#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module contains the data structures for the semantic checking phase.
import
intsets, options, ast, astalgo, msgs, idents, renderer,
magicsys, vmdef, modulegraphs, lineinfos, sets
type
TOptionEntry* = object # entries to put on a stack for pragma parsing
options*: TOptions
defaultCC*: TCallingConvention
dynlib*: PLib
notes*: TNoteKinds
features*: set[Feature]
otherPragmas*: PNode # every pragma can be pushed
POptionEntry* = ref TOptionEntry
PProcCon* = ref TProcCon
TProcCon* = object # procedure context; also used for top-level
# statements
owner*: PSym # the symbol this context belongs to
resultSym*: PSym # the result symbol (if we are in a proc)
selfSym*: PSym # the 'self' symbol (if available)
nestedLoopCounter*: int # whether we are in a loop or not
nestedBlockCounter*: int # whether we are in a block or not
inTryStmt*: int # whether we are in a try statement; works also
# in standalone ``except`` and ``finally``
next*: PProcCon # used for stacking procedure contexts
wasForwarded*: bool # whether the current proc has a separate header
mappingExists*: bool
mapping*: TIdTable
caseContext*: seq[tuple[n: PNode, idx: int]]
TMatchedConcept* = object
candidateType*: PType
prev*: ptr TMatchedConcept
depth*: int
TInstantiationPair* = object
genericSym*: PSym
inst*: PInstantiation
TExprFlag* = enum
efLValue, efWantIterator, efInTypeof,
efNeedStatic,
# Use this in contexts where a static value is mandatory
efPreferStatic,
# Use this in contexts where a static value could bring more
# information, but it's not strictly mandatory. This may become
# the default with implicit statics in the future.
efPreferNilResult,
# Use this if you want a certain result (e.g. static value),
# but you don't want to trigger a hard error. For example,
# you may be in position to supply a better error message
# to the user.
efWantStmt, efAllowStmt, efDetermineType, efExplain,
efAllowDestructor, efWantValue, efOperand, efNoSemCheck,
efNoEvaluateGeneric, efInCall, efFromHlo,
efNoUndeclared
# Use this if undeclared identifiers should not raise an error during
# overload resolution.
TExprFlags* = set[TExprFlag]
PContext* = ref TContext
TContext* = object of TPassContext # a context represents the module
# that is currently being compiled
enforceVoidContext*: PType
module*: PSym # the module sym belonging to the context
currentScope*: PScope # current scope
importTable*: PScope # scope for all imported symbols
topLevelScope*: PScope # scope for all top-level symbols
p*: PProcCon # procedure context
matchedConcept*: ptr TMatchedConcept # the current concept being matched
friendModules*: seq[PSym] # friend modules; may access private data;
# this is used so that generic instantiations
# can access private object fields
instCounter*: int # to prevent endless instantiations
ambiguousSymbols*: IntSet # ids of all ambiguous symbols (cannot
# store this info in the syms themselves!)
inGenericContext*: int # > 0 if we are in a generic type
inStaticContext*: int # > 0 if we are inside a static: block
inUnrolledContext*: int # > 0 if we are unrolling a loop
compilesContextId*: int # > 0 if we are in a ``compiles`` magic
compilesContextIdGenerator*: int
inGenericInst*: int # > 0 if we are instantiating a generic
converters*: seq[PSym]
patterns*: seq[PSym] # sequence of pattern matchers
optionStack*: seq[POptionEntry]
symMapping*: TIdTable # every gensym'ed symbol needs to be mapped
# to some new symbol in a generic instantiation
libs*: seq[PLib] # all libs used by this module
semConstExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.} # for the pragmas
semExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semTryExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semTryConstExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.}
semOperand*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semConstBoolExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.} # XXX bite the bullet
semOverloadedCall*: proc (c: PContext, n, nOrig: PNode,
filter: TSymKinds, flags: TExprFlags): PNode {.nimcall.}
semTypeNode*: proc(c: PContext, n: PNode, prev: PType): PType {.nimcall.}
semInferredLambda*: proc(c: PContext, pt: TIdTable, n: PNode): PNode
semGenerateInstance*: proc (c: PContext, fn: PSym, pt: TIdTable,
info: TLineInfo): PSym
includedFiles*: IntSet # used to detect recursive include files
pureEnumFields*: TStrTable # pure enum fields that can be used unambiguously
userPragmas*: TStrTable
evalContext*: PEvalContext
unknownIdents*: IntSet # ids of all unknown identifiers to prevent
# naming it multiple times
generics*: seq[TInstantiationPair] # pending list of instantiated generics to compile
topStmts*: int # counts the number of encountered top level statements
lastGenericIdx*: int # used for the generics stack
hloLoopDetector*: int # used to prevent endless loops in the HLO
inParallelStmt*: int
instTypeBoundOp*: proc (c: PContext; dc: PSym; t: PType; info: TLineInfo;
op: TTypeAttachedOp; col: int): PSym {.nimcall.}
selfName*: PIdent
cache*: IdentCache
graph*: ModuleGraph
signatures*: TStrTable
recursiveDep*: string
suggestionsMade*: bool
features*: set[Feature]
inTypeContext*: int
typesWithOps*: seq[(PType, PType)] #\
# We need to instantiate the type bound ops lazily after
# the generic type has been constructed completely. See
# tests/destructor/topttree.nim for an example that
# would otherwise fail.
unusedImports*: seq[(PSym, TLineInfo)]
exportIndirections*: HashSet[(int, int)]
template config*(c: PContext): ConfigRef = c.graph.config
proc makeInstPair*(s: PSym, inst: PInstantiation): TInstantiationPair =
result.genericSym = s
result.inst = inst
proc filename*(c: PContext): string =
# the module's filename
return toFilename(c.config, FileIndex c.module.position)
proc scopeDepth*(c: PContext): int {.inline.} =
result = if c.currentScope != nil: c.currentScope.depthLevel
else: 0
proc getCurrOwner*(c: PContext): PSym =
# owner stack (used for initializing the
# owner field of syms)
# the documentation comment always gets
# assigned to the current owner
result = c.graph.owners[^1]
proc pushOwner*(c: PContext; owner: PSym) =
add(c.graph.owners, owner)
proc popOwner*(c: PContext) =
var length = len(c.graph.owners)
if length > 0: setLen(c.graph.owners, length - 1)
else: internalError(c.config, "popOwner")
proc lastOptionEntry*(c: PContext): POptionEntry =
result = c.optionStack[^1]
proc popProcCon*(c: PContext) {.inline.} = c.p = c.p.next
proc put*(p: PProcCon; key, val: PSym) =
if not p.mappingExists:
initIdTable(p.mapping)
p.mappingExists = true
#echo "put into table ", key.info
p.mapping.idTablePut(key, val)
proc get*(p: PProcCon; key: PSym): PSym =
if not p.mappingExists: return nil
result = PSym(p.mapping.idTableGet(key))
proc getGenSym*(c: PContext; s: PSym): PSym =
if sfGenSym notin s.flags: return s
var it = c.p
while it != nil:
result = get(it, s)
if result != nil:
#echo "got from table ", result.name.s, " ", result.info
return result
it = it.next
result = s
proc considerGenSyms*(c: PContext; n: PNode) =
if n.kind == nkSym:
let s = getGenSym(c, n.sym)
if n.sym != s:
n.sym = s
else:
for i in 0..<n.safeLen:
considerGenSyms(c, n.sons[i])
proc newOptionEntry*(conf: ConfigRef): POptionEntry =
new(result)
result.options = conf.options
result.defaultCC = ccDefault
result.dynlib = nil
result.notes = conf.notes
proc newContext*(graph: ModuleGraph; module: PSym): PContext =
new(result)
result.enforceVoidContext = PType(kind: tyTyped)
result.ambiguousSymbols = initIntSet()
result.optionStack = @[]
result.libs = @[]
result.optionStack.add(newOptionEntry(graph.config))
result.module = module
result.friendModules = @[module]
result.converters = @[]
result.patterns = @[]
result.includedFiles = initIntSet()
initStrTable(result.pureEnumFields)
initStrTable(result.userPragmas)
result.generics = @[]
result.unknownIdents = initIntSet()
result.cache = graph.cache
result.graph = graph
initStrTable(result.signatures)
result.typesWithOps = @[]
result.features = graph.config.features
proc inclSym(sq: var seq[PSym], s: PSym) =
var L = len(sq)
for i in 0 ..< L:
if sq[i].id == s.id: return
setLen(sq, L + 1)
sq[L] = s
proc addConverter*(c: PContext, conv: PSym) =
inclSym(c.converters, conv)
proc addPattern*(c: PContext, p: PSym) =
inclSym(c.patterns, p)
proc newLib*(kind: TLibKind): PLib =
new(result)
result.kind = kind #initObjectSet(result.syms)
proc addToLib*(lib: PLib, sym: PSym) =
#if sym.annex != nil and not isGenericRoutine(sym):
# LocalError(sym.info, errInvalidPragma)
sym.annex = lib
proc newTypeS*(kind: TTypeKind, c: PContext): PType =
result = newType(kind, getCurrOwner(c))
proc makePtrType*(c: PContext, baseType: PType): PType =
result = newTypeS(tyPtr, c)
addSonSkipIntLit(result, baseType)
proc makeTypeWithModifier*(c: PContext,
modifier: TTypeKind,
baseType: PType): PType =
assert modifier in {tyVar, tyLent, tyPtr, tyRef, tyStatic, tyTypeDesc}
if modifier in {tyVar, tyLent, tyTypeDesc} and baseType.kind == modifier:
result = baseType
else:
result = newTypeS(modifier, c)
addSonSkipIntLit(result, baseType)
proc makeVarType*(c: PContext, baseType: PType; kind = tyVar): PType =
if baseType.kind == kind:
result = baseType
else:
result = newTypeS(kind, c)
addSonSkipIntLit(result, baseType)
proc makeVarType*(owner: PSym, baseType: PType; kind = tyVar): PType =
if baseType.kind == kind:
result = baseType
else:
result = newType(kind, owner)
addSonSkipIntLit(result, baseType)
proc makeTypeDesc*(c: PContext, typ: PType): PType =
if typ.kind == tyTypeDesc:
result = typ
else:
result = newTypeS(tyTypeDesc, c)
incl result.flags, tfCheckedForDestructor
result.addSonSkipIntLit(typ)
proc makeTypeSymNode*(c: PContext, typ: PType, info: TLineInfo): PNode =
let typedesc = newTypeS(tyTypeDesc, c)
incl typedesc.flags, tfCheckedForDestructor
typedesc.addSonSkipIntLit(assertNotNil(c.config, typ))
let sym = newSym(skType, c.cache.idAnon, getCurrOwner(c), info,
c.config.options).linkTo(typedesc)
return newSymNode(sym, info)
proc makeTypeFromExpr*(c: PContext, n: PNode): PType =
result = newTypeS(tyFromExpr, c)
assert n != nil
result.n = n
proc newTypeWithSons*(owner: PSym, kind: TTypeKind, sons: seq[PType]): PType =
result = newType(kind, owner)
result.sons = sons
proc newTypeWithSons*(c: PContext, kind: TTypeKind,
sons: seq[PType]): PType =
result = newType(kind, getCurrOwner(c))
result.sons = sons
proc makeStaticExpr*(c: PContext, n: PNode): PNode =
result = newNodeI(nkStaticExpr, n.info)
result.sons = @[n]
result.typ = if n.typ != nil and n.typ.kind == tyStatic: n.typ
else: newTypeWithSons(c, tyStatic, @[n.typ])
proc makeAndType*(c: PContext, t1, t2: PType): PType =
result = newTypeS(tyAnd, c)
result.sons = @[t1, t2]
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeOrType*(c: PContext, t1, t2: PType): PType =
result = newTypeS(tyOr, c)
if t1.kind != tyOr and t2.kind != tyOr:
result.sons = @[t1, t2]
else:
template addOr(t1) =
if t1.kind == tyOr:
for x in t1.sons: result.rawAddSon x
else:
result.rawAddSon t1
addOr(t1)
addOr(t2)
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeNotType*(c: PContext, t1: PType): PType =
result = newTypeS(tyNot, c)
result.sons = @[t1]
propagateToOwner(result, t1)
result.flags.incl(t1.flags * {tfHasStatic})
result.flags.incl tfHasMeta
proc nMinusOne(c: PContext; n: PNode): PNode =
result = newNode(nkCall, n.info, @[
newSymNode(getSysMagic(c.graph, n.info, "pred", mPred)), n])
# Remember to fix the procs below this one when you make changes!
proc makeRangeWithStaticExpr*(c: PContext, n: PNode): PType =
let intType = getSysType(c.graph, n.info, tyInt)
result = newTypeS(tyRange, c)
result.sons = @[intType]
if n.typ != nil and n.typ.n == nil:
result.flags.incl tfUnresolved
result.n = newNode(nkRange, n.info, @[
newIntTypeNode(0, intType),
makeStaticExpr(c, nMinusOne(c, n))])
template rangeHasUnresolvedStatic*(t: PType): bool =
tfUnresolved in t.flags
proc errorType*(c: PContext): PType =
## creates a type representing an error state
result = newTypeS(tyError, c)
result.flags.incl tfCheckedForDestructor
proc errorNode*(c: PContext, n: PNode): PNode =
result = newNodeI(nkEmpty, n.info)
result.typ = errorType(c)
proc fillTypeS*(dest: PType, kind: TTypeKind, c: PContext) =
dest.kind = kind
dest.owner = getCurrOwner(c)
dest.size = - 1
proc makeRangeType*(c: PContext; first, last: BiggestInt;
info: TLineInfo; intType: PType = nil): PType =
let intType = if intType != nil: intType else: getSysType(c.graph, info, tyInt)
var n = newNodeI(nkRange, info)
addSon(n, newIntTypeNode(first, intType))
addSon(n, newIntTypeNode(last, intType))
result = newTypeS(tyRange, c)
result.n = n
addSonSkipIntLit(result, intType) # basetype of range
proc markIndirect*(c: PContext, s: PSym) {.inline.} =
if s.kind in {skProc, skFunc, skConverter, skMethod, skIterator}:
incl(s.flags, sfAddrTaken)
# XXX add to 'c' for global analysis
proc illFormedAst*(n: PNode; conf: ConfigRef) =
globalError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc illFormedAstLocal*(n: PNode; conf: ConfigRef) =
localError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc checkSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if sonsLen(n) != length: illFormedAst(n, conf)
proc checkMinSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if sonsLen(n) < length: illFormedAst(n, conf)
proc isTopLevel*(c: PContext): bool {.inline.} =
result = c.currentScope.depthLevel <= 2
proc pushCaseContext*(c: PContext, caseNode: PNode) =
add(c.p.caseContext, (caseNode, 0))
proc popCaseContext*(c: PContext) =
discard pop(c.p.caseContext)
proc setCaseContextIdx*(c: PContext, idx: int) =
c.p.caseContext[^1].idx = idx