#
#
# The Nimrod Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## this module does the semantic checking of statements
# included from sem.nim
proc semCommand(c: PContext, n: PNode): PNode =
result = semExprNoType(c, n)
proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
# If semCheck is set to false, ``when`` will return the verbatim AST of
# the correct branch. Otherwise the AST will be passed through semStmt.
result = nil
template setResult(e: expr) =
if semCheck: result = semStmt(c, e) # do not open a new scope!
else: result = e
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
case it.kind
of nkElifBranch, nkElifExpr:
checkSonsLen(it, 2)
var e = semConstExpr(c, it.sons[0])
if e.kind != nkIntLit: InternalError(n.info, "semWhen")
elif e.intVal != 0 and result == nil:
setResult(it.sons[1])
of nkElse, nkElseExpr:
checkSonsLen(it, 1)
if result == nil:
setResult(it.sons[0])
else: illFormedAst(n)
if result == nil:
result = newNodeI(nkNilLit, n.info)
# The ``when`` statement implements the mechanism for platform dependent
# code. Thus we try to ensure here consistent ID allocation after the
# ``when`` statement.
IDsynchronizationPoint(200)
proc semIf(c: PContext, n: PNode): PNode =
result = n
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
case it.kind
of nkElifBranch:
checkSonsLen(it, 2)
it.sons[0] = forceBool(c, semExprWithType(c, it.sons[0]))
openScope(c.tab)
it.sons[1] = semStmt(c, it.sons[1])
closeScope(c.tab)
of nkElse:
if sonsLen(it) == 1: it.sons[0] = semStmtScope(c, it.sons[0])
else: illFormedAst(it)
else: illFormedAst(n)
proc semDiscard(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1)
if n.sons[0].kind != nkEmpty:
n.sons[0] = semExprWithType(c, n.sons[0])
if isEmptyType(n.sons[0].typ): localError(n.info, errInvalidDiscard)
proc semBreakOrContinue(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1)
if n.sons[0].kind != nkEmpty:
var s: PSym
case n.sons[0].kind
of nkIdent: s = lookUp(c, n.sons[0])
of nkSym: s = n.sons[0].sym
else: illFormedAst(n)
if s.kind == skLabel and s.owner.id == c.p.owner.id:
var x = newSymNode(s)
x.info = n.info
incl(s.flags, sfUsed)
n.sons[0] = x
suggestSym(x, s)
else:
localError(n.info, errInvalidControlFlowX, s.name.s)
elif (c.p.nestedLoopCounter <= 0) and (c.p.nestedBlockCounter <= 0):
localError(n.info, errInvalidControlFlowX,
renderTree(n, {renderNoComments}))
proc semBlock(c: PContext, n: PNode): PNode =
result = n
Inc(c.p.nestedBlockCounter)
checkSonsLen(n, 2)
openScope(c.tab) # BUGFIX: label is in the scope of block!
if n.sons[0].kind != nkEmpty:
var labl = newSymG(skLabel, n.sons[0], c)
if sfGenSym notin labl.flags:
addDecl(c, labl)
n.sons[0] = newSymNode(labl, n.sons[0].info)
suggestSym(n.sons[0], labl)
n.sons[1] = semStmt(c, n.sons[1])
closeScope(c.tab)
Dec(c.p.nestedBlockCounter)
proc semAsm(con: PContext, n: PNode): PNode =
checkSonsLen(n, 2)
var marker = pragmaAsm(con, n.sons[0])
if marker == '\0': marker = '`' # default marker
result = semAsmOrEmit(con, n, marker)
proc semWhile(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 2)
openScope(c.tab)
n.sons[0] = forceBool(c, semExprWithType(c, n.sons[0]))
inc(c.p.nestedLoopCounter)
n.sons[1] = semStmt(c, n.sons[1])
dec(c.p.nestedLoopCounter)
closeScope(c.tab)
proc toCover(t: PType): biggestInt =
var t2 = skipTypes(t, abstractVarRange)
if t2.kind == tyEnum and enumHasHoles(t2):
result = sonsLen(t2.n)
else:
result = lengthOrd(skipTypes(t, abstractVar))
proc semCase(c: PContext, n: PNode): PNode =
# check selector:
result = n
checkMinSonsLen(n, 2)
openScope(c.tab)
n.sons[0] = semExprWithType(c, n.sons[0])
var chckCovered = false
var covered: biggestint = 0
case skipTypes(n.sons[0].Typ, abstractVarRange).Kind
of tyInt..tyInt64, tyChar, tyEnum:
chckCovered = true
of tyFloat..tyFloat128, tyString, tyError:
nil
else:
LocalError(n.info, errSelectorMustBeOfCertainTypes)
return
for i in countup(1, sonsLen(n) - 1):
var x = n.sons[i]
case x.kind
of nkOfBranch:
checkMinSonsLen(x, 2)
semCaseBranch(c, n, x, i, covered)
var length = sonsLen(x)
x.sons[length - 1] = semStmtScope(c, x.sons[length - 1])
of nkElifBranch:
chckCovered = false
checkSonsLen(x, 2)
x.sons[0] = forceBool(c, semExprWithType(c, x.sons[0]))
x.sons[1] = semStmtScope(c, x.sons[1])
of nkElse:
chckCovered = false
checkSonsLen(x, 1)
x.sons[0] = semStmtScope(c, x.sons[0])
else: illFormedAst(x)
if chckCovered and (covered != toCover(n.sons[0].typ)):
localError(n.info, errNotAllCasesCovered)
closeScope(c.tab)
proc fitRemoveHiddenConv(c: PContext, typ: Ptype, n: PNode): PNode =
result = fitNode(c, typ, n)
if result.kind in {nkHiddenStdConv, nkHiddenSubConv}:
changeType(result.sons[1], typ)
result = result.sons[1]
elif not sameType(result.typ, typ):
changeType(result, typ)
proc findShadowedVar(c: PContext, v: PSym): PSym =
for i in countdown(c.tab.tos - 2, 0):
let shadowed = StrTableGet(c.tab.stack[i], v.name)
if shadowed != nil and shadowed.kind in skLocalVars:
return shadowed
proc semIdentDef(c: PContext, n: PNode, kind: TSymKind): PSym =
if isTopLevel(c):
result = semIdentWithPragma(c, kind, n, {sfExported})
incl(result.flags, sfGlobal)
else:
result = semIdentWithPragma(c, kind, n, {})
suggestSym(n, result)
proc semVarOrLet(c: PContext, n: PNode, symkind: TSymKind): PNode =
var b: PNode
result = copyNode(n)
for i in countup(0, sonsLen(n)-1):
var a = n.sons[i]
if gCmd == cmdIdeTools: suggestStmt(c, a)
if a.kind == nkCommentStmt: continue
if a.kind notin {nkIdentDefs, nkVarTuple, nkConstDef}: IllFormedAst(a)
checkMinSonsLen(a, 3)
var length = sonsLen(a)
var typ: PType
if a.sons[length-2].kind != nkEmpty:
typ = semTypeNode(c, a.sons[length-2], nil)
else:
typ = nil
var def: PNode
if a.sons[length-1].kind != nkEmpty:
def = semExprWithType(c, a.sons[length-1])
# BUGFIX: ``fitNode`` is needed here!
# check type compability between def.typ and typ:
if typ != nil: def = fitNode(c, typ, def)
else: typ = skipIntLit(def.typ)
else:
def = ast.emptyNode
if symkind == skLet: LocalError(a.info, errLetNeedsInit)
# this can only happen for errornous var statements:
if typ == nil: continue
if not typeAllowed(typ, symkind):
LocalError(a.info, errXisNoType, typeToString(typ))
var tup = skipTypes(typ, {tyGenericInst})
if a.kind == nkVarTuple:
if tup.kind != tyTuple:
localError(a.info, errXExpected, "tuple")
elif length-2 != sonsLen(tup):
localError(a.info, errWrongNumberOfVariables)
else:
b = newNodeI(nkVarTuple, a.info)
newSons(b, length)
b.sons[length-2] = a.sons[length-2] # keep type desc for doc generator
b.sons[length-1] = def
addSon(result, b)
elif tup.kind == tyTuple and def.kind == nkPar and
a.kind == nkIdentDefs and a.len > 3:
Message(a.info, warnEachIdentIsTuple)
for j in countup(0, length-3):
var v = semIdentDef(c, a.sons[j], symkind)
if sfGenSym notin v.flags: addInterfaceDecl(c, v)
when oKeepVariableNames:
if c.InUnrolledContext > 0: v.flags.incl(sfShadowed)
else:
let shadowed = findShadowedVar(c, v)
if shadowed != nil: shadowed.flags.incl(sfShadowed)
if def != nil and def.kind != nkEmpty:
# this is only needed for the evaluation pass:
v.ast = def
if sfThread in v.flags: LocalError(def.info, errThreadvarCannotInit)
if a.kind != nkVarTuple:
v.typ = typ
b = newNodeI(nkIdentDefs, a.info)
addSon(b, newSymNode(v))
addSon(b, a.sons[length-2]) # keep type desc for doc generator
addSon(b, copyTree(def))
addSon(result, b)
else:
v.typ = tup.sons[j]
b.sons[j] = newSymNode(v)
proc semConst(c: PContext, n: PNode): PNode =
result = copyNode(n)
for i in countup(0, sonsLen(n) - 1):
var a = n.sons[i]
if gCmd == cmdIdeTools: suggestStmt(c, a)
if a.kind == nkCommentStmt: continue
if (a.kind != nkConstDef): IllFormedAst(a)
checkSonsLen(a, 3)
var v = semIdentDef(c, a.sons[0], skConst)
var typ: PType = nil
if a.sons[1].kind != nkEmpty: typ = semTypeNode(c, a.sons[1], nil)
var def = semConstExpr(c, a.sons[2])
if def == nil:
LocalError(a.sons[2].info, errConstExprExpected)
continue
# check type compatibility between def.typ and typ:
if typ != nil:
def = fitRemoveHiddenConv(c, typ, def)
else:
typ = def.typ
if typ == nil: continue
if not typeAllowed(typ, skConst):
LocalError(a.info, errXisNoType, typeToString(typ))
continue
v.typ = typ
v.ast = def # no need to copy
if sfGenSym notin v.flags: addInterfaceDecl(c, v)
var b = newNodeI(nkConstDef, a.info)
addSon(b, newSymNode(v))
addSon(b, ast.emptyNode) # no type description
addSon(b, copyTree(def))
addSon(result, b)
proc transfFieldLoopBody(n: PNode, forLoop: PNode,
tupleType: PType,
tupleIndex, first: int): PNode =
case n.kind
of nkEmpty..pred(nkIdent), succ(nkIdent)..nkNilLit: result = n
of nkIdent:
result = n
var L = sonsLen(forLoop)
# field name:
if first > 0:
if n.ident.id == forLoop[0].ident.id:
if tupleType.n == nil:
# ugh, there are no field names:
result = newStrNode(nkStrLit, "")
else:
result = newStrNode(nkStrLit, tupleType.n.sons[tupleIndex].sym.name.s)
return
# other fields:
for i in first..L-3:
if n.ident.id == forLoop[i].ident.id:
var call = forLoop.sons[L-2]
var tupl = call.sons[i+1-first]
result = newNodeI(nkBracketExpr, n.info)
result.add(tupl)
result.add(newIntNode(nkIntLit, tupleIndex))
break
else:
result = copyNode(n)
newSons(result, sonsLen(n))
for i in countup(0, sonsLen(n)-1):
result.sons[i] = transfFieldLoopBody(n.sons[i], forLoop,
tupleType, tupleIndex, first)
proc semForFields(c: PContext, n: PNode, m: TMagic): PNode =
# so that 'break' etc. work as expected, we produce
# a 'while true: stmt; break' loop ...
result = newNodeI(nkWhileStmt, n.info)
var trueSymbol = StrTableGet(magicsys.systemModule.Tab, getIdent"true")
if trueSymbol == nil:
LocalError(n.info, errSystemNeeds, "true")
trueSymbol = newSym(skUnknown, getIdent"true", getCurrOwner(), n.info)
trueSymbol.typ = getSysType(tyBool)
result.add(newSymNode(trueSymbol, n.info))
var stmts = newNodeI(nkStmtList, n.info)
result.add(stmts)
var length = sonsLen(n)
var call = n.sons[length-2]
if length-2 != sonsLen(call)-1 + ord(m==mFieldPairs):
LocalError(n.info, errWrongNumberOfVariables)
return result
var tupleTypeA = skipTypes(call.sons[1].typ, abstractVar)
if tupleTypeA.kind != tyTuple: InternalError(n.info, "no tuple type!")
for i in 1..call.len-1:
var tupleTypeB = skipTypes(call.sons[i].typ, abstractVar)
if not SameType(tupleTypeA, tupleTypeB):
typeMismatch(call.sons[i], tupleTypeA, tupleTypeB)
Inc(c.p.nestedLoopCounter)
var loopBody = n.sons[length-1]
for i in 0..sonsLen(tupleTypeA)-1:
openScope(c.tab)
var body = transfFieldLoopBody(loopBody, n, tupleTypeA, i,
ord(m==mFieldPairs))
inc c.InUnrolledContext
stmts.add(SemStmt(c, body))
dec c.InUnrolledContext
closeScope(c.tab)
Dec(c.p.nestedLoopCounter)
var b = newNodeI(nkBreakStmt, n.info)
b.add(ast.emptyNode)
stmts.add(b)
proc semForVars(c: PContext, n: PNode): PNode =
result = n
var length = sonsLen(n)
var iter = skipTypes(n.sons[length-2].typ, {tyGenericInst})
# length == 3 means that there is one for loop variable
# and thus no tuple unpacking:
if iter.kind != tyTuple or length == 3:
if length == 3:
var v = newSymG(skForVar, n.sons[0], c)
if getCurrOwner().kind == skModule: incl(v.flags, sfGlobal)
# BUGFIX: don't use `iter` here as that would strip away
# the ``tyGenericInst``! See ``tests/compile/tgeneric.nim``
# for an example:
v.typ = n.sons[length-2].typ
n.sons[0] = newSymNode(v)
if sfGenSym notin v.flags: addDecl(c, v)
else:
LocalError(n.info, errWrongNumberOfVariables)
elif length-2 != sonsLen(iter):
LocalError(n.info, errWrongNumberOfVariables)
else:
for i in countup(0, length - 3):
var v = newSymG(skForVar, n.sons[i], c)
if getCurrOwner().kind == skModule: incl(v.flags, sfGlobal)
v.typ = iter.sons[i]
n.sons[i] = newSymNode(v)
if sfGenSym notin v.flags: addDecl(c, v)
Inc(c.p.nestedLoopCounter)
n.sons[length-1] = SemStmt(c, n.sons[length-1])
Dec(c.p.nestedLoopCounter)
proc implicitIterator(c: PContext, it: string, arg: PNode): PNode =
result = newNodeI(nkCall, arg.info)
result.add(newIdentNode(it.getIdent, arg.info))
result.add(arg)
result = semExprNoDeref(c, result, {efWantIterator})
proc semFor(c: PContext, n: PNode): PNode =
result = n
checkMinSonsLen(n, 3)
var length = sonsLen(n)
openScope(c.tab)
n.sons[length-2] = semExprNoDeref(c, n.sons[length-2], {efWantIterator})
var call = n.sons[length-2]
if call.kind notin nkCallKinds or call.sons[0].kind != nkSym or
call.sons[0].sym.kind != skIterator:
if length == 3:
n.sons[length-2] = implicitIterator(c, "items", n.sons[length-2])
elif length == 4:
n.sons[length-2] = implicitIterator(c, "pairs", n.sons[length-2])
else:
LocalError(n.sons[length-2].info, errIteratorExpected)
result = semForVars(c, n)
elif call.sons[0].sym.magic != mNone:
if call.sons[0].sym.magic == mOmpParFor:
result = semForVars(c, n)
result.kind = nkParForStmt
else:
result = semForFields(c, n, call.sons[0].sym.magic)
else:
result = semForVars(c, n)
closeScope(c.tab)
proc semRaise(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1)
if n.sons[0].kind != nkEmpty:
n.sons[0] = semExprWithType(c, n.sons[0])
var typ = n.sons[0].typ
if typ.kind != tyRef or typ.sons[0].kind != tyObject:
localError(n.info, errExprCannotBeRaised)
proc semTry(c: PContext, n: PNode): PNode =
result = n
inc c.p.inTryStmt
checkMinSonsLen(n, 2)
n.sons[0] = semStmtScope(c, n.sons[0])
var check = initIntSet()
for i in countup(1, sonsLen(n) - 1):
var a = n.sons[i]
checkMinSonsLen(a, 1)
var length = sonsLen(a)
if a.kind == nkExceptBranch:
if length == 2 and a.sons[0].kind == nkBracket:
a.sons[0..0] = a.sons[0].sons
length = a.sonsLen
for j in countup(0, length - 2):
var typ = semTypeNode(c, a.sons[j], nil)
if typ.kind == tyRef: typ = typ.sons[0]
if typ.kind != tyObject:
LocalError(a.sons[j].info, errExprCannotBeRaised)
a.sons[j] = newNodeI(nkType, a.sons[j].info)
a.sons[j].typ = typ
if ContainsOrIncl(check, typ.id):
localError(a.sons[j].info, errExceptionAlreadyHandled)
elif a.kind != nkFinally:
illFormedAst(n)
# last child of an nkExcept/nkFinally branch is a statement:
a.sons[length - 1] = semStmtScope(c, a.sons[length - 1])
dec c.p.inTryStmt
proc addGenericParamListToScope(c: PContext, n: PNode) =
if n.kind != nkGenericParams: illFormedAst(n)
for i in countup(0, sonsLen(n)-1):
var a = n.sons[i]
if a.kind == nkSym: addDecl(c, a.sym)
else: illFormedAst(a)
proc typeSectionLeftSidePass(c: PContext, n: PNode) =
# process the symbols on the left side for the whole type section, before
# we even look at the type definitions on the right
for i in countup(0, sonsLen(n) - 1):
var a = n.sons[i]
if gCmd == cmdIdeTools: suggestStmt(c, a)
if a.kind == nkCommentStmt: continue
if a.kind != nkTypeDef: IllFormedAst(a)
checkSonsLen(a, 3)
var s = semIdentDef(c, a.sons[0], skType)
s.typ = newTypeS(tyForward, c)
s.typ.sym = s # process pragmas:
if a.sons[0].kind == nkPragmaExpr:
pragma(c, s, a.sons[0].sons[1], typePragmas)
# add it here, so that recursive types are possible:
if sfGenSym notin s.flags: addInterfaceDecl(c, s)
a.sons[0] = newSymNode(s)
proc typeSectionRightSidePass(c: PContext, n: PNode) =
for i in countup(0, sonsLen(n) - 1):
var a = n.sons[i]
if a.kind == nkCommentStmt: continue
if (a.kind != nkTypeDef): IllFormedAst(a)
checkSonsLen(a, 3)
if (a.sons[0].kind != nkSym): IllFormedAst(a)
var s = a.sons[0].sym
if s.magic == mNone and a.sons[2].kind == nkEmpty:
LocalError(a.info, errImplOfXexpected, s.name.s)
if s.magic != mNone: processMagicType(c, s)
if a.sons[1].kind != nkEmpty:
# We have a generic type declaration here. In generic types,
# symbol lookup needs to be done here.
openScope(c.tab)
pushOwner(s)
if s.magic == mNone: s.typ.kind = tyGenericBody
if s.typ.containerID != 0:
InternalError(a.info, "semTypeSection: containerID")
s.typ.containerID = s.typ.id
# XXX for generic type aliases this is not correct! We need the
# underlying Id really:
#
# type
# TGObj[T] = object
# TAlias[T] = TGObj[T]
#
a.sons[1] = semGenericParamList(c, a.sons[1], s.typ)
s.typ.size = -1 # could not be computed properly
# we fill it out later. For magic generics like 'seq', it won't be filled
# so we use tyEmpty instead of nil to not crash for strange conversions
# like: mydata.seq
rawAddSon(s.typ, newTypeS(tyEmpty, c))
s.ast = a
inc c.InGenericContext
var body = semTypeNode(c, a.sons[2], nil)
dec c.InGenericContext
if body != nil:
body.sym = s
body.size = -1 # could not be computed properly
s.typ.sons[sonsLen(s.typ) - 1] = body
popOwner()
closeScope(c.tab)
elif a.sons[2].kind != nkEmpty:
# process the type's body:
pushOwner(s)
var t = semTypeNode(c, a.sons[2], s.typ)
if s.typ == nil:
s.typ = t
elif t != s.typ:
# this can happen for e.g. tcan_alias_specialised_generic:
assignType(s.typ, t)
#debug s.typ
s.ast = a
popOwner()
proc typeSectionFinalPass(c: PContext, n: PNode) =
for i in countup(0, sonsLen(n) - 1):
var a = n.sons[i]
if a.kind == nkCommentStmt: continue
if a.sons[0].kind != nkSym: IllFormedAst(a)
var s = a.sons[0].sym
# compute the type's size and check for illegal recursions:
if a.sons[1].kind == nkEmpty:
if a.sons[2].kind in {nkSym, nkIdent, nkAccQuoted}:
# type aliases are hard:
#MessageOut('for type ' + typeToString(s.typ));
var t = semTypeNode(c, a.sons[2], nil)
if t.kind in {tyObject, tyEnum}:
assignType(s.typ, t)
s.typ.id = t.id # same id
checkConstructedType(s.info, s.typ)
let aa = a.sons[2]
if aa.kind in {nkRefTy, nkPtrTy} and aa.len == 1 and
aa.sons[0].kind == nkObjectTy:
# give anonymous object a dummy symbol:
assert s.typ.sons[0].sym == nil
s.typ.sons[0].sym = newSym(skType, getIdent(s.name.s & ":ObjectType"),
getCurrOwner(), s.info)
proc SemTypeSection(c: PContext, n: PNode): PNode =
typeSectionLeftSidePass(c, n)
typeSectionRightSidePass(c, n)
typeSectionFinalPass(c, n)
result = n
proc semParamList(c: PContext, n, genericParams: PNode, s: PSym) =
s.typ = semProcTypeNode(c, n, genericParams, nil, s.kind)
proc addParams(c: PContext, n: PNode, kind: TSymKind) =
for i in countup(1, sonsLen(n)-1):
if n.sons[i].kind == nkSym: addParamOrResult(c, n.sons[i].sym, kind)
else: illFormedAst(n)
proc semBorrow(c: PContext, n: PNode, s: PSym) =
# search for the correct alias:
var b = SearchForBorrowProc(c, s, c.tab.tos - 2)
if b != nil:
# store the alias:
n.sons[bodyPos] = newSymNode(b)
else:
LocalError(n.info, errNoSymbolToBorrowFromFound)
proc addResult(c: PContext, t: PType, info: TLineInfo, owner: TSymKind) =
if t != nil:
var s = newSym(skResult, getIdent"result", getCurrOwner(), info)
s.typ = t
incl(s.flags, sfUsed)
addParamOrResult(c, s, owner)
c.p.resultSym = s
proc addResultNode(c: PContext, n: PNode) =
if c.p.resultSym != nil: addSon(n, newSymNode(c.p.resultSym))
proc copyExcept(n: PNode, i: int): PNode =
result = copyNode(n)
for j in 0.. <n.len:
if j != i: result.add(n.sons[j])
proc lookupMacro(c: PContext, n: PNode): PSym =
if n.kind == nkSym:
result = n.sym
if result.kind notin {skMacro, skTemplate}: result = nil
else:
result = SymtabGet(c.Tab, considerAcc(n), {skMacro, skTemplate})
proc semProcAnnotation(c: PContext, prc: PNode): PNode =
var n = prc.sons[pragmasPos]
if n == nil or n.kind == nkEmpty: return
for i in countup(0, <n.len):
var it = n.sons[i]
var key = if it.kind == nkExprColonExpr: it.sons[0] else: it
let m = lookupMacro(c, key)
if m == nil: continue
# we transform ``proc p {.m, rest.}`` into ``m: proc p {.rest.}`` and
# let the semantic checker deal with it:
var x = newNodeI(nkMacroStmt, n.info)
x.add(newSymNode(m))
prc.sons[pragmasPos] = copyExcept(n, i)
if it.kind == nkExprColonExpr:
# pass pragma argument to the macro too:
x.add(it.sons[1])
x.add(prc)
# recursion assures that this works for multiple macro annotations too:
return semStmt(c, x)
proc semLambda(c: PContext, n: PNode): PNode =
result = semProcAnnotation(c, n)
if result != nil: return result
result = n
checkSonsLen(n, bodyPos + 1)
var s = newSym(skProc, getIdent":anonymous", getCurrOwner(), n.info)
s.ast = n
n.sons[namePos] = newSymNode(s)
pushOwner(s)
openScope(c.tab)
if n.sons[genericParamsPos].kind != nkEmpty:
illFormedAst(n) # process parameters:
if n.sons[paramsPos].kind != nkEmpty:
semParamList(c, n.sons[ParamsPos], nil, s)
ParamsTypeCheck(c, s.typ)
else:
s.typ = newTypeS(tyProc, c)
rawAddSon(s.typ, nil)
if n.sons[pragmasPos].kind != nkEmpty:
pragma(c, s, n.sons[pragmasPos], lambdaPragmas)
s.options = gOptions
if n.sons[bodyPos].kind != nkEmpty:
if sfImportc in s.flags:
LocalError(n.sons[bodyPos].info, errImplOfXNotAllowed, s.name.s)
pushProcCon(c, s)
addResult(c, s.typ.sons[0], n.info, skProc)
let semBody = hloBody(c, semProcBody(c, n.sons[bodyPos]))
n.sons[bodyPos] = transformBody(c.module, semBody, s)
addResultNode(c, n)
popProcCon(c)
else:
LocalError(n.info, errImplOfXexpected, s.name.s)
sideEffectsCheck(c, s)
closeScope(c.tab) # close scope for parameters
popOwner()
result.typ = s.typ
proc instantiateDestructor*(c: PContext, typ: PType): bool
proc doDestructorStuff(c: PContext, s: PSym, n: PNode) =
let t = s.typ.sons[1].skipTypes({tyVar})
t.destructor = s
# automatically insert calls to base classes' destructors
if n.sons[bodyPos].kind != nkEmpty:
for i in countup(0, t.sonsLen - 1):
# when inheriting directly from object
# there will be a single nil son
if t.sons[i] == nil: continue
if instantiateDestructor(c, t.sons[i]):
n.sons[bodyPos].addSon(newNode(nkCall, t.sym.info, @[
useSym(t.sons[i].destructor),
n.sons[paramsPos][1][0]]))
proc semProcAux(c: PContext, n: PNode, kind: TSymKind,
validPragmas: TSpecialWords): PNode =
result = semProcAnnotation(c, n)
if result != nil: return result
result = n
checkSonsLen(n, bodyPos + 1)
var s = semIdentDef(c, n.sons[0], kind)
n.sons[namePos] = newSymNode(s)
s.ast = n
pushOwner(s)
openScope(c.tab)
var gp: PNode
if n.sons[genericParamsPos].kind != nkEmpty:
n.sons[genericParamsPos] = semGenericParamList(c, n.sons[genericParamsPos])
gp = n.sons[genericParamsPos]
else:
gp = newNodeI(nkGenericParams, n.info)
# process parameters:
if n.sons[paramsPos].kind != nkEmpty:
semParamList(c, n.sons[ParamsPos], gp, s)
if sonsLen(gp) > 0:
if n.sons[genericParamsPos].kind == nkEmpty:
# we have a list of implicit type parameters:
n.sons[genericParamsPos] = gp
# check for semantics again:
# semParamList(c, n.sons[ParamsPos], nil, s)
else:
s.typ = newTypeS(tyProc, c)
rawAddSon(s.typ, nil)
if n.sons[patternPos].kind != nkEmpty:
n.sons[patternPos] = semPattern(c, n.sons[patternPos])
var proto = SearchForProc(c, s, c.tab.tos-2) # -2 because we have a scope
# open for parameters
if proto == nil:
s.typ.callConv = lastOptionEntry(c).defaultCC
# add it here, so that recursive procs are possible:
# -2 because we have a scope open for parameters
if sfGenSym in s.flags: nil
elif kind in OverloadableSyms:
addInterfaceOverloadableSymAt(c, s, c.tab.tos - 2)
else:
addInterfaceDeclAt(c, s, c.tab.tos - 2)
if n.sons[pragmasPos].kind != nkEmpty:
pragma(c, s, n.sons[pragmasPos], validPragmas)
else:
if n.sons[pragmasPos].kind != nkEmpty:
LocalError(n.sons[pragmasPos].info, errPragmaOnlyInHeaderOfProc)
if sfForward notin proto.flags:
WrongRedefinition(n.info, proto.name.s)
excl(proto.flags, sfForward)
closeScope(c.tab) # close scope with wrong parameter symbols
openScope(c.tab) # open scope for old (correct) parameter symbols
if proto.ast.sons[genericParamsPos].kind != nkEmpty:
addGenericParamListToScope(c, proto.ast.sons[genericParamsPos])
addParams(c, proto.typ.n, proto.kind)
proto.info = s.info # more accurate line information
s.typ = proto.typ
s = proto
n.sons[genericParamsPos] = proto.ast.sons[genericParamsPos]
n.sons[paramsPos] = proto.ast.sons[paramsPos]
if n.sons[namePos].kind != nkSym: InternalError(n.info, "semProcAux")
n.sons[namePos].sym = proto
proto.ast = n # needed for code generation
popOwner()
pushOwner(s)
s.options = gOptions
if sfDestructor in s.flags: doDestructorStuff(c, s, n)
if n.sons[bodyPos].kind != nkEmpty:
# for DLL generation it is annoying to check for sfImportc!
if sfBorrow in s.flags:
LocalError(n.sons[bodyPos].info, errImplOfXNotAllowed, s.name.s)
if n.sons[genericParamsPos].kind == nkEmpty:
ParamsTypeCheck(c, s.typ)
pushProcCon(c, s)
if s.typ.sons[0] != nil and kind != skIterator:
addResult(c, s.typ.sons[0], n.info, kind)
addResultNode(c, n)
if sfImportc notin s.flags:
# no semantic checking for importc:
let semBody = hloBody(c, semProcBody(c, n.sons[bodyPos]))
# unfortunately we cannot skip this step when in 'system.compiles'
# context as it may even be evaluated in 'system.compiles':
n.sons[bodyPos] = transformBody(c.module, semBody, s)
#if s.typ.sons[0] != nil and kind != skIterator: addResultNode(c, n)
popProcCon(c)
else:
if s.typ.sons[0] != nil and kind != skIterator:
addDecl(c, newSym(skUnknown, getIdent"result", nil, n.info))
var toBind = initIntSet()
n.sons[bodyPos] = semGenericStmtScope(c, n.sons[bodyPos], {}, toBind)
fixupInstantiatedSymbols(c, s)
if sfImportc in s.flags:
# so we just ignore the body after semantic checking for importc:
n.sons[bodyPos] = ast.emptyNode
else:
if proto != nil: LocalError(n.info, errImplOfXexpected, proto.name.s)
if {sfImportc, sfBorrow} * s.flags == {} and s.magic == mNone:
incl(s.flags, sfForward)
elif sfBorrow in s.flags: semBorrow(c, n, s)
sideEffectsCheck(c, s)
closeScope(c.tab) # close scope for parameters
popOwner()
if n.sons[patternPos].kind != nkEmpty:
c.patterns.add(s)
proc semIterator(c: PContext, n: PNode): PNode =
result = semProcAux(c, n, skIterator, iteratorPragmas)
var s = result.sons[namePos].sym
var t = s.typ
if t.sons[0] == nil:
LocalError(n.info, errXNeedsReturnType, "iterator")
# iterators are either 'inline' or 'closure':
if s.typ.callConv != ccInline:
s.typ.callConv = ccClosure
# and they always at least use the 'env' for the state field:
incl(s.typ.flags, tfCapturesEnv)
if n.sons[bodyPos].kind == nkEmpty and s.magic == mNone:
LocalError(n.info, errImplOfXexpected, s.name.s)
proc semProc(c: PContext, n: PNode): PNode =
result = semProcAux(c, n, skProc, procPragmas)
proc semMethod(c: PContext, n: PNode): PNode =
if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "method")
result = semProcAux(c, n, skMethod, methodPragmas)
var s = result.sons[namePos].sym
var t = s.typ
var hasObjParam = false
for col in countup(1, sonsLen(t)-1):
if skipTypes(t.sons[col], skipPtrs).kind == tyObject:
hasObjParam = true
break
# XXX this not really correct way to do it: Perhaps it should be done after
# generic instantiation. Well it's good enough for now:
if hasObjParam:
methodDef(s, false)
else:
LocalError(n.info, errXNeedsParamObjectType, "method")
proc semConverterDef(c: PContext, n: PNode): PNode =
if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "converter")
checkSonsLen(n, bodyPos + 1)
if n.sons[genericParamsPos].kind != nkEmpty:
LocalError(n.info, errNoGenericParamsAllowedForX, "converter")
result = semProcAux(c, n, skConverter, converterPragmas)
var s = result.sons[namePos].sym
var t = s.typ
if t.sons[0] == nil: LocalError(n.info, errXNeedsReturnType, "converter")
if sonsLen(t) != 2: LocalError(n.info, errXRequiresOneArgument, "converter")
addConverter(c, s)
proc semMacroDef(c: PContext, n: PNode): PNode =
checkSonsLen(n, bodyPos + 1)
result = semProcAux(c, n, skMacro, macroPragmas)
var s = result.sons[namePos].sym
var t = s.typ
if t.sons[0] == nil: LocalError(n.info, errXNeedsReturnType, "macro")
if n.sons[bodyPos].kind == nkEmpty:
LocalError(n.info, errImplOfXexpected, s.name.s)
proc evalInclude(c: PContext, n: PNode): PNode =
result = newNodeI(nkStmtList, n.info)
addSon(result, n)
for i in countup(0, sonsLen(n) - 1):
var f = checkModuleName(n.sons[i])
if f.len > 0:
var fileIndex = f.fileInfoIdx
if ContainsOrIncl(c.includedFiles, fileIndex):
LocalError(n.info, errRecursiveDependencyX, f.extractFilename)
else:
addSon(result, semStmt(c, gIncludeFile(f)))
Excl(c.includedFiles, fileIndex)
proc setLine(n: PNode, info: TLineInfo) =
for i in 0 .. <safeLen(n): setLine(n.sons[i], info)
n.info = info
proc semPragmaBlock(c: PContext, n: PNode): PNode =
let pragmaList = n.sons[0]
pragma(c, nil, pragmaList, exprPragmas)
result = semStmt(c, n.sons[1])
for i in 0 .. <pragmaList.len:
if whichPragma(pragmaList.sons[i]) == wLine:
setLine(result, pragmaList.sons[i].info)
proc semStaticStmt(c: PContext, n: PNode): PNode =
let a = semStmt(c, n.sons[0])
result = evalStaticExpr(c.module, a)
if result.isNil:
LocalError(n.info, errCannotInterpretNodeX, renderTree(n))
elif result.kind == nkEmpty:
result = newNodeI(nkDiscardStmt, n.info, 1)
result.sons[0] = emptyNode
# special marker values that indicates that we are
# 1) AnalyzingDestructor: currenlty analyzing the type for destructor
# generation (needed for recursive types)
# 2) DestructorIsTrivial: completed the anlysis before and determined
# that the type has a trivial destructor
var AnalyzingDestructor, DestructorIsTrivial: PSym
new(AnalyzingDestructor)
new(DestructorIsTrivial)
var
destructorName = getIdent"destroy_"
destructorParam = getIdent"this_"
destructorPragma = newIdentNode(getIdent"destructor", UnknownLineInfo())
rangeDestructorProc: PSym
proc destroyField(c: PContext, field: PSym, holder: PNode): PNode =
if instantiateDestructor(c, field.typ):
result = newNode(nkCall, field.info, @[
useSym(field.typ.destructor),
newNode(nkDotExpr, field.info, @[holder, useSym(field)])])
proc destroyCase(c: PContext, n: PNode, holder: PNode): PNode =
var nonTrivialFields = 0
result = newNode(nkCaseStmt, n.info, @[])
# case x.kind
result.addSon(newNode(nkDotExpr, n.info, @[holder, n.sons[0]]))
for i in countup(1, n.len - 1):
# of A, B:
var caseBranch = newNode(n[i].kind, n[i].info, n[i].sons[0 .. -2])
let recList = n[i].lastSon
var destroyRecList = newNode(nkStmtList, n[i].info, @[])
template addField(f: expr): stmt =
let stmt = destroyField(c, f, holder)
if stmt != nil:
destroyRecList.addSon(stmt)
inc nonTrivialFields
case recList.kind
of nkSym:
addField(recList.sym)
of nkRecList:
for j in countup(0, recList.len - 1):
addField(recList[j].sym)
else:
internalAssert false
caseBranch.addSon(destroyRecList)
result.addSon(caseBranch)
# maybe no fields were destroyed?
if nonTrivialFields == 0:
result = nil
proc generateDestructor(c: PContext, t: PType): PNode =
## generate a destructor for a user-defined object ot tuple type
## returns nil if the destructor turns out to be trivial
template addLine(e: expr): stmt =
if result == nil: result = newNode(nkStmtList)
result.addSon(e)
# XXX: This may be true for some C-imported types such as
# Tposix_spawnattr
if t.n == nil or t.n.sons == nil: return
internalAssert t.n.kind == nkRecList
let destructedObj = newIdentNode(destructorParam, UnknownLineInfo())
# call the destructods of all fields
for s in countup(0, t.n.sons.len - 1):
case t.n.sons[s].kind
of nkRecCase:
let stmt = destroyCase(c, t.n.sons[s], destructedObj)
if stmt != nil: addLine(stmt)
of nkSym:
let stmt = destroyField(c, t.n.sons[s].sym, destructedObj)
if stmt != nil: addLine(stmt)
else:
internalAssert false
# base classes' destructors will be automatically called by
# semProcAux for both auto-generated and user-defined destructors
proc instantiateDestructor*(c: PContext, typ: PType): bool =
# returns true if the type already had a user-defined
# destructor or if the compiler generated a default
# member-wise one
var t = skipTypes(typ, {tyConst, tyMutable})
if t.destructor != nil:
# XXX: This is not entirely correct for recursive types, but we need
# it temporarily to hide the "destroy is alrady defined" problem
return t.destructor notin [AnalyzingDestructor, DestructorIsTrivial]
case t.kind
of tySequence, tyArray, tyArrayConstr, tyOpenArray, tyVarargs:
if instantiateDestructor(c, t.sons[0]):
if rangeDestructorProc == nil:
rangeDestructorProc = SymtabGet(c.tab, getIdent"nimDestroyRange")
t.destructor = rangeDestructorProc
return true
else:
return false
of tyTuple, tyObject:
t.destructor = AnalyzingDestructor
let generated = generateDestructor(c, t)
if generated != nil:
internalAssert t.sym != nil
var i = t.sym.info
let fullDef = newNode(nkProcDef, i, @[
newIdentNode(destructorName, i),
emptyNode,
emptyNode,
newNode(nkFormalParams, i, @[
emptyNode,
newNode(nkIdentDefs, i, @[
newIdentNode(destructorParam, i),
useSym(t.sym),
emptyNode]),
]),
newNode(nkPragma, i, @[destructorPragma]),
emptyNode,
generated
])
discard semProc(c, fullDef)
internalAssert t.destructor != nil
return true
else:
t.destructor = DestructorIsTrivial
return false
else:
return false
proc insertDestructors(c: PContext, varSection: PNode):
tuple[outer: PNode, inner: PNode] =
# Accepts a var or let section.
#
# When a var section has variables with destructors
# the var section is split up and finally blocks are inserted
# immediately after all "destructable" vars
#
# In case there were no destrucable variables, the proc returns
# (nil, nil) and the enclosing stmt-list requires no modifications.
#
# Otherwise, after the try blocks are created, the rest of the enclosing
# stmt-list should be inserted in the most `inner` such block (corresponding
# to the last variable).
#
# `outer` is a statement list that should replace the original var section.
# It will include the new truncated var section followed by the outermost
# try block.
let totalVars = varSection.sonsLen
for j in countup(0, totalVars - 1):
let
varId = varSection[j][0]
varTyp = varId.sym.typ
info = varId.info
if varTyp != nil and instantiateDestructor(c, varTyp):
var tryStmt = newNodeI(nkTryStmt, info)
if j < totalVars - 1:
var remainingVars = newNodeI(varSection.kind, info)
remainingVars.sons = varSection.sons[(j+1)..(-1)]
let (outer, inner) = insertDestructors(c, remainingVars)
if outer != nil:
tryStmt.addSon(outer)
result.inner = inner
else:
result.inner = newNodeI(nkStmtList, info)
result.inner.addSon(remainingVars)
tryStmt.addSon(result.inner)
else:
result.inner = newNodeI(nkStmtList, info)
tryStmt.addSon(result.inner)
tryStmt.addSon(
newNode(nkFinally, info, @[
semStmt(c, newNode(nkCall, info, @[
useSym(varTyp.destructor),
useSym(varId.sym)]))]))
result.outer = newNodeI(nkStmtList, info)
varSection.sons.setLen(j+1)
result.outer.addSon(varSection)
result.outer.addSon(tryStmt)
return
proc semStmtList(c: PContext, n: PNode): PNode =
# these must be last statements in a block:
const
LastBlockStmts = {nkRaiseStmt, nkReturnStmt, nkBreakStmt, nkContinueStmt}
result = n
var length = sonsLen(n)
for i in countup(0, length - 1):
case n.sons[i].kind
of nkFinally, nkExceptBranch:
# stand-alone finally and except blocks are
# transformed into regular try blocks:
#
# var f = fopen("somefile") | var f = fopen("somefile")
# finally: fclose(f) | try:
# ... | ...
# | finally:
# | fclose(f)
var tryStmt = newNodeI(nkTryStmt, n.sons[i].info)
var body = newNodeI(nkStmtList, n.sons[i].info)
if i < n.sonsLen - 1:
body.sons = n.sons[(i+1)..(-1)]
tryStmt.addSon(body)
tryStmt.addSon(n.sons[i])
n.sons[i] = semTry(c, tryStmt)
n.sons.setLen(i+1)
return
else:
n.sons[i] = semStmt(c, n.sons[i])
case n.sons[i].kind
of nkVarSection, nkLetSection:
let (outer, inner) = insertDestructors(c, n.sons[i])
if outer != nil:
n.sons[i] = outer
for j in countup(i+1, length-1):
inner.addSon(SemStmt(c, n.sons[j]))
n.sons.setLen(i+1)
return
of LastBlockStmts:
for j in countup(i + 1, length - 1):
case n.sons[j].kind
of nkPragma, nkCommentStmt, nkNilLit, nkEmpty: nil
else: localError(n.sons[j].info, errStmtInvalidAfterReturn)
else: nil
proc SemStmt(c: PContext, n: PNode): PNode =
# now: simply an alias:
result = semExprNoType(c, n)
proc semStmtScope(c: PContext, n: PNode): PNode =
openScope(c.tab)
result = semStmt(c, n)
closeScope(c.tab)