#
#
# The Nimrod Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This module implements the semantic checking pass.
import
ast, strutils, hashes, lists, options, lexer, astalgo, trees, treetab,
wordrecg, ropes, msgs, os, condsyms, idents, renderer, types, platform, math,
magicsys, parser, nversion, nimsets, semfold, importer,
procfind, lookups, rodread, pragmas, passes, semdata, semtypinst, sigmatch,
semthreads, intsets, transf, vmdef, vm, idgen, aliases, cgmeth, lambdalifting,
evaltempl, patterns, parampatterns, sempass2, pretty, semmacrosanity
# implementation
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.procvar.}
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.
procvar.}
proc semExprNoType(c: PContext, n: PNode): PNode
proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
proc semProcBody(c: PContext, n: PNode): PNode
proc fitNode(c: PContext, formal: PType, arg: PNode): PNode
proc changeType(n: PNode, newType: PType, check: bool)
proc semLambda(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semTypeNode(c: PContext, n: PNode, prev: PType): PType
proc semStmt(c: PContext, n: PNode): PNode
proc semParamList(c: PContext, n, genericParams: PNode, s: PSym)
proc addParams(c: PContext, n: PNode, kind: TSymKind)
proc maybeAddResult(c: PContext, s: PSym, n: PNode)
proc instGenericContainer(c: PContext, n: PNode, header: PType): PType
proc tryExpr(c: PContext, n: PNode,
flags: TExprFlags = {}, bufferErrors = false): PNode
proc fixImmediateParams(n: PNode): PNode
proc activate(c: PContext, n: PNode)
proc semQuoteAst(c: PContext, n: PNode): PNode
proc finishMethod(c: PContext, s: PSym)
proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode
proc typeMismatch(n: PNode, formal, actual: PType) =
if formal.kind != tyError and actual.kind != tyError:
localError(n.info, errGenerated, msgKindToString(errTypeMismatch) &
typeToString(actual) & ") " &
`%`(msgKindToString(errButExpectedX), [typeToString(formal)]))
proc fitNode(c: PContext, formal: PType, arg: PNode): PNode =
if arg.typ.isNil:
localError(arg.info, errExprXHasNoType,
renderTree(arg, {renderNoComments}))
# error correction:
result = copyNode(arg)
result.typ = formal
else:
result = indexTypesMatch(c, formal, arg.typ, arg)
if result == nil:
typeMismatch(arg, formal, arg.typ)
# error correction:
result = copyTree(arg)
result.typ = formal
var commonTypeBegin = PType(kind: tyExpr)
proc commonType*(x, y: PType): PType =
# new type relation that is used for array constructors,
# if expressions, etc.:
if x == nil: return x
if y == nil: return y
var a = skipTypes(x, {tyGenericInst})
var b = skipTypes(y, {tyGenericInst})
result = x
if a.kind in {tyExpr, tyNil}: result = y
elif b.kind in {tyExpr, tyNil}: result = x
elif a.kind == tyStmt: result = a
elif b.kind == tyStmt: result = b
elif a.kind == tyTypeDesc:
# turn any concrete typedesc into the abstract typedesc type
if a.sons == nil: result = a
else: result = newType(tyTypeDesc, a.owner)
elif b.kind in {tyArray, tyArrayConstr, tySet, tySequence} and
a.kind == b.kind:
# check for seq[empty] vs. seq[int]
let idx = ord(b.kind in {tyArray, tyArrayConstr})
if a.sons[idx].kind == tyEmpty: return y
#elif b.sons[idx].kind == tyEmpty: return x
elif a.kind == tyRange and b.kind == tyRange:
# consider: (range[0..3], range[0..4]) here. We should make that
# range[0..4]. But then why is (range[0..4], 6) not range[0..6]?
# But then why is (2,4) not range[2..4]? But I think this would break
# too much code. So ... it's the same range or the base type. This means
# type(if b: 0 else 1) == int and not range[0..1]. For now. In the long
# run people expect ranges to work properly within a tuple.
if not sameType(a, b):
result = skipTypes(a, {tyRange}).skipIntLit
when false:
if a.kind != tyRange and b.kind == tyRange:
# XXX This really needs a better solution, but a proper fix now breaks
# code.
result = a #.skipIntLit
elif a.kind == tyRange and b.kind != tyRange:
result = b #.skipIntLit
elif a.kind in IntegralTypes and a.n != nil:
result = a #.skipIntLit
else:
var k = tyNone
if a.kind in {tyRef, tyPtr}:
k = a.kind
if b.kind != a.kind: return x
a = a.sons[0]
b = b.sons[0]
if a.kind == tyObject and b.kind == tyObject:
result = commonSuperclass(a, b)
# this will trigger an error later:
if result.isNil: return x
if k != tyNone:
let r = result
result = newType(k, r.owner)
result.addSonSkipIntLit(r)
proc isTopLevel(c: PContext): bool {.inline.} =
result = c.currentScope.depthLevel <= 2
proc newSymS(kind: TSymKind, n: PNode, c: PContext): PSym =
result = newSym(kind, considerAcc(n), getCurrOwner(), n.info)
proc newSymG*(kind: TSymKind, n: PNode, c: PContext): PSym =
# like newSymS, but considers gensym'ed symbols
if n.kind == nkSym:
result = n.sym
internalAssert sfGenSym in result.flags
internalAssert result.kind == kind
else:
result = newSym(kind, considerAcc(n), getCurrOwner(), n.info)
proc semIdentVis(c: PContext, kind: TSymKind, n: PNode,
allowed: TSymFlags): PSym
# identifier with visability
proc semIdentWithPragma(c: PContext, kind: TSymKind, n: PNode,
allowed: TSymFlags): PSym
proc semStmtScope(c: PContext, n: PNode): PNode
proc paramsTypeCheck(c: PContext, typ: PType) {.inline.} =
if not typeAllowed(typ, skConst):
localError(typ.n.info, errXisNoType, typeToString(typ))
proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym
proc semTemplateExpr(c: PContext, n: PNode, s: PSym, semCheck = true): PNode
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semWhen(c: PContext, n: PNode, semCheck: bool = true): PNode
proc isOpImpl(c: PContext, n: PNode): PNode
proc semMacroExpr(c: PContext, n, nOrig: PNode, sym: PSym,
semCheck: bool = true): PNode
proc symFromType(t: PType, info: TLineInfo): PSym =
if t.sym != nil: return t.sym
result = newSym(skType, getIdent"AnonType", t.owner, info)
result.flags.incl sfAnon
result.typ = t
proc symNodeFromType(c: PContext, t: PType, info: TLineInfo): PNode =
result = newSymNode(symFromType(t, info), info)
result.typ = makeTypeDesc(c, t)
when false:
proc createEvalContext(c: PContext, mode: TEvalMode): PEvalContext =
result = newEvalContext(c.module, mode)
result.getType = proc (n: PNode): PNode =
result = tryExpr(c, n)
if result == nil:
result = newSymNode(errorSym(c, n))
elif result.typ == nil:
result = newSymNode(getSysSym"void")
else:
result.typ = makeTypeDesc(c, result.typ)
result.handleIsOperator = proc (n: PNode): PNode =
result = isOpImpl(c, n)
proc fixupTypeAfterEval(c: PContext, evaluated, eOrig: PNode): PNode =
# recompute the types as 'eval' isn't guaranteed to construct types nor
# that the types are sound:
when true:
if eOrig.typ.kind in {tyExpr, tyStmt, tyTypeDesc}:
result = semExprWithType(c, evaluated)
else:
result = evaluated
semmacrosanity.annotateType(result, eOrig.typ)
else:
result = semExprWithType(c, evaluated)
#result = fitNode(c, e.typ, result) inlined with special case:
let arg = result
result = indexTypesMatch(c, eOrig.typ, arg.typ, arg)
if result == nil:
result = arg
# for 'tcnstseq' we support [] to become 'seq'
if eOrig.typ.skipTypes(abstractInst).kind == tySequence and
arg.typ.skipTypes(abstractInst).kind == tyArrayConstr:
arg.typ = eOrig.typ
proc tryConstExpr(c: PContext, n: PNode): PNode =
var e = semExprWithType(c, n)
if e == nil: return
result = getConstExpr(c.module, e)
if result != nil: return
try:
result = evalConstExpr(c.module, e)
if result == nil or result.kind == nkEmpty:
return nil
result = fixupTypeAfterEval(c, result, e)
except:
return nil
proc semConstExpr(c: PContext, n: PNode): PNode =
var e = semExprWithType(c, n)
if e == nil:
localError(n.info, errConstExprExpected)
return n
result = getConstExpr(c.module, e)
if result == nil:
result = evalConstExpr(c.module, e)
if result == nil or result.kind == nkEmpty:
if e.info != n.info:
pushInfoContext(n.info)
localError(e.info, errConstExprExpected)
popInfoContext()
else:
localError(e.info, errConstExprExpected)
# error correction:
result = e
else:
result = fixupTypeAfterEval(c, result, e)
include hlo, seminst, semcall
proc semAfterMacroCall(c: PContext, n: PNode, s: PSym): PNode =
inc(evalTemplateCounter)
if evalTemplateCounter > 100:
globalError(s.info, errTemplateInstantiationTooNested)
let oldFriend = c.friendModule
c.friendModule = s.owner.getModule
result = n
if s.typ.sons[0] == nil:
result = semStmt(c, result)
else:
case s.typ.sons[0].kind
of tyExpr:
# BUGFIX: we cannot expect a type here, because module aliases would not
# work then (see the ``tmodulealias`` test)
# semExprWithType(c, result)
result = semExpr(c, result)
of tyStmt:
result = semStmt(c, result)
of tyTypeDesc:
if n.kind == nkStmtList: result.kind = nkStmtListType
var typ = semTypeNode(c, result, nil)
result.typ = makeTypeDesc(c, typ)
#result = symNodeFromType(c, typ, n.info)
else:
result = semExpr(c, result)
result = fitNode(c, s.typ.sons[0], result)
#GlobalError(s.info, errInvalidParamKindX, typeToString(s.typ.sons[0]))
dec(evalTemplateCounter)
c.friendModule = oldFriend
proc semMacroExpr(c: PContext, n, nOrig: PNode, sym: PSym,
semCheck: bool = true): PNode =
markUsed(n, sym)
if sym == c.p.owner:
globalError(n.info, errRecursiveDependencyX, sym.name.s)
#if c.evalContext == nil:
# c.evalContext = c.createEvalContext(emStatic)
result = evalMacroCall(c.module, n, nOrig, sym)
if semCheck: result = semAfterMacroCall(c, result, sym)
proc forceBool(c: PContext, n: PNode): PNode =
result = fitNode(c, getSysType(tyBool), n)
if result == nil: result = n
proc semConstBoolExpr(c: PContext, n: PNode): PNode =
let nn = semExprWithType(c, n)
result = fitNode(c, getSysType(tyBool), nn)
if result == nil:
localError(n.info, errConstExprExpected)
return nn
result = getConstExpr(c.module, result)
if result == nil:
localError(n.info, errConstExprExpected)
result = nn
type
TSemGenericFlag = enum
withinBind, withinTypeDesc, withinMixin
TSemGenericFlags = set[TSemGenericFlag]
proc semGenericStmt(c: PContext, n: PNode, flags: TSemGenericFlags,
ctx: var TIntSet): PNode
include semtypes, semtempl, semgnrc, semstmts, semexprs
proc addCodeForGenerics(c: PContext, n: PNode) =
for i in countup(c.lastGenericIdx, c.generics.len - 1):
var prc = c.generics[i].inst.sym
if prc.kind in {skProc, skMethod, skConverter} and prc.magic == mNone:
if prc.ast == nil or prc.ast.sons[bodyPos] == nil:
internalError(prc.info, "no code for " & prc.name.s)
else:
addSon(n, prc.ast)
c.lastGenericIdx = c.generics.len
proc myOpen(module: PSym): PPassContext =
var c = newContext(module)
if c.p != nil: internalError(module.info, "sem.myOpen")
c.semConstExpr = semConstExpr
c.semExpr = semExpr
c.semTryExpr = tryExpr
c.semTryConstExpr = tryConstExpr
c.semOperand = semOperand
c.semConstBoolExpr = semConstBoolExpr
c.semOverloadedCall = semOverloadedCall
c.semTypeNode = semTypeNode
pushProcCon(c, module)
pushOwner(c.module)
c.importTable = openScope(c)
c.importTable.addSym(module) # a module knows itself
if sfSystemModule in module.flags:
magicsys.systemModule = module # set global variable!
else:
c.importTable.addSym magicsys.systemModule # import the "System" identifier
importAllSymbols(c, magicsys.systemModule)
c.topLevelScope = openScope(c)
result = c
proc myOpenCached(module: PSym, rd: PRodReader): PPassContext =
result = myOpen(module)
for m in items(rd.methods): methodDef(m, true)
proc semStmtAndGenerateGenerics(c: PContext, n: PNode): PNode =
result = semStmt(c, n)
# BUGFIX: process newly generated generics here, not at the end!
if c.lastGenericIdx < c.generics.len:
var a = newNodeI(nkStmtList, n.info)
addCodeForGenerics(c, a)
if sonsLen(a) > 0:
# a generic has been added to `a`:
if result.kind != nkEmpty: addSon(a, result)
result = a
result = hloStmt(c, result)
if gCmd == cmdInteractive and not isEmptyType(result.typ):
result = buildEchoStmt(c, result)
result = transformStmt(c.module, result)
proc recoverContext(c: PContext) =
# clean up in case of a semantic error: We clean up the stacks, etc. This is
# faster than wrapping every stack operation in a 'try finally' block and
# requires far less code.
c.currentScope = c.topLevelScope
while getCurrOwner().kind != skModule: popOwner()
while c.p != nil and c.p.owner.kind != skModule: c.p = c.p.next
proc myProcess(context: PPassContext, n: PNode): PNode =
var c = PContext(context)
# no need for an expensive 'try' if we stop after the first error anyway:
if msgs.gErrorMax <= 1:
result = semStmtAndGenerateGenerics(c, n)
else:
let oldContextLen = msgs.getInfoContextLen()
let oldInGenericInst = c.inGenericInst
try:
result = semStmtAndGenerateGenerics(c, n)
except ERecoverableError, ESuggestDone:
recoverContext(c)
c.inGenericInst = oldInGenericInst
msgs.setInfoContextLen(oldContextLen)
if getCurrentException() of ESuggestDone: result = nil
else: result = ast.emptyNode
#if gCmd == cmdIdeTools: findSuggest(c, n)
proc checkThreads(c: PContext) =
if not needsGlobalAnalysis(): return
for i in 0 .. c.threadEntries.len-1:
semthreads.analyseThreadProc(c.threadEntries[i])
proc myClose(context: PPassContext, n: PNode): PNode =
var c = PContext(context)
closeScope(c) # close module's scope
rawCloseScope(c) # imported symbols; don't check for unused ones!
result = newNode(nkStmtList)
if n != nil:
internalError(n.info, "n is not nil") #result := n;
addCodeForGenerics(c, result)
if c.module.ast != nil:
result.add(c.module.ast)
checkThreads(c)
popOwner()
popProcCon(c)
const semPass* = makePass(myOpen, myOpenCached, myProcess, myClose)