#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This include file implements the semantic checking for magics.
# included from sem.nim
proc semAddrArg(c: PContext; n: PNode): PNode =
let x = semExprWithType(c, n)
if x.kind == nkSym:
x.sym.flags.incl(sfAddrTaken)
if isAssignable(c, x) notin {arLValue, arLocalLValue, arAddressableConst, arLentValue}:
localError(c.config, n.info, errExprHasNoAddress)
result = x
proc semTypeOf(c: PContext; n: PNode): PNode =
var m = BiggestInt 1 # typeOfIter
if n.len == 3:
let mode = semConstExpr(c, n[2])
if mode.kind != nkIntLit:
localError(c.config, n.info, "typeof: cannot evaluate 'mode' parameter at compile-time")
else:
m = mode.intVal
result = newNodeI(nkTypeOfExpr, n.info)
let typExpr = semExprWithType(c, n[1], if m == 1: {efInTypeof} else: {})
result.add typExpr
result.typ = makeTypeDesc(c, typExpr.typ)
type
SemAsgnMode = enum asgnNormal, noOverloadedSubscript, noOverloadedAsgn
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semArrGet(c: PContext; n: PNode; flags: TExprFlags): PNode =
result = newNodeI(nkBracketExpr, n.info)
for i in 1..<n.len: result.add(n[i])
result = semSubscript(c, result, flags)
if result.isNil:
let x = copyTree(n)
x[0] = newIdentNode(getIdent(c.cache, "[]"), n.info)
bracketNotFoundError(c, x)
#localError(c.config, n.info, "could not resolve: " & $n)
result = n
proc semArrPut(c: PContext; n: PNode; flags: TExprFlags): PNode =
# rewrite `[]=`(a, i, x) back to ``a[i] = x``.
let b = newNodeI(nkBracketExpr, n.info)
b.add(n[1].skipAddr)
for i in 2..<n.len-1: b.add(n[i])
result = newNodeI(nkAsgn, n.info, 2)
result[0] = b
result[1] = n.lastSon
result = semAsgn(c, result, noOverloadedSubscript)
proc semAsgnOpr(c: PContext; n: PNode): PNode =
result = newNodeI(nkAsgn, n.info, 2)
result[0] = n[1]
result[1] = n[2]
result = semAsgn(c, result, noOverloadedAsgn)
proc semIsPartOf(c: PContext, n: PNode, flags: TExprFlags): PNode =
var r = isPartOf(n[1], n[2])
result = newIntNodeT(toInt128(ord(r)), n, c.idgen, c.graph)
proc expectIntLit(c: PContext, n: PNode): int =
let x = c.semConstExpr(c, n)
case x.kind
of nkIntLit..nkInt64Lit: result = int(x.intVal)
else: localError(c.config, n.info, errIntLiteralExpected)
proc semInstantiationInfo(c: PContext, n: PNode): PNode =
result = newNodeIT(nkTupleConstr, n.info, n.typ)
let idx = expectIntLit(c, n[1])
let useFullPaths = expectIntLit(c, n[2])
let info = getInfoContext(c.config, idx)
var filename = newNodeIT(nkStrLit, n.info, getSysType(c.graph, n.info, tyString))
filename.strVal = if useFullPaths != 0: toFullPath(c.config, info) else: toFilename(c.config, info)
var line = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
line.intVal = toLinenumber(info)
var column = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
column.intVal = toColumn(info)
# filename: string, line: int, column: int
result.add(newTree(nkExprColonExpr, n.typ.n[0], filename))
result.add(newTree(nkExprColonExpr, n.typ.n[1], line))
result.add(newTree(nkExprColonExpr, n.typ.n[2], column))
proc toNode(t: PType, i: TLineInfo): PNode =
result = newNodeIT(nkType, i, t)
const
# these are types that use the bracket syntax for instantiation
# they can be subjected to the type traits `genericHead` and
# `Uninstantiated`
tyUserDefinedGenerics* = {tyGenericInst, tyGenericInvocation,
tyUserTypeClassInst}
tyMagicGenerics* = {tySet, tySequence, tyArray, tyOpenArray}
tyGenericLike* = tyUserDefinedGenerics +
tyMagicGenerics +
{tyCompositeTypeClass}
proc uninstantiate(t: PType): PType =
result = case t.kind
of tyMagicGenerics: t
of tyUserDefinedGenerics: t.base
of tyCompositeTypeClass: uninstantiate t[1]
else: t
proc getTypeDescNode(c: PContext; typ: PType, sym: PSym, info: TLineInfo): PNode =
var resType = newType(tyTypeDesc, nextTypeId c.idgen, sym)
rawAddSon(resType, typ)
result = toNode(resType, info)
proc evalTypeTrait(c: PContext; traitCall: PNode, operand: PType, context: PSym): PNode =
const skippedTypes = {tyTypeDesc, tyAlias, tySink}
let trait = traitCall[0]
internalAssert c.config, trait.kind == nkSym
var operand = operand.skipTypes(skippedTypes)
template operand2: PType =
traitCall[2].typ.skipTypes({tyTypeDesc})
template typeWithSonsResult(kind, sons): PNode =
newTypeWithSons(context, kind, sons, c.idgen).toNode(traitCall.info)
if operand.kind == tyGenericParam or (traitCall.len > 2 and operand2.kind == tyGenericParam):
return traitCall ## too early to evaluate
let s = trait.sym.name.s
case s
of "or", "|":
return typeWithSonsResult(tyOr, @[operand, operand2])
of "and":
return typeWithSonsResult(tyAnd, @[operand, operand2])
of "not":
return typeWithSonsResult(tyNot, @[operand])
of "typeToString":
var prefer = preferTypeName
if traitCall.len >= 2:
let preferStr = traitCall[2].strVal
prefer = parseEnum[TPreferedDesc](preferStr)
result = newStrNode(nkStrLit, operand.typeToString(prefer))
result.typ = getSysType(c.graph, traitCall[1].info, tyString)
result.info = traitCall.info
of "name", "$":
result = newStrNode(nkStrLit, operand.typeToString(preferTypeName))
result.typ = getSysType(c.graph, traitCall[1].info, tyString)
result.info = traitCall.info
of "arity":
result = newIntNode(nkIntLit, operand.len - ord(operand.kind==tyProc))
result.typ = newType(tyInt, nextTypeId c.idgen, context)
result.info = traitCall.info
of "genericHead":
var arg = operand
case arg.kind
of tyGenericInst:
result = getTypeDescNode(c, arg.base, operand.owner, traitCall.info)
# of tySequence: # this doesn't work
# var resType = newType(tySequence, operand.owner)
# result = toNode(resType, traitCall.info) # doesn't work yet
else:
localError(c.config, traitCall.info, "expected generic type, got: type $2 of kind $1" % [arg.kind.toHumanStr, typeToString(operand)])
result = newType(tyError, nextTypeId c.idgen, context).toNode(traitCall.info)
of "stripGenericParams":
result = uninstantiate(operand).toNode(traitCall.info)
of "supportsCopyMem":
let t = operand.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink, tyInferred})
let complexObj = containsGarbageCollectedRef(t) or
hasDestructor(t)
result = newIntNodeT(toInt128(ord(not complexObj)), traitCall, c.idgen, c.graph)
of "isNamedTuple":
var operand = operand.skipTypes({tyGenericInst})
let cond = operand.kind == tyTuple and operand.n != nil
result = newIntNodeT(toInt128(ord(cond)), traitCall, c.idgen, c.graph)
of "tupleLen":
var operand = operand.skipTypes({tyGenericInst})
assert operand.kind == tyTuple, $operand.kind
result = newIntNodeT(toInt128(operand.len), traitCall, c.idgen, c.graph)
of "distinctBase":
var arg = operand.skipTypes({tyGenericInst})
let rec = semConstExpr(c, traitCall[2]).intVal != 0
while arg.kind == tyDistinct:
arg = arg.base.skipTypes(skippedTypes + {tyGenericInst})
if not rec: break
result = getTypeDescNode(c, arg, operand.owner, traitCall.info)
else:
localError(c.config, traitCall.info, "unknown trait: " & s)
result = newNodeI(nkEmpty, traitCall.info)
proc semTypeTraits(c: PContext, n: PNode): PNode =
checkMinSonsLen(n, 2, c.config)
let t = n[1].typ
internalAssert c.config, t != nil and t.kind == tyTypeDesc
if t.len > 0:
# This is either a type known to sem or a typedesc
# param to a regular proc (again, known at instantiation)
result = evalTypeTrait(c, n, t, getCurrOwner(c))
else:
# a typedesc variable, pass unmodified to evals
result = n
proc semOrd(c: PContext, n: PNode): PNode =
result = n
let parType = n[1].typ
if isOrdinalType(parType, allowEnumWithHoles=true):
discard
else:
localError(c.config, n.info, errOrdinalTypeExpected)
result.typ = errorType(c)
proc semBindSym(c: PContext, n: PNode): PNode =
result = copyNode(n)
result.add(n[0])
let sl = semConstExpr(c, n[1])
if sl.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit}:
return localErrorNode(c, n, n[1].info, errStringLiteralExpected)
let isMixin = semConstExpr(c, n[2])
if isMixin.kind != nkIntLit or isMixin.intVal < 0 or
isMixin.intVal > high(TSymChoiceRule).int:
return localErrorNode(c, n, n[2].info, errConstExprExpected)
let id = newIdentNode(getIdent(c.cache, sl.strVal), n.info)
let s = qualifiedLookUp(c, id, {checkUndeclared})
if s != nil:
# we need to mark all symbols:
var sc = symChoice(c, id, s, TSymChoiceRule(isMixin.intVal))
if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
# inside regular code, bindSym resolves to the sym-choice
# nodes (see tinspectsymbol)
return sc
result.add(sc)
else:
errorUndeclaredIdentifier(c, n[1].info, sl.strVal)
proc opBindSym(c: PContext, scope: PScope, n: PNode, isMixin: int, info: PNode): PNode =
if n.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit, nkIdent}:
return localErrorNode(c, n, info.info, errStringOrIdentNodeExpected)
if isMixin < 0 or isMixin > high(TSymChoiceRule).int:
return localErrorNode(c, n, info.info, errConstExprExpected)
let id = if n.kind == nkIdent: n
else: newIdentNode(getIdent(c.cache, n.strVal), info.info)
let tmpScope = c.currentScope
c.currentScope = scope
let s = qualifiedLookUp(c, id, {checkUndeclared})
if s != nil:
# we need to mark all symbols:
result = symChoice(c, id, s, TSymChoiceRule(isMixin))
else:
errorUndeclaredIdentifier(c, info.info, if n.kind == nkIdent: n.ident.s
else: n.strVal)
c.currentScope = tmpScope
proc semDynamicBindSym(c: PContext, n: PNode): PNode =
# inside regular code, bindSym resolves to the sym-choice
# nodes (see tinspectsymbol)
if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
return semBindSym(c, n)
if c.graph.vm.isNil:
setupGlobalCtx(c.module, c.graph, c.idgen)
let
vm = PCtx c.graph.vm
# cache the current scope to
# prevent it lost into oblivion
scope = c.currentScope
# cannot use this
# vm.config.features.incl dynamicBindSym
proc bindSymWrapper(a: VmArgs) =
# capture PContext and currentScope
# param description:
# 0. ident, a string literal / computed string / or ident node
# 1. bindSym rule
# 2. info node
a.setResult opBindSym(c, scope, a.getNode(0), a.getInt(1).int, a.getNode(2))
let
# although we use VM callback here, it is not
# executed like 'normal' VM callback
idx = vm.registerCallback("bindSymImpl", bindSymWrapper)
# dummy node to carry idx information to VM
idxNode = newIntTypeNode(idx, c.graph.getSysType(TLineInfo(), tyInt))
result = copyNode(n)
for x in n: result.add x
result.add n # info node
result.add idxNode
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semOf(c: PContext, n: PNode): PNode =
if n.len == 3:
n[1] = semExprWithType(c, n[1])
n[2] = semExprWithType(c, n[2], {efDetermineType})
#restoreOldStyleType(n[1])
#restoreOldStyleType(n[2])
let a = skipTypes(n[1].typ, abstractPtrs)
let b = skipTypes(n[2].typ, abstractPtrs)
let x = skipTypes(n[1].typ, abstractPtrs-{tyTypeDesc})
let y = skipTypes(n[2].typ, abstractPtrs-{tyTypeDesc})
if x.kind == tyTypeDesc or y.kind != tyTypeDesc:
localError(c.config, n.info, "'of' takes object types")
elif b.kind != tyObject or a.kind != tyObject:
localError(c.config, n.info, "'of' takes object types")
else:
let diff = inheritanceDiff(a, b)
# | returns: 0 iff `a` == `b`
# | returns: -x iff `a` is the x'th direct superclass of `b`
# | returns: +x iff `a` is the x'th direct subclass of `b`
# | returns: `maxint` iff `a` and `b` are not compatible at all
if diff <= 0:
# optimize to true:
message(c.config, n.info, hintConditionAlwaysTrue, renderTree(n))
result = newIntNode(nkIntLit, 1)
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
return result
elif diff == high(int):
if commonSuperclass(a, b) == nil:
localError(c.config, n.info, "'$1' cannot be of this subtype" % typeToString(a))
else:
message(c.config, n.info, hintConditionAlwaysFalse, renderTree(n))
result = newIntNode(nkIntLit, 0)
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
else:
localError(c.config, n.info, "'of' takes 2 arguments")
n.typ = getSysType(c.graph, n.info, tyBool)
result = n
proc semUnown(c: PContext; n: PNode): PNode =
proc unownedType(c: PContext; t: PType): PType =
case t.kind
of tyTuple:
var elems = newSeq[PType](t.len)
var someChange = false
for i in 0..<t.len:
elems[i] = unownedType(c, t[i])
if elems[i] != t[i]: someChange = true
if someChange:
result = newType(tyTuple, nextTypeId c.idgen, t.owner)
# we have to use 'rawAddSon' here so that type flags are
# properly computed:
for e in elems: result.rawAddSon(e)
else:
result = t
of tyOwned: result = t[0]
of tySequence, tyOpenArray, tyArray, tyVarargs, tyVar, tyLent,
tyGenericInst, tyAlias:
let b = unownedType(c, t[^1])
if b != t[^1]:
result = copyType(t, nextTypeId c.idgen, t.owner)
copyTypeProps(c.graph, c.idgen.module, result, t)
result[^1] = b
result.flags.excl tfHasOwned
else:
result = t
else:
result = t
result = copyTree(n[1])
result.typ = unownedType(c, result.typ)
# little hack for injectdestructors.nim (see bug #11350):
#result[0].typ = nil
proc turnFinalizerIntoDestructor(c: PContext; orig: PSym; info: TLineInfo): PSym =
# We need to do 2 things: Replace n.typ which is a 'ref T' by a 'var T' type.
# Replace nkDerefExpr by nkHiddenDeref
# nkDeref is for 'ref T': x[].field
# nkHiddenDeref is for 'var T': x<hidden deref [] here>.field
proc transform(c: PContext; procSym: PSym; n: PNode; old, fresh: PType; oldParam, newParam: PSym): PNode =
result = shallowCopy(n)
if sameTypeOrNil(n.typ, old):
result.typ = fresh
if n.kind == nkSym:
if n.sym == oldParam:
result.sym = newParam
elif n.sym.owner == orig:
result.sym = copySym(n.sym, nextSymId c.idgen)
result.sym.owner = procSym
for i in 0 ..< safeLen(n):
result[i] = transform(c, procSym, n[i], old, fresh, oldParam, newParam)
#if n.kind == nkDerefExpr and sameType(n[0].typ, old):
# result =
result = copySym(orig, nextSymId c.idgen)
result.info = info
result.flags.incl sfFromGeneric
result.owner = orig
let origParamType = orig.typ[1]
let newParamType = makeVarType(result, origParamType.skipTypes(abstractPtrs), c.idgen)
let oldParam = orig.typ.n[1].sym
let newParam = newSym(skParam, oldParam.name, nextSymId c.idgen, result, result.info)
newParam.typ = newParamType
# proc body:
result.ast = transform(c, result, orig.ast, origParamType, newParamType, oldParam, newParam)
# proc signature:
result.typ = newProcType(result.info, nextTypeId c.idgen, result)
result.typ.addParam newParam
proc semQuantifier(c: PContext; n: PNode): PNode =
checkSonsLen(n, 2, c.config)
openScope(c)
result = newNodeIT(n.kind, n.info, n.typ)
result.add n[0]
let args = n[1]
assert args.kind == nkArgList
for i in 0..args.len-2:
let it = args[i]
var valid = false
if it.kind == nkInfix:
let op = considerQuotedIdent(c, it[0])
if op.id == ord(wIn):
let v = newSymS(skForVar, it[1], c)
styleCheckDef(c.config, v)
onDef(it[1].info, v)
let domain = semExprWithType(c, it[2], {efWantIterator})
v.typ = domain.typ
valid = true
addDecl(c, v)
result.add newTree(nkInfix, it[0], newSymNode(v), domain)
if not valid:
localError(c.config, n.info, "<quantifier> 'in' <range> expected")
result.add forceBool(c, semExprWithType(c, args[^1]))
closeScope(c)
proc semOld(c: PContext; n: PNode): PNode =
if n[1].kind == nkHiddenDeref:
n[1] = n[1][0]
if n[1].kind != nkSym or n[1].sym.kind != skParam:
localError(c.config, n[1].info, "'old' takes a parameter name")
elif n[1].sym.owner != getCurrOwner(c):
localError(c.config, n[1].info, n[1].sym.name.s & " does not belong to " & getCurrOwner(c).name.s)
result = n
proc semPrivateAccess(c: PContext, n: PNode): PNode =
let t = n[1].typ[0].toObjectFromRefPtrGeneric
c.currentScope.allowPrivateAccess.add t.sym
result = newNodeIT(nkEmpty, n.info, getSysType(c.graph, n.info, tyVoid))
proc magicsAfterOverloadResolution(c: PContext, n: PNode,
flags: TExprFlags): PNode =
## This is the preferred code point to implement magics.
## ``c`` the current module, a symbol table to a very good approximation
## ``n`` the ast like it would be passed to a real macro
## ``flags`` Some flags for more contextual information on how the
## "macro" is calld.
case n[0].sym.magic
of mAddr:
checkSonsLen(n, 2, c.config)
result = n
result[1] = semAddrArg(c, n[1])
result.typ = makePtrType(c, result[1].typ)
of mTypeOf:
result = semTypeOf(c, n)
of mSizeOf:
result = foldSizeOf(c.config, n, n)
of mAlignOf:
result = foldAlignOf(c.config, n, n)
of mOffsetOf:
result = foldOffsetOf(c.config, n, n)
of mArrGet:
result = semArrGet(c, n, flags)
of mArrPut:
result = semArrPut(c, n, flags)
of mAsgn:
if n[0].sym.name.s == "=":
result = semAsgnOpr(c, n)
else:
result = semShallowCopy(c, n, flags)
of mIsPartOf: result = semIsPartOf(c, n, flags)
of mTypeTrait: result = semTypeTraits(c, n)
of mAstToStr:
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
result.typ = getSysType(c.graph, n.info, tyString)
of mInstantiationInfo: result = semInstantiationInfo(c, n)
of mOrd: result = semOrd(c, n)
of mOf: result = semOf(c, n)
of mHigh, mLow: result = semLowHigh(c, n, n[0].sym.magic)
of mShallowCopy: result = semShallowCopy(c, n, flags)
of mNBindSym:
if dynamicBindSym notin c.features:
result = semBindSym(c, n)
else:
result = semDynamicBindSym(c, n)
of mProcCall:
result = n
result.typ = n[1].typ
of mDotDot:
result = n
of mPlugin:
let plugin = getPlugin(c.cache, n[0].sym)
if plugin.isNil:
localError(c.config, n.info, "cannot find plugin " & n[0].sym.name.s)
result = n
else:
result = plugin(c, n)
of mNewFinalize:
# Make sure the finalizer procedure refers to a procedure
if n[^1].kind == nkSym and n[^1].sym.kind notin {skProc, skFunc}:
localError(c.config, n.info, "finalizer must be a direct reference to a proc")
elif optTinyRtti in c.config.globalOptions:
let nfin = skipConvCastAndClosure(n[^1])
let fin = case nfin.kind
of nkSym: nfin.sym
of nkLambda, nkDo: nfin[namePos].sym
else:
localError(c.config, n.info, "finalizer must be a direct reference to a proc")
nil
if fin != nil:
if fin.kind notin {skProc, skFunc}:
# calling convention is checked in codegen
localError(c.config, n.info, "finalizer must be a direct reference to a proc")
# check if we converted this finalizer into a destructor already:
let t = whereToBindTypeHook(c, fin.typ[1].skipTypes(abstractInst+{tyRef}))
if t != nil and getAttachedOp(c.graph, t, attachedDestructor) != nil and
getAttachedOp(c.graph, t, attachedDestructor).owner == fin:
discard "already turned this one into a finalizer"
else:
bindTypeHook(c, turnFinalizerIntoDestructor(c, fin, n.info), n, attachedDestructor)
result = n
of mDestroy:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedDestructor)
if op != nil:
result[0] = newSymNode(op)
of mTrace:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedTrace)
if op != nil:
result[0] = newSymNode(op)
of mUnown:
result = semUnown(c, n)
of mExists, mForall:
result = semQuantifier(c, n)
of mOld:
result = semOld(c, n)
of mSetLengthSeq:
result = n
let seqType = result[1].typ.skipTypes({tyPtr, tyRef, # in case we had auto-dereferencing
tyVar, tyGenericInst, tyOwned, tySink,
tyAlias, tyUserTypeClassInst})
if seqType.kind == tySequence and seqType.base.requiresInit:
message(c.config, n.info, warnUnsafeSetLen, typeToString(seqType.base))
of mDefault:
result = n
c.config.internalAssert result[1].typ.kind == tyTypeDesc
let constructed = result[1].typ.base
if constructed.requiresInit:
message(c.config, n.info, warnUnsafeDefault, typeToString(constructed))
of mIsolate:
if not checkIsolate(n[1]):
localError(c.config, n.info, "expression cannot be isolated: " & $n[1])
result = n
of mPred:
if n[1].typ.skipTypes(abstractInst).kind in {tyUInt..tyUInt64}:
n[0].sym.magic = mSubU
result = n
of mPrivateAccess:
result = semPrivateAccess(c, n)
else:
result = n