.typ.n
let requiresAA = aliasAnalysisRequested(params)
var args: PNode
if requiresAA:
args = newNodeI(nkArgList, n.info)
for i in 1 ..< params.len:
let param = params.sons[i].sym
let x = getLazy(ctx, param)
# couldn't bind parameter:
if isNil(x): return nil
result.add(x)
if requiresAA: addToArgList(args, x)
# perform alias analysis here:
if requiresAA:
for i in 1 ..< params.len:
var rs = result.sons[i]
let param = params.sons[i].sym
case whichAlias(param)
of aqNone: discard
of aqShouldAlias:
# it suffices that it aliases for sure with *some* other param:
var ok = false
for arg in items(args):
if arg != rs and aliases.isPartOf(rs, arg) == arYes:
ok = true
break
# constraint not fulfilled:
if not ok: return nil
of aqNoAlias:
# it MUST not alias with any other param:
var ok = true
for arg in items(args):
if arg != rs and aliases.isPartOf(rs, arg) != arNo:
ok = false
break
# constraint not fulfilled:
if not ok: return nil
markUsed(c.config, n.info, s, c.graph.usageSym)
if ctx.subMatch:
assert m.len == 3
m.sons[1] = result
result = m