#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements semantic checking for calls.
# included from sem.nim
proc sameMethodDispatcher(a, b: PSym): bool =
result = false
if a.kind == skMethod and b.kind == skMethod:
var aa = lastSon(a.ast)
var bb = lastSon(b.ast)
if aa.kind == nkSym and bb.kind == nkSym:
if aa.sym == bb.sym:
result = true
else:
discard
# generics have no dispatcher yet, so we need to compare the method
# names; however, the names are equal anyway because otherwise we
# wouldn't even consider them to be overloaded. But even this does
# not work reliably! See tmultim6 for an example:
# method collide[T](a: TThing, b: TUnit[T]) is instantiated and not
# method collide[T](a: TUnit[T], b: TThing)! This means we need to
# *instantiate* every candidate! However, we don't keep more than 2-3
# candidated around so we cannot implement that for now. So in order
# to avoid subtle problems, the call remains ambiguous and needs to
# be disambiguated by the programmer; this way the right generic is
# instantiated.
proc determineType(c: PContext, s: PSym)
proc pickBestCandidate(c: PContext, headSymbol: PNode,
n, orig: PNode,
initialBinding: PNode,
filter: TSymKinds,
best, alt: var TCandidate,
errors: var CandidateErrors) =
var o: TOverloadIter
# thanks to the lazy semchecking for operands, we need to iterate over the
# symbol table *before* any call to 'initCandidate' which might invoke
# semExpr which might modify the symbol table in cases like
# 'init(a, 1, (var b = new(Type2); b))'.
var symx = initOverloadIter(o, c, headSymbol)
let symScope = o.lastOverloadScope
var syms: seq[tuple[a: PSym, b: int]] = @[]
while symx != nil:
if symx.kind in filter: syms.add((symx, o.lastOverloadScope))
symx = nextOverloadIter(o, c, headSymbol)
if syms.len == 0: return
var z: TCandidate
initCandidate(c, best, syms[0][0], initialBinding, symScope)
initCandidate(c, alt, syms[0][0], initialBinding, symScope)
best.state = csNoMatch
for i in 0 .. <syms.len:
let sym = syms[i][0]
determineType(c, sym)
initCandidate(c, z, sym, initialBinding, syms[i][1])
z.calleeSym = sym
#if sym.name.s == "*" and (n.info ?? "temp5.nim") and n.info.line == 140:
# gDebug = true
matches(c, n, orig, z)
if errors != nil:
errors.safeAdd(sym)
if z.errors != nil:
for err in z.errors:
errors.add(err)
if z.state == csMatch:
# little hack so that iterators are preferred over everything else:
if sym.kind in skIterators: inc(z.exactMatches, 200)
case best.state
of csEmpty, csNoMatch: best = z
of csMatch:
var cmp = cmpCandidates(best, z)
if cmp < 0: best = z # x is better than the best so far
elif cmp == 0: alt = z # x is as good as the best so far
else: discard
#if sym.name.s == "cmp" and (n.info ?? "rstgen.nim") and n.info.line == 516:
# echo "Matches ", n.info, " ", typeToString(sym.typ)
# debug sym
# writeMatches(z)
# for i in 1 .. <len(z.call):
# z.call[i].typ.debug
# quit 1
proc notFoundError*(c: PContext, n: PNode, errors: CandidateErrors) =
# Gives a detailed error message; this is separated from semOverloadedCall,
# as semOverlodedCall is already pretty slow (and we need this information
# only in case of an error).
if c.inCompilesContext > 0:
# fail fast:
globalError(n.info, errTypeMismatch, "")
if errors.isNil or errors.len == 0:
localError(n.info, errExprXCannotBeCalled, n[0].renderTree)
return
# to avoid confusing errors like:
# got (SslPtr, SocketHandle)
# but expected one of:
# openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint
# we do a pre-analysis. If all types produce the same string, we will add
# module information.
let proto = describeArgs(c, n, 1, preferName)
var prefer = preferName
for err in errors:
var errProto = ""
let n = err.typ.n
for i in countup(1, n.len - 1):
var p = n.sons[i]
if p.kind == nkSym:
add(errProto, typeToString(p.sym.typ, preferName))
if i != n.len-1: add(errProto, ", ")
# else: ignore internal error as we're already in error handling mode
if errProto == proto:
prefer = preferModuleInfo
break
# now use the information stored in 'prefer' to produce a nice error message:
var result = msgKindToString(errTypeMismatch)
add(result, describeArgs(c, n, 1, prefer))
add(result, ')')
var candidates = ""
for err in errors:
add(candidates, err.getProcHeader(prefer))
add(candidates, "\n")
if candidates != "":
add(result, "\n" & msgKindToString(errButExpected) & "\n" & candidates)
localError(n.info, errGenerated, result)
proc gatherUsedSyms(c: PContext, usedSyms: var seq[PNode]) =
for scope in walkScopes(c.currentScope):
if scope.usingSyms != nil:
for s in scope.usingSyms: usedSyms.safeAdd(s)
proc resolveOverloads(c: PContext, n, orig: PNode,
filter: TSymKinds;
errors: var CandidateErrors): TCandidate =
var initialBinding: PNode
var alt: TCandidate
var f = n.sons[0]
if f.kind == nkBracketExpr:
# fill in the bindings:
initialBinding = f
f = f.sons[0]
else:
initialBinding = nil
var usedSyms: seq[PNode]
template pickBest(headSymbol: expr) =
pickBestCandidate(c, headSymbol, n, orig, initialBinding,
filter, result, alt, errors)
gatherUsedSyms(c, usedSyms)
if usedSyms != nil:
var hiddenArg = if usedSyms.len > 1: newNode(nkClosedSymChoice, n.info, usedSyms)
else: usedSyms[0]
n.sons.insert(hiddenArg, 1)
orig.sons.insert(hiddenArg, 1)
pickBest(f)
if result.state != csMatch:
n.sons.delete(1)
orig.sons.delete(1)
else: return
pickBest(f)
let overloadsState = result.state
if overloadsState != csMatch:
if nfDotField in n.flags:
internalAssert f.kind == nkIdent and n.sonsLen >= 2
let calleeName = newStrNode(nkStrLit, f.ident.s).withInfo(n.info)
# leave the op head symbol empty,
# we are going to try multiple variants
n.sons[0..1] = [nil, n[1], calleeName]
orig.sons[0..1] = [nil, orig[1], calleeName]
template tryOp(x) =
let op = newIdentNode(getIdent(x), n.info)
n.sons[0] = op
orig.sons[0] = op
pickBest(op)
if nfExplicitCall in n.flags:
tryOp ".()"
if result.state in {csEmpty, csNoMatch}:
tryOp "."
elif nfDotSetter in n.flags:
internalAssert f.kind == nkIdent and n.sonsLen == 3
let calleeName = newStrNode(nkStrLit,
f.ident.s[0..f.ident.s.len-2]).withInfo(n.info)
let callOp = newIdentNode(getIdent".=", n.info)
n.sons[0..1] = [callOp, n[1], calleeName]
orig.sons[0..1] = [callOp, orig[1], calleeName]
pickBest(callOp)
if overloadsState == csEmpty and result.state == csEmpty:
localError(n.info, errUndeclaredIdentifier, considerQuotedIdent(f).s)
return
elif result.state != csMatch:
if nfExprCall in n.flags:
localError(n.info, errExprXCannotBeCalled,
renderTree(n, {renderNoComments}))
else:
if {nfDotField, nfDotSetter} * n.flags != {}:
# clean up the inserted ops
n.sons.delete(2)
n.sons[0] = f
errors = @[]
pickBest(f)
#notFoundError(c, n, errors)
return
if alt.state == csMatch and cmpCandidates(result, alt) == 0 and
not sameMethodDispatcher(result.calleeSym, alt.calleeSym):
internalAssert result.state == csMatch
#writeMatches(result)
#writeMatches(alt)
if c.inCompilesContext > 0:
# quick error message for performance of 'compiles' built-in:
globalError(n.info, errGenerated, "ambiguous call")
elif gErrorCounter == 0:
# don't cascade errors
var args = "("
for i in countup(1, sonsLen(n) - 1):
if i > 1: add(args, ", ")
add(args, typeToString(n.sons[i].typ))
add(args, ")")
localError(n.info, errGenerated, msgKindToString(errAmbiguousCallXYZ) % [
getProcHeader(result.calleeSym), getProcHeader(alt.calleeSym),
args])
proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) =
if a.kind == nkHiddenCallConv and a.sons[0].kind == nkSym and
isGenericRoutine(a.sons[0].sym):
let finalCallee = generateInstance(c, a.sons[0].sym, x.bindings, a.info)
a.sons[0].sym = finalCallee
a.sons[0].typ = finalCallee.typ
#a.typ = finalCallee.typ.sons[0]
proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) =
assert n.kind in nkCallKinds
if x.genericConverter:
for i in 1 .. <n.len:
instGenericConvertersArg(c, n.sons[i], x)
proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode =
var m: TCandidate
initCandidate(c, m, f)
result = paramTypesMatch(m, f, a, arg, nil)
if m.genericConverter and result != nil:
instGenericConvertersArg(c, result, m)
proc inferWithMetatype(c: PContext, formal: PType,
arg: PNode, coerceDistincts = false): PNode =
var m: TCandidate
initCandidate(c, m, formal)
m.coerceDistincts = coerceDistincts
result = paramTypesMatch(m, formal, arg.typ, arg, nil)
if m.genericConverter and result != nil:
instGenericConvertersArg(c, result, m)
if result != nil:
# This almost exactly replicates the steps taken by the compiler during
# param matching. It performs an embarrassing amount of back-and-forth
# type jugling, but it's the price to pay for consistency and correctness
result.typ = generateTypeInstance(c, m.bindings, arg.info,
formal.skipTypes({tyCompositeTypeClass}))
else:
typeMismatch(arg, formal, arg.typ)
# error correction:
result = copyTree(arg)
result.typ = formal
proc semResolvedCall(c: PContext, n: PNode, x: TCandidate): PNode =
assert x.state == csMatch
var finalCallee = x.calleeSym
markUsed(n.sons[0].info, finalCallee)
styleCheckUse(n.sons[0].info, finalCallee)
if finalCallee.ast == nil:
internalError(n.info, "calleeSym.ast is nil") # XXX: remove this check!
if x.hasFauxMatch:
result = x.call
result.sons[0] = newSymNode(finalCallee, result.sons[0].info)
if containsGenericType(result.typ) or x.fauxMatch == tyUnknown:
result.typ = newTypeS(x.fauxMatch, c)
return
if finalCallee.ast.sons[genericParamsPos].kind != nkEmpty:
finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info)
result = x.call
instGenericConvertersSons(c, result, x)
result.sons[0] = newSymNode(finalCallee, result.sons[0].info)
result.typ = finalCallee.typ.sons[0]
proc canDeref(n: PNode): bool {.inline.} =
result = n.len >= 2 and (let t = n[1].typ;
t != nil and t.skipTypes({tyGenericInst}).kind in {tyPtr, tyRef})
proc tryDeref(n: PNode): PNode =
result = newNodeI(nkHiddenDeref, n.info)
result.typ = n.typ.skipTypes(abstractInst).sons[0]
result.addSon(n)
proc semOverloadedCall(c: PContext, n, nOrig: PNode,
filter: TSymKinds): PNode =
var errors: CandidateErrors
var r = resolveOverloads(c, n, nOrig, filter, errors)
if r.state == csMatch: result = semResolvedCall(c, n, r)
elif experimentalMode(c) and canDeref(n):
# try to deref the first argument and then try overloading resolution again:
n.sons[1] = n.sons[1].tryDeref
var r = resolveOverloads(c, n, nOrig, filter, errors)
if r.state == csMatch: result = semResolvedCall(c, n, r)
else:
# get rid of the deref again for a better error message:
n.sons[1] = n.sons[1].sons[0]
notFoundError(c, n, errors)
else:
notFoundError(c, n, errors)
# else: result = errorNode(c, n)
proc explicitGenericInstError(n: PNode): PNode =
localError(n.info, errCannotInstantiateX, renderTree(n))
result = n
proc explicitGenericSym(c: PContext, n: PNode, s: PSym): PNode =
var m: TCandidate
initCandidate(c, m, s, n)
var newInst = generateInstance(c, s, m.bindings, n.info)
markUsed(n.info, s)
styleCheckUse(n.info, s)
result = newSymNode(newInst, n.info)
proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
assert n.kind == nkBracketExpr
for i in 1..sonsLen(n)-1:
n.sons[i].typ = semTypeNode(c, n.sons[i], nil)
var s = s
var a = n.sons[0]
if a.kind == nkSym:
# common case; check the only candidate has the right
# number of generic type parameters:
if safeLen(s.ast.sons[genericParamsPos]) != n.len-1:
let expected = safeLen(s.ast.sons[genericParamsPos])
localError(n.info, errGenerated, "cannot instantiate: " & renderTree(n) &
"; got " & $(n.len-1) & " type(s) but expected " & $expected)
return n
result = explicitGenericSym(c, n, s)
elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}:
# choose the generic proc with the proper number of type parameters.
# XXX I think this could be improved by reusing sigmatch.paramTypesMatch.
# It's good enough for now.
result = newNodeI(a.kind, n.info)
for i in countup(0, len(a)-1):
var candidate = a.sons[i].sym
if candidate.kind in {skProc, skMethod, skConverter,
skIterator, skClosureIterator}:
# it suffices that the candidate has the proper number of generic
# type parameters:
if safeLen(candidate.ast.sons[genericParamsPos]) == n.len-1:
result.add(explicitGenericSym(c, n, candidate))
# get rid of nkClosedSymChoice if not ambiguous:
if result.len == 1 and a.kind == nkClosedSymChoice:
result = result[0]
# candidateCount != 1: return explicitGenericInstError(n)
else:
result = explicitGenericInstError(n)
proc searchForBorrowProc(c: PContext, startScope: PScope, fn: PSym): PSym =
# Searchs for the fn in the symbol table. If the parameter lists are suitable
# for borrowing the sym in the symbol table is returned, else nil.
# New approach: generate fn(x, y, z) where x, y, z have the proper types
# and use the overloading resolution mechanism:
var call = newNodeI(nkCall, fn.info)
var hasDistinct = false
call.add(newIdentNode(fn.name, fn.info))
for i in 1.. <fn.typ.n.len:
let param = fn.typ.n.sons[i]
let t = skipTypes(param.typ, abstractVar-{tyTypeDesc})
if t.kind == tyDistinct or param.typ.kind == tyDistinct: hasDistinct = true
call.add(newNodeIT(nkEmpty, fn.info, t.baseOfDistinct))
if hasDistinct:
var resolved = semOverloadedCall(c, call, call, {fn.kind})
if resolved != nil:
result = resolved.sons[0].sym