#
#
# The Nimrod Compiler
# (c) Copyright 2011 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## this module does the semantic checking of statements
proc semCommand(c: PContext, n: PNode): PNode =
result = semExprNoType(c, n)
proc semWhen(c: PContext, n: PNode): PNode =
result = nil
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
case it.kind
of nkElifBranch:
checkSonsLen(it, 2)
var e = semAndEvalConstExpr(c, it.sons[0])
if (e.kind != nkIntLit): InternalError(n.info, "semWhen")
if (e.intVal != 0) and (result == nil):
result = semStmt(c, it.sons[1]) # do not open a new scope!
of nkElse:
checkSonsLen(it, 1)
if result == nil:
result = semStmt(c, it.sons[0]) # do not open a new scope!
else: illFormedAst(n)
if result == nil:
result = newNodeI(nkNilLit, n.info)
# The ``when`` statement implements the mechanism for platform dependant
# code. Thus we try to ensure here consistent ID allocation after the
# ``when`` statement.
IDsynchronizationPoint(200)
proc semIf(c: PContext, n: PNode): PNode =
result = n
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
case it.kind
of nkElifBranch:
checkSonsLen(it, 2)
openScope(c.tab)
it.sons[0] = forceBool(c, semExprWithType(c, it.sons[0]))
it.sons[1] = semStmt(c, it.sons[1])
closeScope(c.tab)
of nkElse:
if sonsLen(it) == 1: it.sons[0] = semStmtScope(c, it.sons[0])
else: illFormedAst(it)
else: illFormedAst(n)
proc semDiscard(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1)
n.sons[0] = semExprWithType(c, n.sons[0])
if n.sons[0].typ == nil: localError(n.info, errInvalidDiscard)
proc semBreakOrContinue(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1)
if n.sons[0].kind != nkEmpty:
var s: PSym
case n.sons[0].kind
of nkIdent: s = lookUp(c, n.sons[0])
of nkSym: s = n.sons[0].sym
else: illFormedAst(n)
if s.kind == skLabel and s.owner.id == c.p.owner.id:
var x = newSymNode(s)
x.info = n.info
incl(s.flags, sfUsed)
n.sons[0] = x
else:
localError(n.info, errInvalidControlFlowX, s.name.s)
elif (c.p.nestedLoopCounter <= 0) and (c.p.nestedBlockCounter <= 0):
localError(n.info, errInvalidControlFlowX,
renderTree(n, {renderNoComments}))
proc semBlock(c: PContext, n: PNode): PNode =
result = n
Inc(c.p.nestedBlockCounter)
checkSonsLen(n, 2)
openScope(c.tab) # BUGFIX: label is in the scope of block!
if n.sons[0].kind != nkEmpty:
var labl = newSymS(skLabel, n.sons[0], c)
addDecl(c, labl)
n.sons[0] = newSymNode(labl)
n.sons[1] = semStmt(c, n.sons[1])
closeScope(c.tab)
Dec(c.p.nestedBlockCounter)
proc semAsm(con: PContext, n: PNode): PNode =
checkSonsLen(n, 2)
var marker = pragmaAsm(con, n.sons[0])
if marker == '\0': marker = '`' # default marker
result = semAsmOrEmit(con, n, marker)
proc semWhile(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 2)
openScope(c.tab)
n.sons[0] = forceBool(c, semExprWithType(c, n.sons[0]))
inc(c.p.nestedLoopCounter)
n.sons[1] = semStmt(c, n.sons[1])
dec(c.p.nestedLoopCounter)
closeScope(c.tab)
proc toCover(t: PType): biggestInt =
var t2 = skipTypes(t, abstractVarRange)
if t2.kind == tyEnum and enumHasHoles(t2):
result = sonsLen(t2.n)
else:
result = lengthOrd(skipTypes(t, abstractVar))
proc semCase(c: PContext, n: PNode): PNode =
# check selector:
result = n
checkMinSonsLen(n, 2)
openScope(c.tab)
n.sons[0] = semExprWithType(c, n.sons[0])
var chckCovered = false
var covered: biggestint = 0
case skipTypes(n.sons[0].Typ, abstractVarRange).Kind
of tyInt..tyInt64, tyChar, tyEnum:
chckCovered = true
of tyFloat..tyFloat128, tyString:
nil
else:
LocalError(n.info, errSelectorMustBeOfCertainTypes)
return
for i in countup(1, sonsLen(n) - 1):
var x = n.sons[i]
case x.kind
of nkOfBranch:
checkMinSonsLen(x, 2)
semCaseBranch(c, n, x, i, covered)
var length = sonsLen(x)
x.sons[length - 1] = semStmtScope(c, x.sons[length - 1])
of nkElifBranch:
chckCovered = false
checkSonsLen(x, 2)
x.sons[0] = forceBool(c, semExprWithType(c, x.sons[0]))
x.sons[1] = semStmtScope(c, x.sons[1])
of nkElse:
chckCovered = false
checkSonsLen(x, 1)
x.sons[0] = semStmtScope(c, x.sons[0])
else: illFormedAst(x)
if chckCovered and (covered != toCover(n.sons[0].typ)):
localError(n.info, errNotAllCasesCovered)
closeScope(c.tab)
proc SemReturn(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1)
if c.p.owner.kind notin {skConverter, skMethod, skProc, skMacro}:
globalError(n.info, errXNotAllowedHere, "\'return\'")
if n.sons[0].kind != nkEmpty:
# transform ``return expr`` to ``result = expr; return``
if c.p.resultSym == nil: globalError(n.info, errNoReturnTypeDeclared)
var a = newNodeI(nkAsgn, n.sons[0].info)
addSon(a, newSymNode(c.p.resultSym))
addSon(a, n.sons[0])
n.sons[0] = semAsgn(c, a)
# optimize away ``result = result``:
if n[0][1].kind == nkSym and n[0][1].sym.kind == skResult:
n.sons[0] = ast.emptyNode
proc SemYieldVarResult(c: PContext, n: PNode, restype: PType) =
var t = skipTypes(restype, {tyGenericInst})
case t.kind
of tyVar:
n.sons[0] = takeImplicitAddr(c, n.sons[0])
of tyTuple:
for i in 0.. <t.sonsLen:
var e = skipTypes(t.sons[i], {tyGenericInst})
if e.kind == tyVar:
if n.sons[0].kind == nkPar:
n.sons[0].sons[i] = takeImplicitAddr(c, n.sons[0].sons[i])
elif n.sons[0].kind in {nkHiddenStdConv, nkHiddenSubConv} and
n.sons[0].sons[1].kind == nkPar:
var a = n.sons[0].sons[1]
a.sons[i] = takeImplicitAddr(c, a.sons[i])
else:
localError(n.sons[0].info, errXExpected, "tuple constructor")
else: nil
proc SemYield(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1)
if c.p.owner == nil or c.p.owner.kind != skIterator:
GlobalError(n.info, errYieldNotAllowedHere)
if n.sons[0].kind != nkEmpty:
n.sons[0] = SemExprWithType(c, n.sons[0]) # check for type compatibility:
var restype = c.p.owner.typ.sons[0]
if restype != nil:
n.sons[0] = fitNode(c, restype, n.sons[0])
if n.sons[0].typ == nil: InternalError(n.info, "semYield")
SemYieldVarResult(c, n, restype)
else:
localError(n.info, errCannotReturnExpr)
proc fitRemoveHiddenConv(c: PContext, typ: Ptype, n: PNode): PNode =
result = fitNode(c, typ, n)
if result.kind in {nkHiddenStdConv, nkHiddenSubConv}:
changeType(result.sons[1], typ)
result = result.sons[1]
elif not sameType(result.typ, typ):
changeType(result, typ)
proc semIdentDef(c: PContext, n: PNode, kind: TSymKind): PSym =
if isTopLevel(c):
result = semIdentWithPragma(c, kind, n, {sfExported})
incl(result.flags, sfGlobal)
else:
result = semIdentWithPragma(c, kind, n, {})
proc semVar(c: PContext, n: PNode): PNode =
var b: PNode
result = copyNode(n)
for i in countup(0, sonsLen(n)-1):
var a = n.sons[i]
if gCmd == cmdIdeTools: suggestStmt(c, a)
if a.kind == nkCommentStmt: continue
if (a.kind != nkIdentDefs) and (a.kind != nkVarTuple): IllFormedAst(a)
checkMinSonsLen(a, 3)
var length = sonsLen(a)
var typ: PType
if a.sons[length-2].kind != nkEmpty:
typ = semTypeNode(c, a.sons[length-2], nil)
else:
typ = nil
var def: PNode
if a.sons[length-1].kind != nkEmpty:
def = semExprWithType(c, a.sons[length-1])
# BUGFIX: ``fitNode`` is needed here!
# check type compability between def.typ and typ:
if typ != nil: def = fitNode(c, typ, def)
else: typ = def.typ
else:
def = ast.emptyNode
# this can only happen for errornous var statements:
if typ == nil: continue
if not typeAllowed(typ, skVar):
GlobalError(a.info, errXisNoType, typeToString(typ))
var tup = skipTypes(typ, {tyGenericInst})
if a.kind == nkVarTuple:
if tup.kind != tyTuple: GlobalError(a.info, errXExpected, "tuple")
if length - 2 != sonsLen(tup):
GlobalError(a.info, errWrongNumberOfVariables)
b = newNodeI(nkVarTuple, a.info)
newSons(b, length)
b.sons[length - 2] = ast.emptyNode # no type desc
b.sons[length - 1] = def
addSon(result, b)
for j in countup(0, length-3):
var v = semIdentDef(c, a.sons[j], skVar)
addInterfaceDecl(c, v)
if a.kind != nkVarTuple:
v.typ = typ
b = newNodeI(nkIdentDefs, a.info)
addSon(b, newSymNode(v))
addSon(b, ast.emptyNode) # no type description
addSon(b, copyTree(def))
addSon(result, b)
else:
v.typ = tup.sons[j]
b.sons[j] = newSymNode(v)
proc semConst(c: PContext, n: PNode): PNode =
result = copyNode(n)
for i in countup(0, sonsLen(n) - 1):
var a = n.sons[i]
if gCmd == cmdIdeTools: suggestStmt(c, a)
if a.kind == nkCommentStmt: continue
if (a.kind != nkConstDef): IllFormedAst(a)
checkSonsLen(a, 3)
var v = semIdentDef(c, a.sons[0], skConst)
var typ: PType = nil
if a.sons[1].kind != nkEmpty: typ = semTypeNode(c, a.sons[1], nil)
when true:
var def = semConstExpr(c, a.sons[2])
if def == nil: GlobalError(a.sons[2].info, errConstExprExpected)
# check type compatibility between def.typ and typ:
if typ != nil:
def = fitRemoveHiddenConv(c, typ, def)
else:
typ = def.typ
if not typeAllowed(typ, skConst):
GlobalError(a.info, errXisNoType, typeToString(typ))
else:
var e = semExprWithType(c, a.sons[2])
if e == nil: GlobalError(a.sons[2].info, errConstExprExpected)
var def = getConstExpr(c.module, e)
if def == nil:
v.flags.incl(sfFakeConst)
def = evalConstExpr(c.module, e)
if def == nil or def.kind == nkEmpty: def = e
# check type compatibility between def.typ and typ:
if typ != nil:
def = fitRemoveHiddenConv(c, typ, def)
else:
typ = def.typ
if not typeAllowed(typ, skConst):
v.flags.incl(sfFakeConst)
if not typeAllowed(typ, skVar):
GlobalError(a.info, errXisNoType, typeToString(typ))
v.typ = typ
v.ast = def # no need to copy
addInterfaceDecl(c, v)
var b = newNodeI(nkConstDef, a.info)
addSon(b, newSymNode(v))
addSon(b, ast.emptyNode) # no type description
addSon(b, copyTree(def))
addSon(result, b)
proc transfFieldLoopBody(n: PNode, forLoop: PNode,
tupleType: PType,
tupleIndex, first: int): PNode =
case n.kind
of nkEmpty..pred(nkIdent), succ(nkIdent)..nkNilLit: result = n
of nkIdent:
result = n
var L = sonsLen(forLoop)
# field name:
if first > 0:
if n.ident.id == forLoop[0].ident.id:
if tupleType.n == nil:
# ugh, there are no field names:
result = newStrNode(nkStrLit, "")
else:
result = newStrNode(nkStrLit, tupleType.n.sons[tupleIndex].sym.name.s)
return
# other fields:
for i in first..L-3:
if n.ident.id == forLoop[i].ident.id:
var call = forLoop.sons[L-2]
var tupl = call.sons[i+1-first]
result = newNodeI(nkBracketExpr, n.info)
result.add(tupl)
result.add(newIntNode(nkIntLit, tupleIndex))
break
else:
result = copyNode(n)
newSons(result, sonsLen(n))
for i in countup(0, sonsLen(n)-1):
result.sons[i] = transfFieldLoopBody(n.sons[i], forLoop,
tupleType, tupleIndex, first)
proc semForFields(c: PContext, n: PNode, m: TMagic): PNode =
# so that 'break' etc. work as expected, we produce
# a 'while true: stmt; break' loop ...
result = newNodeI(nkWhileStmt, n.info)
var trueSymbol = StrTableGet(magicsys.systemModule.Tab, getIdent"true")
if trueSymbol == nil: GlobalError(n.info, errSystemNeeds, "true")
result.add(newSymNode(trueSymbol, n.info))
var stmts = newNodeI(nkStmtList, n.info)
result.add(stmts)
var length = sonsLen(n)
var call = n.sons[length-2]
if length-2 != sonsLen(call)-1 + ord(m==mFieldPairs):
GlobalError(n.info, errWrongNumberOfVariables)
var tupleTypeA = skipTypes(call.sons[1].typ, abstractVar)
if tupleTypeA.kind != tyTuple: InternalError(n.info, "no tuple type!")
for i in 1..call.len-1:
var tupleTypeB = skipTypes(call.sons[i].typ, abstractVar)
if not SameType(tupleTypeA, tupleTypeB):
typeMismatch(call.sons[i], tupleTypeA, tupleTypeB)
Inc(c.p.nestedLoopCounter)
var loopBody = n.sons[length-1]
for i in 0..sonsLen(tupleTypeA)-1:
openScope(c.tab)
var body = transfFieldLoopBody(loopBody, n, tupleTypeA, i,
ord(m==mFieldPairs))
stmts.add(SemStmt(c, body))
closeScope(c.tab)
Dec(c.p.nestedLoopCounter)
var b = newNodeI(nkBreakStmt, n.info)
b.add(ast.emptyNode)
stmts.add(b)
proc semFor(c: PContext, n: PNode): PNode =
result = n
checkMinSonsLen(n, 3)
var length = sonsLen(n)
openScope(c.tab)
n.sons[length-2] = semExprNoDeref(c, n.sons[length-2], {efWantIterator})
var call = n.sons[length-2]
if call.kind != nkCall or call.sons[0].kind != nkSym or
call.sons[0].sym.kind != skIterator:
GlobalError(n.sons[length - 2].info, errIteratorExpected)
elif call.sons[0].sym.magic != mNone:
result = semForFields(c, n, call.sons[0].sym.magic)
else:
var iter = skipTypes(n.sons[length-2].typ, {tyGenericInst})
# length == 3 means that there is one for loop variable
# and thus no tuple unpacking:
if iter.kind != tyTuple or length == 3:
if length != 3: GlobalError(n.info, errWrongNumberOfVariables)
var v = newSymS(skForVar, n.sons[0], c)
v.typ = iter
n.sons[0] = newSymNode(v)
addDecl(c, v)
else:
if length-2 != sonsLen(iter):
GlobalError(n.info, errWrongNumberOfVariables)
for i in countup(0, length - 3):
var v = newSymS(skForVar, n.sons[i], c)
v.typ = iter.sons[i]
n.sons[i] = newSymNode(v)
addDecl(c, v)
Inc(c.p.nestedLoopCounter)
n.sons[length-1] = SemStmt(c, n.sons[length-1])
Dec(c.p.nestedLoopCounter)
closeScope(c.tab)
proc semRaise(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1)
if n.sons[0].kind != nkEmpty:
n.sons[0] = semExprWithType(c, n.sons[0])
var typ = n.sons[0].typ
if typ.kind != tyRef or typ.sons[0].kind != tyObject:
localError(n.info, errExprCannotBeRaised)
proc semTry(c: PContext, n: PNode): PNode =
result = n
checkMinSonsLen(n, 2)
n.sons[0] = semStmtScope(c, n.sons[0])
var check = initIntSet()
for i in countup(1, sonsLen(n) - 1):
var a = n.sons[i]
checkMinSonsLen(a, 1)
var length = sonsLen(a)
if a.kind == nkExceptBranch:
if length == 2 and a.sons[0].kind == nkBracket:
a.sons[0..0] = a.sons[0].sons
length = a.sonsLen
for j in countup(0, length - 2):
var typ = semTypeNode(c, a.sons[j], nil)
if typ.kind == tyRef: typ = typ.sons[0]
if typ.kind != tyObject:
GlobalError(a.sons[j].info, errExprCannotBeRaised)
a.sons[j] = newNodeI(nkType, a.sons[j].info)
a.sons[j].typ = typ
if ContainsOrIncl(check, typ.id):
localError(a.sons[j].info, errExceptionAlreadyHandled)
elif a.kind != nkFinally:
illFormedAst(n)
# last child of an nkExcept/nkFinally branch is a statement:
a.sons[length - 1] = semStmtScope(c, a.sons[length - 1])
proc addGenericParamListToScope(c: PContext, n: PNode) =
if n.kind != nkGenericParams:
InternalError(n.info, "addGenericParamListToScope")
for i in countup(0, sonsLen(n)-1):
var a = n.sons[i]
if a.kind != nkSym: internalError(a.info, "addGenericParamListToScope")
addDecl(c, a.sym)
proc typeSectionLeftSidePass(c: PContext, n: PNode) =
# process the symbols on the left side for the whole type section, before
# we even look at the type definitions on the right
for i in countup(0, sonsLen(n) - 1):
var a = n.sons[i]
if gCmd == cmdIdeTools: suggestStmt(c, a)
if a.kind == nkCommentStmt: continue
if a.kind != nkTypeDef: IllFormedAst(a)
checkSonsLen(a, 3)
var s = semIdentDef(c, a.sons[0], skType)
s.typ = newTypeS(tyForward, c)
s.typ.sym = s # process pragmas:
if a.sons[0].kind == nkPragmaExpr:
pragma(c, s, a.sons[0].sons[1], typePragmas)
# add it here, so that recursive types are possible:
addInterfaceDecl(c, s)
a.sons[0] = newSymNode(s)
proc typeSectionRightSidePass(c: PContext, n: PNode) =
for i in countup(0, sonsLen(n) - 1):
var a = n.sons[i]
if a.kind == nkCommentStmt: continue
if (a.kind != nkTypeDef): IllFormedAst(a)
checkSonsLen(a, 3)
if (a.sons[0].kind != nkSym): IllFormedAst(a)
var s = a.sons[0].sym
if s.magic == mNone and a.sons[2].kind == nkEmpty:
GlobalError(a.info, errImplOfXexpected, s.name.s)
if s.magic != mNone: processMagicType(c, s)
if a.sons[1].kind != nkEmpty:
# We have a generic type declaration here. In generic types,
# symbol lookup needs to be done here.
openScope(c.tab)
pushOwner(s)
s.typ.kind = tyGenericBody
if s.typ.containerID != 0:
InternalError(a.info, "semTypeSection: containerID")
s.typ.containerID = getID()
a.sons[1] = semGenericParamList(c, a.sons[1], s.typ)
s.typ.size = -1 # could not be computed properly
# we fill it out later. For magic generics like 'seq', it won't be filled
# so we use tyEmpty instead of nil to not crash for strange conversions
# like: mydata.seq
addSon(s.typ, newTypeS(tyEmpty, c))
s.ast = a
var body = semTypeNode(c, a.sons[2], nil)
if body != nil:
body.sym = s
body.size = -1 # could not be computed properly
s.typ.sons[sonsLen(s.typ) - 1] = body
popOwner()
closeScope(c.tab)
elif a.sons[2].kind != nkEmpty:
# process the type's body:
pushOwner(s)
var t = semTypeNode(c, a.sons[2], s.typ)
if s.typ == nil:
s.typ = t
elif t != s.typ:
# this can happen for e.g. tcan_alias_specialised_generic:
assignType(s.typ, t)
#debug s.typ
s.ast = a
popOwner()
proc typeSectionFinalPass(c: PContext, n: PNode) =
for i in countup(0, sonsLen(n) - 1):
var a = n.sons[i]
if a.kind == nkCommentStmt: continue
if a.sons[0].kind != nkSym: IllFormedAst(a)
var s = a.sons[0].sym
# compute the type's size and check for illegal recursions:
if a.sons[1].kind == nkEmpty:
if a.sons[2].kind in {nkSym, nkIdent, nkAccQuoted}:
# type aliases are hard:
#MessageOut('for type ' + typeToString(s.typ));
var t = semTypeNode(c, a.sons[2], nil)
if t.kind in {tyObject, tyEnum}:
assignType(s.typ, t)
s.typ.id = t.id # same id
checkConstructedType(s.info, s.typ)
proc SemTypeSection(c: PContext, n: PNode): PNode =
typeSectionLeftSidePass(c, n)
typeSectionRightSidePass(c, n)
typeSectionFinalPass(c, n)
result = n
proc semParamList(c: PContext, n, genericParams: PNode, s: PSym) =
s.typ = semProcTypeNode(c, n, genericParams, nil)
proc addParams(c: PContext, n: PNode) =
for i in countup(1, sonsLen(n)-1):
if (n.sons[i].kind != nkSym): InternalError(n.info, "addParams")
addDecl(c, n.sons[i].sym)
proc semBorrow(c: PContext, n: PNode, s: PSym) =
# search for the correct alias:
var b = SearchForBorrowProc(c, s, c.tab.tos - 2)
if b != nil:
# store the alias:
n.sons[codePos] = newSymNode(b)
else:
LocalError(n.info, errNoSymbolToBorrowFromFound)
proc addResult(c: PContext, t: PType, info: TLineInfo) =
if t != nil:
var s = newSym(skResult, getIdent"result", getCurrOwner())
s.info = info
s.typ = t
incl(s.flags, sfUsed)
addDecl(c, s)
c.p.resultSym = s
proc addResultNode(c: PContext, n: PNode) =
if c.p.resultSym != nil: addSon(n, newSymNode(c.p.resultSym))
proc semLambda(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, codePos + 1)
var s = newSym(skProc, getIdent":anonymous", getCurrOwner())
s.info = n.info
s.ast = n
n.sons[namePos] = newSymNode(s)
pushOwner(s)
openScope(c.tab)
if n.sons[genericParamsPos].kind != nkEmpty:
illFormedAst(n) # process parameters:
if n.sons[paramsPos].kind != nkEmpty:
semParamList(c, n.sons[ParamsPos], nil, s)
addParams(c, s.typ.n)
ParamsTypeCheck(c, s.typ)
else:
s.typ = newTypeS(tyProc, c)
addSon(s.typ, nil)
# no! do a proper analysis to determine calling convention
when false: s.typ.callConv = ccClosure
if n.sons[pragmasPos].kind != nkEmpty:
pragma(c, s, n.sons[pragmasPos], lambdaPragmas)
s.options = gOptions
if n.sons[codePos].kind != nkEmpty:
if sfImportc in s.flags:
LocalError(n.sons[codePos].info, errImplOfXNotAllowed, s.name.s)
pushProcCon(c, s)
addResult(c, s.typ.sons[0], n.info)
n.sons[codePos] = semStmtScope(c, n.sons[codePos])
addResultNode(c, n)
popProcCon(c)
else:
LocalError(n.info, errImplOfXexpected, s.name.s)
sideEffectsCheck(c, s)
closeScope(c.tab) # close scope for parameters
popOwner()
result.typ = s.typ
proc semProcAux(c: PContext, n: PNode, kind: TSymKind,
validPragmas: TSpecialWords): PNode =
result = n
checkSonsLen(n, codePos + 1)
var s = semIdentDef(c, n.sons[0], kind)
n.sons[namePos] = newSymNode(s)
s.ast = n
pushOwner(s)
openScope(c.tab)
var gp: PNode
if n.sons[genericParamsPos].kind != nkEmpty:
n.sons[genericParamsPos] = semGenericParamList(c, n.sons[genericParamsPos])
gp = n.sons[genericParamsPos]
else:
gp = newNodeI(nkGenericParams, n.info)
# process parameters:
if n.sons[paramsPos].kind != nkEmpty:
semParamList(c, n.sons[ParamsPos], gp, s)
if sonsLen(gp) > 0:
if n.sons[genericParamsPos].kind == nkEmpty:
# we have a list of implicit type parameters:
n.sons[genericParamsPos] = gp
# check for semantics again:
semParamList(c, n.sons[ParamsPos], nil, s)
addParams(c, s.typ.n)
else:
s.typ = newTypeS(tyProc, c)
addSon(s.typ, nil)
var proto = SearchForProc(c, s, c.tab.tos-2) # -2 because we have a scope
# open for parameters
if proto == nil:
s.typ.callConv = lastOptionEntry(c).defaultCC
when false:
# do a proper analysis here:
if c.p.owner.kind != skModule: s.typ.callConv = ccClosure
# add it here, so that recursive procs are possible:
# -2 because we have a scope open for parameters
if kind in OverloadableSyms:
addInterfaceOverloadableSymAt(c, s, c.tab.tos - 2)
else:
addInterfaceDeclAt(c, s, c.tab.tos - 2)
if n.sons[pragmasPos].kind != nkEmpty:
pragma(c, s, n.sons[pragmasPos], validPragmas)
else:
if n.sons[pragmasPos].kind != nkEmpty:
LocalError(n.sons[pragmasPos].info, errPragmaOnlyInHeaderOfProc)
if sfForward notin proto.flags:
LocalError(n.info, errAttemptToRedefine, proto.name.s)
excl(proto.flags, sfForward)
closeScope(c.tab) # close scope with wrong parameter symbols
openScope(c.tab) # open scope for old (correct) parameter symbols
if proto.ast.sons[genericParamsPos].kind != nkEmpty:
addGenericParamListToScope(c, proto.ast.sons[genericParamsPos])
addParams(c, proto.typ.n)
proto.info = s.info # more accurate line information
s.typ = proto.typ
s = proto
n.sons[genericParamsPos] = proto.ast.sons[genericParamsPos]
n.sons[paramsPos] = proto.ast.sons[paramsPos]
if n.sons[namePos].kind != nkSym: InternalError(n.info, "semProcAux")
n.sons[namePos].sym = proto
proto.ast = n # needed for code generation
popOwner()
pushOwner(s)
s.options = gOptions
if n.sons[codePos].kind != nkEmpty:
# for DLL generation it is annoying to check for sfImportc!
if sfBorrow in s.flags:
LocalError(n.sons[codePos].info, errImplOfXNotAllowed, s.name.s)
if n.sons[genericParamsPos].kind == nkEmpty:
ParamsTypeCheck(c, s.typ)
pushProcCon(c, s)
if s.typ.sons[0] != nil and kind != skIterator:
addResult(c, s.typ.sons[0], n.info)
if sfImportc notin s.flags:
# no semantic checking for importc:
n.sons[codePos] = semStmtScope(c, n.sons[codePos])
if s.typ.sons[0] != nil and kind != skIterator: addResultNode(c, n)
popProcCon(c)
else:
if s.typ.sons[0] != nil and kind != skIterator:
addDecl(c, newSym(skUnknown, getIdent"result", nil))
var toBind = initIntSet()
n.sons[codePos] = semGenericStmtScope(c, n.sons[codePos], {}, toBind)
fixupInstantiatedSymbols(c, s)
if sfImportc in s.flags:
# so we just ignore the body after semantic checking for importc:
n.sons[codePos] = ast.emptyNode
else:
if proto != nil: LocalError(n.info, errImplOfXexpected, proto.name.s)
if {sfImportc, sfBorrow} * s.flags == {}: incl(s.flags, sfForward)
elif sfBorrow in s.flags: semBorrow(c, n, s)
sideEffectsCheck(c, s)
closeScope(c.tab) # close scope for parameters
popOwner()
proc semIterator(c: PContext, n: PNode): PNode =
result = semProcAux(c, n, skIterator, iteratorPragmas)
var s = result.sons[namePos].sym
var t = s.typ
if t.sons[0] == nil:
LocalError(n.info, errXNeedsReturnType, "iterator")
if n.sons[codePos].kind == nkEmpty and s.magic == mNone:
LocalError(n.info, errImplOfXexpected, s.name.s)
proc semProc(c: PContext, n: PNode): PNode =
result = semProcAux(c, n, skProc, procPragmas)
proc semMethod(c: PContext, n: PNode): PNode =
if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "method")
result = semProcAux(c, n, skMethod, methodPragmas)
var s = result.sons[namePos].sym
var t = s.typ
var hasObjParam = false
for col in countup(1, sonsLen(t)-1):
if skipTypes(t.sons[col], skipPtrs).kind == tyObject:
hasObjParam = true
break
# XXX this not really correct way to do it: Perhaps it should be done after
# generic instantiation. Well it's good enough for now:
if not hasObjParam:
LocalError(n.info, errXNeedsParamObjectType, "method")
proc semConverterDef(c: PContext, n: PNode): PNode =
if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "converter")
checkSonsLen(n, codePos + 1)
if n.sons[genericParamsPos].kind != nkEmpty:
LocalError(n.info, errNoGenericParamsAllowedForX, "converter")
result = semProcAux(c, n, skConverter, converterPragmas)
var s = result.sons[namePos].sym
var t = s.typ
if t.sons[0] == nil: LocalError(n.info, errXNeedsReturnType, "converter")
if sonsLen(t) != 2: LocalError(n.info, errXRequiresOneArgument, "converter")
addConverter(c, s)
proc semMacroDef(c: PContext, n: PNode): PNode =
checkSonsLen(n, codePos + 1)
if n.sons[genericParamsPos].kind != nkEmpty:
LocalError(n.info, errNoGenericParamsAllowedForX, "macro")
result = semProcAux(c, n, skMacro, macroPragmas)
var s = result.sons[namePos].sym
var t = s.typ
if t.sons[0] == nil: LocalError(n.info, errXNeedsReturnType, "macro")
if sonsLen(t) != 2: LocalError(n.info, errXRequiresOneArgument, "macro")
if n.sons[codePos].kind == nkEmpty:
LocalError(n.info, errImplOfXexpected, s.name.s)
proc evalInclude(c: PContext, n: PNode): PNode =
result = newNodeI(nkStmtList, n.info)
addSon(result, n)
for i in countup(0, sonsLen(n) - 1):
var f = getModuleFile(n.sons[i])
var fileIndex = includeFilename(f)
if ContainsOrIncl(c.includedFiles, fileIndex):
GlobalError(n.info, errRecursiveDependencyX, f)
addSon(result, semStmt(c, gIncludeFile(f)))
Excl(c.includedFiles, fileIndex)
proc SemStmt(c: PContext, n: PNode): PNode =
const # must be last statements in a block:
LastBlockStmts = {nkRaiseStmt, nkReturnStmt, nkBreakStmt, nkContinueStmt}
result = n
if gCmd == cmdIdeTools:
suggestStmt(c, n)
if nfSem in n.flags: return
case n.kind
of nkAsgn: result = semAsgn(c, n)
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkMacroStmt, nkCallStrLit:
result = semCommand(c, n)
of nkEmpty, nkCommentStmt, nkNilLit: nil
of nkBlockStmt: result = semBlock(c, n)
of nkStmtList:
var length = sonsLen(n)
for i in countup(0, length - 1):
n.sons[i] = semStmt(c, n.sons[i])
if n.sons[i].kind in LastBlockStmts:
for j in countup(i + 1, length - 1):
case n.sons[j].kind
of nkPragma, nkCommentStmt, nkNilLit, nkEmpty: nil
else: localError(n.sons[j].info, errStmtInvalidAfterReturn)
of nkRaiseStmt: result = semRaise(c, n)
of nkVarSection: result = semVar(c, n)
of nkConstSection: result = semConst(c, n)
of nkTypeSection: result = SemTypeSection(c, n)
of nkIfStmt: result = SemIf(c, n)
of nkWhenStmt: result = semWhen(c, n)
of nkDiscardStmt: result = semDiscard(c, n)
of nkWhileStmt: result = semWhile(c, n)
of nkTryStmt: result = semTry(c, n)
of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
of nkForStmt: result = semFor(c, n)
of nkCaseStmt: result = semCase(c, n)
of nkReturnStmt: result = semReturn(c, n)
of nkAsmStmt: result = semAsm(c, n)
of nkYieldStmt: result = semYield(c, n)
of nkPragma: pragma(c, c.p.owner, n, stmtPragmas)
of nkIteratorDef: result = semIterator(c, n)
of nkProcDef: result = semProc(c, n)
of nkMethodDef: result = semMethod(c, n)
of nkConverterDef: result = semConverterDef(c, n)
of nkMacroDef: result = semMacroDef(c, n)
of nkTemplateDef: result = semTemplateDef(c, n)
of nkImportStmt:
if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "import")
result = evalImport(c, n)
of nkFromStmt:
if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "from")
result = evalFrom(c, n)
of nkIncludeStmt:
if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "include")
result = evalInclude(c, n)
else:
# in interactive mode, we embed the expression in an 'echo':
if gCmd == cmdInteractive:
result = buildEchoStmt(c, semExpr(c, n))
else:
LocalError(n.info, errStmtExpected)
result = ast.emptyNode
if result == nil: InternalError(n.info, "SemStmt: result = nil")
incl(result.flags, nfSem)
proc semStmtScope(c: PContext, n: PNode): PNode =
openScope(c.tab)
result = semStmt(c, n)
closeScope(c.tab)