#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This module implements the semantic checking pass.
import
ast, strutils, options, astalgo, trees,
wordrecg, ropes, msgs, idents, renderer, types, platform, math,
magicsys, nversion, nimsets, semfold, modulepaths, importer,
procfind, lookups, pragmas, passes, semdata, semtypinst, sigmatch,
intsets, transf, vmdef, vm, idgen, aliases, cgmeth, lambdalifting,
evaltempl, patterns, parampatterns, sempass2, linter, semmacrosanity,
lowerings, plugins/active, rod, lineinfos, strtabs, int128
from modulegraphs import ModuleGraph, PPassContext, onUse, onDef, onDefResolveForward
when defined(nimfix):
import nimfix/prettybase
when not defined(leanCompiler):
import spawn
# implementation
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
proc semExprNoType(c: PContext, n: PNode): PNode
proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
proc semProcBody(c: PContext, n: PNode): PNode
proc fitNode(c: PContext, formal: PType, arg: PNode; info: TLineInfo): PNode
proc changeType(c: PContext; n: PNode, newType: PType, check: bool)
proc semLambda(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semTypeNode(c: PContext, n: PNode, prev: PType): PType
proc semStmt(c: PContext, n: PNode; flags: TExprFlags): PNode
proc semOpAux(c: PContext, n: PNode)
proc semParamList(c: PContext, n, genericParams: PNode, s: PSym)
proc addParams(c: PContext, n: PNode, kind: TSymKind)
proc maybeAddResult(c: PContext, s: PSym, n: PNode)
proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
proc activate(c: PContext, n: PNode)
proc semQuoteAst(c: PContext, n: PNode): PNode
proc finishMethod(c: PContext, s: PSym)
proc evalAtCompileTime(c: PContext, n: PNode): PNode
proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode
proc semStaticExpr(c: PContext, n: PNode): PNode
proc semStaticType(c: PContext, childNode: PNode, prev: PType): PType
proc semTypeOf(c: PContext; n: PNode): PNode
proc computeRequiresInit(c: PContext, t: PType): bool
proc defaultConstructionError(c: PContext, t: PType, info: TLineInfo)
proc hasUnresolvedArgs(c: PContext, n: PNode): bool
proc isArrayConstr(n: PNode): bool {.inline.} =
result = n.kind == nkBracket and
n.typ.skipTypes(abstractInst).kind == tyArray
template semIdeForTemplateOrGenericCheck(conf, n, requiresCheck) =
# we check quickly if the node is where the cursor is
when defined(nimsuggest):
if n.info.fileIndex == conf.m.trackPos.fileIndex and n.info.line == conf.m.trackPos.line:
requiresCheck = true
template semIdeForTemplateOrGeneric(c: PContext; n: PNode;
requiresCheck: bool) =
# use only for idetools support; this is pretty slow so generics and
# templates perform some quick check whether the cursor is actually in
# the generic or template.
when defined(nimsuggest):
if c.config.cmd == cmdIdeTools and requiresCheck:
#if optIdeDebug in gGlobalOptions:
# echo "passing to safeSemExpr: ", renderTree(n)
discard safeSemExpr(c, n)
proc fitNodePostMatch(c: PContext, formal: PType, arg: PNode): PNode =
let x = arg.skipConv
if x.kind in {nkPar, nkTupleConstr, nkCurly} and formal.kind != tyUntyped:
changeType(c, x, formal, check=true)
result = arg
result = skipHiddenSubConv(result)
proc fitNode(c: PContext, formal: PType, arg: PNode; info: TLineInfo): PNode =
if arg.typ.isNil:
localError(c.config, arg.info, "expression has no type: " &
renderTree(arg, {renderNoComments}))
# error correction:
result = copyTree(arg)
result.typ = formal
else:
result = indexTypesMatch(c, formal, arg.typ, arg)
if result == nil:
typeMismatch(c.config, info, formal, arg.typ)
# error correction:
result = copyTree(arg)
result.typ = formal
else:
result = fitNodePostMatch(c, formal, result)
proc inferWithMetatype(c: PContext, formal: PType,
arg: PNode, coerceDistincts = false): PNode
template commonTypeBegin*(): PType = PType(kind: tyUntyped)
proc commonType*(x, y: PType): PType =
# new type relation that is used for array constructors,
# if expressions, etc.:
if x == nil: return x
if y == nil: return y
var a = skipTypes(x, {tyGenericInst, tyAlias, tySink})
var b = skipTypes(y, {tyGenericInst, tyAlias, tySink})
result = x
if a.kind in {tyUntyped, tyNil}: result = y
elif b.kind in {tyUntyped, tyNil}: result = x
elif a.kind == tyTyped: result = a
elif b.kind == tyTyped: result = b
elif a.kind == tyTypeDesc:
# turn any concrete typedesc into the abstract typedesc type
if a.len == 0: result = a
else:
result = newType(tyTypeDesc, a.owner)
rawAddSon(result, newType(tyNone, a.owner))
elif b.kind in {tyArray, tySet, tySequence} and
a.kind == b.kind:
# check for seq[empty] vs. seq[int]
let idx = ord(b.kind == tyArray)
if a[idx].kind == tyEmpty: return y
elif a.kind == tyTuple and b.kind == tyTuple and a.len == b.len:
var nt: PType
for i in 0..<a.len:
let aEmpty = isEmptyContainer(a[i])
let bEmpty = isEmptyContainer(b[i])
if aEmpty != bEmpty:
if nt.isNil: nt = copyType(a, a.owner, false)
nt[i] = if aEmpty: b[i] else: a[i]
if not nt.isNil: result = nt
#elif b[idx].kind == tyEmpty: return x
elif a.kind == tyRange and b.kind == tyRange:
# consider: (range[0..3], range[0..4]) here. We should make that
# range[0..4]. But then why is (range[0..4], 6) not range[0..6]?
# But then why is (2,4) not range[2..4]? But I think this would break
# too much code. So ... it's the same range or the base type. This means
# type(if b: 0 else 1) == int and not range[0..1]. For now. In the long
# run people expect ranges to work properly within a tuple.
if not sameType(a, b):
result = skipTypes(a, {tyRange}).skipIntLit
when false:
if a.kind != tyRange and b.kind == tyRange:
# XXX This really needs a better solution, but a proper fix now breaks
# code.
result = a #.skipIntLit
elif a.kind == tyRange and b.kind != tyRange:
result = b #.skipIntLit
elif a.kind in IntegralTypes and a.n != nil:
result = a #.skipIntLit
else:
var k = tyNone
if a.kind in {tyRef, tyPtr}:
k = a.kind
if b.kind != a.kind: return x
# bug #7601, array construction of ptr generic
a = a.lastSon.skipTypes({tyGenericInst})
b = b.lastSon.skipTypes({tyGenericInst})
if a.kind == tyObject and b.kind == tyObject:
result = commonSuperclass(a, b)
# this will trigger an error later:
if result.isNil or result == a: return x
if result == b: return y
# bug #7906, tyRef/tyPtr + tyGenericInst of ref/ptr object ->
# ill-formed AST, no need for additional tyRef/tyPtr
if k != tyNone and x.kind != tyGenericInst:
let r = result
result = newType(k, r.owner)
result.addSonSkipIntLit(r)
proc endsInNoReturn(n: PNode): bool =
# check if expr ends in raise exception or call of noreturn proc
var it = n
while it.kind in {nkStmtList, nkStmtListExpr} and it.len > 0:
it = it.lastSon
result = it.kind in nkLastBlockStmts or
it.kind in nkCallKinds and it[0].kind == nkSym and sfNoReturn in it[0].sym.flags
proc commonType*(x: PType, y: PNode): PType =
# ignore exception raising branches in case/if expressions
if endsInNoReturn(y): return x
commonType(x, y.typ)
proc newSymS(kind: TSymKind, n: PNode, c: PContext): PSym =
result = newSym(kind, considerQuotedIdent(c, n), getCurrOwner(c), n.info)
when defined(nimsuggest):
suggestDecl(c, n, result)
proc newSymG*(kind: TSymKind, n: PNode, c: PContext): PSym =
# like newSymS, but considers gensym'ed symbols
if n.kind == nkSym:
# and sfGenSym in n.sym.flags:
result = n.sym
if result.kind notin {kind, skTemp}:
localError(c.config, n.info, "cannot use symbol of kind '$1' as a '$2'" %
[result.kind.toHumanStr, kind.toHumanStr])
when false:
if sfGenSym in result.flags and result.kind notin {skTemplate, skMacro, skParam}:
# declarative context, so produce a fresh gensym:
result = copySym(result)
result.ast = n.sym.ast
put(c.p, n.sym, result)
# when there is a nested proc inside a template, semtmpl
# will assign a wrong owner during the first pass over the
# template; we must fix it here: see #909
result.owner = getCurrOwner(c)
else:
result = newSym(kind, considerQuotedIdent(c, n), getCurrOwner(c), n.info)
#if kind in {skForVar, skLet, skVar} and result.owner.kind == skModule:
# incl(result.flags, sfGlobal)
when defined(nimsuggest):
suggestDecl(c, n, result)
proc semIdentVis(c: PContext, kind: TSymKind, n: PNode,
allowed: TSymFlags): PSym
# identifier with visibility
proc semIdentWithPragma(c: PContext, kind: TSymKind, n: PNode,
allowed: TSymFlags): PSym
proc typeAllowedCheck(conf: ConfigRef; info: TLineInfo; typ: PType; kind: TSymKind;
flags: TTypeAllowedFlags = {}) =
let t = typeAllowed(typ, kind, flags)
if t != nil:
var err: string
if t == typ:
err = "invalid type: '$1' for $2" % [typeToString(typ), toHumanStr(kind)]
if kind in {skVar, skLet, skConst} and taIsTemplateOrMacro in flags:
err &= ". Did you mean to call the $1 with '()'?" % [toHumanStr(typ.owner.kind)]
else:
err = "invalid type: '$1' in this context: '$2' for $3" % [typeToString(t),
typeToString(typ), toHumanStr(kind)]
localError(conf, info, err)
proc paramsTypeCheck(c: PContext, typ: PType) {.inline.} =
typeAllowedCheck(c.config, typ.n.info, typ, skProc)
proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semWhen(c: PContext, n: PNode, semCheck: bool = true): PNode
proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
flags: TExprFlags = {}): PNode
proc semMacroExpr(c: PContext, n, nOrig: PNode, sym: PSym,
flags: TExprFlags = {}): PNode
proc symFromType(c: PContext; t: PType, info: TLineInfo): PSym =
if t.sym != nil: return t.sym
result = newSym(skType, getIdent(c.cache, "AnonType"), t.owner, info)
result.flags.incl sfAnon
result.typ = t
proc symNodeFromType(c: PContext, t: PType, info: TLineInfo): PNode =
result = newSymNode(symFromType(c, t, info), info)
result.typ = makeTypeDesc(c, t)
when false:
proc createEvalContext(c: PContext, mode: TEvalMode): PEvalContext =
result = newEvalContext(c.module, mode)
result.getType = proc (n: PNode): PNode =
result = tryExpr(c, n)
if result == nil:
result = newSymNode(errorSym(c, n))
elif result.typ == nil:
result = newSymNode(getSysSym"void")
else:
result.typ = makeTypeDesc(c, result.typ)
result.handleIsOperator = proc (n: PNode): PNode =
result = isOpImpl(c, n)
proc hasCycle(n: PNode): bool =
incl n.flags, nfNone
for i in 0..<n.safeLen:
if nfNone in n[i].flags or hasCycle(n[i]):
result = true
break
excl n.flags, nfNone
proc fixupTypeAfterEval(c: PContext, evaluated, eOrig: PNode): PNode =
# recompute the types as 'eval' isn't guaranteed to construct types nor
# that the types are sound:
when true:
if eOrig.typ.kind in {tyUntyped, tyTyped, tyTypeDesc}:
result = semExprWithType(c, evaluated)
else:
result = evaluated
let expectedType = eOrig.typ.skipTypes({tyStatic})
if hasCycle(result):
globalError(c.config, eOrig.info, "the resulting AST is cyclic and cannot be processed further")
result = errorNode(c, eOrig)
else:
semmacrosanity.annotateType(result, expectedType, c.config)
else:
result = semExprWithType(c, evaluated)
#result = fitNode(c, e.typ, result) inlined with special case:
let arg = result
result = indexTypesMatch(c, eOrig.typ, arg.typ, arg)
if result == nil:
result = arg
# for 'tcnstseq' we support [] to become 'seq'
if eOrig.typ.skipTypes(abstractInst).kind == tySequence and
isArrayConstr(arg):
arg.typ = eOrig.typ
proc tryConstExpr(c: PContext, n: PNode): PNode =
var e = semExprWithType(c, n)
if e == nil: return
result = getConstExpr(c.module, e, c.graph)
if result != nil: return
let oldErrorCount = c.config.errorCounter
let oldErrorMax = c.config.errorMax
let oldErrorOutputs = c.config.m.errorOutputs
c.config.m.errorOutputs = {}
c.config.errorMax = high(int) # `setErrorMaxHighMaybe` not appropriate here
try:
result = evalConstExpr(c.module, c.graph, e)
if result == nil or result.kind == nkEmpty:
result = nil
else:
result = fixupTypeAfterEval(c, result, e)
except ERecoverableError:
result = nil
c.config.errorCounter = oldErrorCount
c.config.errorMax = oldErrorMax
c.config.m.errorOutputs = oldErrorOutputs
const
errConstExprExpected = "constant expression expected"
proc semConstExpr(c: PContext, n: PNode): PNode =
var e = semExprWithType(c, n)
if e == nil:
localError(c.config, n.info, errConstExprExpected)
return n
result = getConstExpr(c.module, e, c.graph)
if result == nil:
#if e.kind == nkEmpty: globalError(n.info, errConstExprExpected)
result = evalConstExpr(c.module, c.graph, e)
if result == nil or result.kind == nkEmpty:
if e.info != n.info:
pushInfoContext(c.config, n.info)
localError(c.config, e.info, errConstExprExpected)
popInfoContext(c.config)
else:
localError(c.config, e.info, errConstExprExpected)
# error correction:
result = e
else:
result = fixupTypeAfterEval(c, result, e)
proc semExprFlagDispatched(c: PContext, n: PNode, flags: TExprFlags): PNode =
if efNeedStatic in flags:
if efPreferNilResult in flags:
return tryConstExpr(c, n)
else:
return semConstExpr(c, n)
else:
result = semExprWithType(c, n, flags)
if efPreferStatic in flags:
var evaluated = getConstExpr(c.module, result, c.graph)
if evaluated != nil: return evaluated
evaluated = evalAtCompileTime(c, result)
if evaluated != nil: return evaluated
when not defined(nimHasSinkInference):
{.pragma: nosinks.}
include hlo, seminst, semcall
when false:
# hopefully not required:
proc resetSemFlag(n: PNode) =
excl n.flags, nfSem
for i in 0..<n.safeLen:
resetSemFlag(n[i])
proc semAfterMacroCall(c: PContext, call, macroResult: PNode,
s: PSym, flags: TExprFlags): PNode =
## Semantically check the output of a macro.
## This involves processes such as re-checking the macro output for type
## coherence, making sure that variables declared with 'let' aren't
## reassigned, and binding the unbound identifiers that the macro output
## contains.
inc(c.config.evalTemplateCounter)
if c.config.evalTemplateCounter > evalTemplateLimit:
globalError(c.config, s.info, "template instantiation too nested")
c.friendModules.add(s.owner.getModule)
idSynchronizationPoint(5000)
result = macroResult
excl(result.flags, nfSem)
#resetSemFlag n
if s.typ[0] == nil:
result = semStmt(c, result, flags)
else:
var retType = s.typ[0]
if retType.kind == tyTypeDesc and tfUnresolved in retType.flags and
retType.len == 1:
# bug #11941: template fails(T: type X, v: auto): T
# does not mean we expect a tyTypeDesc.
retType = retType[0]
case retType.kind
of tyUntyped:
# Not expecting a type here allows templates like in ``tmodulealias.in``.
result = semExpr(c, result, flags)
of tyTyped:
# More restrictive version.
result = semExprWithType(c, result, flags)
of tyTypeDesc:
if result.kind == nkStmtList: result.transitionSonsKind(nkStmtListType)
var typ = semTypeNode(c, result, nil)
if typ == nil:
localError(c.config, result.info, "expression has no type: " &
renderTree(result, {renderNoComments}))
result = newSymNode(errorSym(c, result))
else:
result.typ = makeTypeDesc(c, typ)
#result = symNodeFromType(c, typ, n.info)
else:
if s.ast[genericParamsPos] != nil and retType.isMetaType:
# The return type may depend on the Macro arguments
# e.g. template foo(T: typedesc): seq[T]
# We will instantiate the return type here, because
# we now know the supplied arguments
var paramTypes = newIdTable()
for param, value in genericParamsInMacroCall(s, call):
idTablePut(paramTypes, param.typ, value.typ)
retType = generateTypeInstance(c, paramTypes,
macroResult.info, retType)
result = semExpr(c, result, flags)
result = fitNode(c, retType, result, result.info)
#globalError(s.info, errInvalidParamKindX, typeToString(s.typ[0]))
dec(c.config.evalTemplateCounter)
discard c.friendModules.pop()
const
errMissingGenericParamsForTemplate = "'$1' has unspecified generic parameters"
errFloatToString = "cannot convert '$1' to '$2'"
proc semMacroExpr(c: PContext, n, nOrig: PNode, sym: PSym,
flags: TExprFlags = {}): PNode =
pushInfoContext(c.config, nOrig.info, sym.detailedInfo)
let info = getCallLineInfo(n)
markUsed(c, info, sym)
onUse(info, sym)
if sym == c.p.owner:
globalError(c.config, info, "recursive dependency: '$1'" % sym.name.s)
let genericParams = sym.ast[genericParamsPos].len
let suppliedParams = max(n.safeLen - 1, 0)
if suppliedParams < genericParams:
globalError(c.config, info, errMissingGenericParamsForTemplate % n.renderTree)
#if c.evalContext == nil:
# c.evalContext = c.createEvalContext(emStatic)
result = evalMacroCall(c.module, c.graph, n, nOrig, sym)
if efNoSemCheck notin flags:
result = semAfterMacroCall(c, n, result, sym, flags)
if c.config.macrosToExpand.hasKey(sym.name.s):
message(c.config, nOrig.info, hintExpandMacro, renderTree(result))
result = wrapInComesFrom(nOrig.info, sym, result)
popInfoContext(c.config)
proc forceBool(c: PContext, n: PNode): PNode =
result = fitNode(c, getSysType(c.graph, n.info, tyBool), n, n.info)
if result == nil: result = n
proc semConstBoolExpr(c: PContext, n: PNode): PNode =
result = forceBool(c, semConstExpr(c, n))
if result.kind != nkIntLit:
localError(c.config, n.info, errConstExprExpected)
proc semGenericStmt(c: PContext, n: PNode): PNode
proc semConceptBody(c: PContext, n: PNode): PNode
include semtypes, semtempl, semgnrc, semstmts, semexprs
proc addCodeForGenerics(c: PContext, n: PNode) =
for i in c.lastGenericIdx..<c.generics.len:
var prc = c.generics[i].inst.sym
if prc.kind in {skProc, skFunc, skMethod, skConverter} and prc.magic == mNone:
if prc.ast == nil or prc.ast[bodyPos] == nil:
internalError(c.config, prc.info, "no code for " & prc.name.s)
else:
n.add prc.ast
c.lastGenericIdx = c.generics.len
proc myOpen(graph: ModuleGraph; module: PSym): PPassContext {.nosinks.} =
var c = newContext(graph, module)
if c.p != nil: internalError(graph.config, module.info, "sem.myOpen")
c.semConstExpr = semConstExpr
c.semExpr = semExpr
c.semTryExpr = tryExpr
c.semTryConstExpr = tryConstExpr
c.computeRequiresInit = computeRequiresInit
c.semOperand = semOperand
c.semConstBoolExpr = semConstBoolExpr
c.semOverloadedCall = semOverloadedCall
c.semInferredLambda = semInferredLambda
c.semGenerateInstance = generateInstance
c.semTypeNode = semTypeNode
c.instTypeBoundOp = sigmatch.instTypeBoundOp
c.hasUnresolvedArgs = hasUnresolvedArgs
pushProcCon(c, module)
pushOwner(c, c.module)
c.importTable = openScope(c)
c.importTable.addSym(module) # a module knows itself
if sfSystemModule in module.flags:
graph.systemModule = module
c.topLevelScope = openScope(c)
result = c
proc isImportSystemStmt(g: ModuleGraph; n: PNode): bool =
if g.systemModule == nil: return false
case n.kind
of nkImportStmt:
for x in n:
if x.kind == nkIdent:
let f = checkModuleName(g.config, x, false)
if f == g.systemModule.info.fileIndex:
return true
of nkImportExceptStmt, nkFromStmt:
if n[0].kind == nkIdent:
let f = checkModuleName(g.config, n[0], false)
if f == g.systemModule.info.fileIndex:
return true
else: discard
proc isEmptyTree(n: PNode): bool =
case n.kind
of nkStmtList:
for it in n:
if not isEmptyTree(it): return false
result = true
of nkEmpty, nkCommentStmt: result = true
else: result = false
proc semStmtAndGenerateGenerics(c: PContext, n: PNode): PNode =
if c.topStmts == 0 and not isImportSystemStmt(c.graph, n):
if sfSystemModule notin c.module.flags and not isEmptyTree(n):
c.importTable.addSym c.graph.systemModule # import the "System" identifier
importAllSymbols(c, c.graph.systemModule)
inc c.topStmts
else:
inc c.topStmts
if sfNoForward in c.module.flags:
result = semAllTypeSections(c, n)
else:
result = n
result = semStmt(c, result, {})
when false:
# Code generators are lazy now and can deal with undeclared procs, so these
# steps are not required anymore and actually harmful for the upcoming
# destructor support.
# BUGFIX: process newly generated generics here, not at the end!
if c.lastGenericIdx < c.generics.len:
var a = newNodeI(nkStmtList, n.info)
addCodeForGenerics(c, a)
if a.len > 0:
# a generic has been added to `a`:
if result.kind != nkEmpty: a.add result
result = a
result = hloStmt(c, result)
if c.config.cmd == cmdInteractive and not isEmptyType(result.typ):
result = buildEchoStmt(c, result)
if c.config.cmd == cmdIdeTools:
appendToModule(c.module, result)
trackStmt(c, c.module, result, isTopLevel = true)
proc recoverContext(c: PContext) =
# clean up in case of a semantic error: We clean up the stacks, etc. This is
# faster than wrapping every stack operation in a 'try finally' block and
# requires far less code.
c.currentScope = c.topLevelScope
while getCurrOwner(c).kind != skModule: popOwner(c)
while c.p != nil and c.p.owner.kind != skModule: c.p = c.p.next
proc myProcess(context: PPassContext, n: PNode): PNode {.nosinks.} =
var c = PContext(context)
# no need for an expensive 'try' if we stop after the first error anyway:
if c.config.errorMax <= 1:
result = semStmtAndGenerateGenerics(c, n)
else:
let oldContextLen = msgs.getInfoContextLen(c.config)
let oldInGenericInst = c.inGenericInst
try:
result = semStmtAndGenerateGenerics(c, n)
except ERecoverableError, ESuggestDone:
recoverContext(c)
c.inGenericInst = oldInGenericInst
msgs.setInfoContextLen(c.config, oldContextLen)
if getCurrentException() of ESuggestDone:
c.suggestionsMade = true
result = nil
else:
result = newNodeI(nkEmpty, n.info)
#if c.config.cmd == cmdIdeTools: findSuggest(c, n)
rod.storeNode(c.graph, c.module, result)
proc reportUnusedModules(c: PContext) =
for i in 0..high(c.unusedImports):
if sfUsed notin c.unusedImports[i][0].flags:
message(c.config, c.unusedImports[i][1], warnUnusedImportX, c.unusedImports[i][0].name.s)
proc myClose(graph: ModuleGraph; context: PPassContext, n: PNode): PNode =
var c = PContext(context)
if c.config.cmd == cmdIdeTools and not c.suggestionsMade:
suggestSentinel(c)
closeScope(c) # close module's scope
rawCloseScope(c) # imported symbols; don't check for unused ones!
reportUnusedModules(c)
result = newNode(nkStmtList)
if n != nil:
internalError(c.config, n.info, "n is not nil") #result := n;
addCodeForGenerics(c, result)
if c.module.ast != nil:
result.add(c.module.ast)
popOwner(c)
popProcCon(c)
storeRemaining(c.graph, c.module)
const semPass* = makePass(myOpen, myProcess, myClose,
isFrontend = true)