#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This module does the instantiation of generic types.
import ast, astalgo, msgs, types, magicsys, semdata, renderer, options
const
tfInstClearedFlags = {tfHasMeta, tfUnresolved}
proc checkPartialConstructedType(conf: ConfigRef; info: TLineInfo, t: PType) =
if tfAcyclic in t.flags and skipTypes(t, abstractInst).kind != tyObject:
localError(conf, info, "invalid pragma: acyclic")
elif t.kind in {tyVar, tyLent} and t.sons[0].kind in {tyVar, tyLent}:
localError(conf, info, "type 'var var' is not allowed")
proc checkConstructedType*(conf: ConfigRef; info: TLineInfo, typ: PType) =
var t = typ.skipTypes({tyDistinct})
if t.kind in tyTypeClasses: discard
elif tfAcyclic in t.flags and skipTypes(t, abstractInst).kind != tyObject:
localError(conf, info, "invalid pragma: acyclic")
elif t.kind in {tyVar, tyLent} and t.sons[0].kind in {tyVar, tyLent}:
localError(conf, info, "type 'var var' is not allowed")
elif computeSize(t) == szIllegalRecursion:
localError(conf, info, "illegal recursion in type '" & typeToString(t) & "'")
when false:
if t.kind == tyObject and t.sons[0] != nil:
if t.sons[0].kind != tyObject or tfFinal in t.sons[0].flags:
localError(info, errInheritanceOnlyWithNonFinalObjects)
proc searchInstTypes*(key: PType): PType =
let genericTyp = key.sons[0]
if not (genericTyp.kind == tyGenericBody and
key.sons[0] == genericTyp and genericTyp.sym != nil): return
if genericTyp.sym.typeInstCache == nil:
return
for inst in genericTyp.sym.typeInstCache:
if inst.id == key.id: return inst
if inst.sons.len < key.sons.len:
# XXX: This happens for prematurely cached
# types such as Channel[empty]. Why?
# See the notes for PActor in handleGenericInvocation
return
if not sameFlags(inst, key):
continue
block matchType:
for j in 1 .. high(key.sons):
# XXX sameType is not really correct for nested generics?
if not compareTypes(inst.sons[j], key.sons[j],
flags = {ExactGenericParams}):
break matchType
return inst
proc cacheTypeInst*(inst: PType) =
# XXX: add to module's generics
# update the refcount
let gt = inst.sons[0]
let t = if gt.kind == tyGenericBody: gt.lastSon else: gt
if t.kind in {tyStatic, tyGenericParam} + tyTypeClasses:
return
gt.sym.typeInstCache.safeAdd(inst)
type
LayeredIdTable* = object
topLayer*: TIdTable
nextLayer*: ptr LayeredIdTable
TReplTypeVars* = object
c*: PContext
typeMap*: ptr LayeredIdTable # map PType to PType
symMap*: TIdTable # map PSym to PSym
localCache*: TIdTable # local cache for remembering alraedy replaced
# types during instantiation of meta types
# (they are not stored in the global cache)
info*: TLineInfo
allowMetaTypes*: bool # allow types such as seq[Number]
# i.e. the result contains unresolved generics
skipTypedesc*: bool # wether we should skip typeDescs
owner*: PSym # where this instantiation comes from
recursionLimit: int
proc replaceTypeVarsTAux(cl: var TReplTypeVars, t: PType): PType
proc replaceTypeVarsS(cl: var TReplTypeVars, s: PSym): PSym
proc replaceTypeVarsN*(cl: var TReplTypeVars, n: PNode; start=0): PNode
proc initLayeredTypeMap*(pt: TIdTable): LayeredIdTable =
copyIdTable(result.topLayer, pt)
proc newTypeMapLayer*(cl: var TReplTypeVars): LayeredIdTable =
result.nextLayer = cl.typeMap
initIdTable(result.topLayer)
proc lookup(typeMap: ptr LayeredIdTable, key: PType): PType =
var tm = typeMap
while tm != nil:
result = PType(idTableGet(tm.topLayer, key))
if result != nil: return
tm = tm.nextLayer
template put(typeMap: ptr LayeredIdTable, key, value: PType) =
idTablePut(typeMap.topLayer, key, value)
template checkMetaInvariants(cl: TReplTypeVars, t: PType) =
when false:
if t != nil and tfHasMeta in t.flags and
cl.allowMetaTypes == false:
echo "UNEXPECTED META ", t.id, " ", instantiationInfo(-1)
debug t
writeStackTrace()
proc replaceTypeVarsT*(cl: var TReplTypeVars, t: PType): PType =
result = replaceTypeVarsTAux(cl, t)
checkMetaInvariants(cl, result)
proc prepareNode(cl: var TReplTypeVars, n: PNode): PNode =
let t = replaceTypeVarsT(cl, n.typ)
if t != nil and t.kind == tyStatic and t.n != nil:
return if tfUnresolved in t.flags: prepareNode(cl, t.n)
else: t.n
result = copyNode(n)
result.typ = t
if result.kind == nkSym: result.sym = replaceTypeVarsS(cl, n.sym)
let isCall = result.kind in nkCallKinds
for i in 0 ..< n.safeLen:
# XXX HACK: ``f(a, b)``, avoid to instantiate `f`
if isCall and i == 0: result.add(n[i])
else: result.add(prepareNode(cl, n[i]))
proc isTypeParam(n: PNode): bool =
# XXX: generic params should use skGenericParam instead of skType
return n.kind == nkSym and
(n.sym.kind == skGenericParam or
(n.sym.kind == skType and sfFromGeneric in n.sym.flags))
proc hasGenericArguments*(n: PNode): bool =
if n.kind == nkSym:
return n.sym.kind == skGenericParam or
tfInferrableStatic in n.sym.typ.flags or
(n.sym.kind == skType and
n.sym.typ.flags * {tfGenericTypeParam, tfImplicitTypeParam} != {})
else:
for i in 0..<n.safeLen:
if hasGenericArguments(n.sons[i]): return true
return false
proc reResolveCallsWithTypedescParams(cl: var TReplTypeVars, n: PNode): PNode =
# This is needed for tgenericshardcases
# It's possible that a generic param will be used in a proc call to a
# typedesc accepting proc. After generic param substitution, such procs
# should be optionally instantiated with the correct type. In order to
# perform this instantiation, we need to re-run the generateInstance path
# in the compiler, but it's quite complicated to do so at the moment so we
# resort to a mild hack; the head symbol of the call is temporary reset and
# overload resolution is executed again (which may trigger generateInstance).
if n.kind in nkCallKinds and sfFromGeneric in n[0].sym.flags:
var needsFixing = false
for i in 1 ..< n.safeLen:
if isTypeParam(n[i]): needsFixing = true
if needsFixing:
n.sons[0] = newSymNode(n.sons[0].sym.owner)
return cl.c.semOverloadedCall(cl.c, n, n, {skProc, skFunc}, {})
for i in 0 ..< n.safeLen:
n.sons[i] = reResolveCallsWithTypedescParams(cl, n[i])
return n
proc replaceTypeVarsN(cl: var TReplTypeVars, n: PNode; start=0): PNode =
if n == nil: return
result = copyNode(n)
if n.typ != nil:
result.typ = replaceTypeVarsT(cl, n.typ)
checkMetaInvariants(cl, result.typ)
case n.kind
of nkNone..pred(nkSym), succ(nkSym)..nkNilLit:
discard
of nkSym:
result.sym = replaceTypeVarsS(cl, n.sym)
if result.sym.typ.kind == tyVoid:
# don't add the 'void' field
result = newNode(nkRecList, n.info)
of nkRecWhen:
var branch: PNode = nil # the branch to take
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
if it == nil: illFormedAst(n, cl.c.config)
case it.kind
of nkElifBranch:
checkSonsLen(it, 2, cl.c.config)
var cond = prepareNode(cl, it.sons[0])
var e = cl.c.semConstExpr(cl.c, cond)
if e.kind != nkIntLit:
internalError(cl.c.config, e.info, "ReplaceTypeVarsN: when condition not a bool")
if e.intVal != 0 and branch == nil: branch = it.sons[1]
of nkElse:
checkSonsLen(it, 1, cl.c.config)
if branch == nil: branch = it.sons[0]
else: illFormedAst(n, cl.c.config)
if branch != nil:
result = replaceTypeVarsN(cl, branch)
else:
result = newNodeI(nkRecList, n.info)
of nkStaticExpr:
var n = prepareNode(cl, n)
n = reResolveCallsWithTypedescParams(cl, n)
result = if cl.allowMetaTypes: n
else: cl.c.semExpr(cl.c, n)
else:
var length = sonsLen(n)
if length > 0:
newSons(result, length)
if start > 0:
result.sons[0] = n.sons[0]
for i in countup(start, length - 1):
result.sons[i] = replaceTypeVarsN(cl, n.sons[i])
proc replaceTypeVarsS(cl: var TReplTypeVars, s: PSym): PSym =
if s == nil: return nil
# symbol is not our business:
if cl.owner != nil and s.owner != cl.owner:
return s
#result = PSym(idTableGet(cl.symMap, s))
#if result == nil:
result = copySym(s, false)
incl(result.flags, sfFromGeneric)
#idTablePut(cl.symMap, s, result)
result.owner = s.owner
result.typ = replaceTypeVarsT(cl, s.typ)
result.ast = replaceTypeVarsN(cl, s.ast)
proc lookupTypeVar(cl: var TReplTypeVars, t: PType): PType =
result = cl.typeMap.lookup(t)
if result == nil:
if cl.allowMetaTypes or tfRetType in t.flags: return
localError(cl.c.config, t.sym.info, "cannot instantiate: " & typeToString(t))
result = errorType(cl.c)
# In order to prevent endless recursions, we must remember
# this bad lookup and replace it with errorType everywhere.
# These code paths are only active in "nim check"
cl.typeMap.put(t, result)
elif result.kind == tyGenericParam and not cl.allowMetaTypes:
internalError(cl.c.config, cl.info, "substitution with generic parameter")
proc instCopyType*(cl: var TReplTypeVars, t: PType): PType =
# XXX: relying on allowMetaTypes is a kludge
result = copyType(t, t.owner, cl.allowMetaTypes)
if cl.allowMetaTypes: return
result.flags.incl tfFromGeneric
if not (t.kind in tyMetaTypes or
(t.kind == tyStatic and t.n == nil)):
result.flags.excl tfInstClearedFlags
when false:
if newDestructors:
result.assignment = nil
#result.destructor = nil
result.sink = nil
template typeBound(c, newty, oldty, field, info) =
let opr = newty.field
if opr != nil and sfFromGeneric notin opr.flags:
# '=' needs to be instantiated for generics when the type is constructed:
newty.field = c.instTypeBoundOp(c, opr, oldty, info, attachedAsgn, 1)
proc handleGenericInvocation(cl: var TReplTypeVars, t: PType): PType =
# tyGenericInvocation[A, tyGenericInvocation[A, B]]
# is difficult to handle:
const eqFlags = eqTypeFlags + {tfGcSafe}
var body = t.sons[0]
if body.kind != tyGenericBody: internalError(cl.c.config, cl.info, "no generic body")
var header: PType = t
# search for some instantiation here:
if cl.allowMetaTypes:
result = PType(idTableGet(cl.localCache, t))
else:
result = searchInstTypes(t)
if result != nil and eqFlags*result.flags == eqFlags*t.flags: return
for i in countup(1, sonsLen(t) - 1):
var x = t.sons[i]
if x.kind in {tyGenericParam}:
x = lookupTypeVar(cl, x)
if x != nil:
if header == t: header = instCopyType(cl, t)
header.sons[i] = x
propagateToOwner(header, x)
else:
propagateToOwner(header, x)
if header != t:
# search again after first pass:
result = searchInstTypes(header)
if result != nil and eqFlags*result.flags == eqFlags*t.flags: return
else:
header = instCopyType(cl, t)
result = newType(tyGenericInst, t.sons[0].owner)
result.flags = header.flags
# be careful not to propagate unnecessary flags here (don't use rawAddSon)
result.sons = @[header.sons[0]]
# ugh need another pass for deeply recursive generic types (e.g. PActor)
# we need to add the candidate here, before it's fully instantiated for
# recursive instantions:
if not cl.allowMetaTypes:
cacheTypeInst(result)
else:
idTablePut(cl.localCache, t, result)
let oldSkipTypedesc = cl.skipTypedesc
cl.skipTypedesc = true
var typeMapLayer = newTypeMapLayer(cl)
cl.typeMap = addr(typeMapLayer)
for i in countup(1, sonsLen(t) - 1):
var x = replaceTypeVarsT(cl, t.sons[i])
assert x.kind != tyGenericInvocation
header.sons[i] = x
propagateToOwner(header, x)
cl.typeMap.put(body.sons[i-1], x)
for i in countup(1, sonsLen(t) - 1):
# if one of the params is not concrete, we cannot do anything
# but we already raised an error!
rawAddSon(result, header.sons[i])
let bbody = lastSon body
var newbody = replaceTypeVarsT(cl, bbody)
let bodyIsNew = newbody != bbody
cl.skipTypedesc = oldSkipTypedesc
newbody.flags = newbody.flags + (t.flags + body.flags - tfInstClearedFlags)
result.flags = result.flags + newbody.flags - tfInstClearedFlags
cl.typeMap = cl.typeMap.nextLayer
# This is actually wrong: tgeneric_closure fails with this line:
#newbody.callConv = body.callConv
# This type may be a generic alias and we want to resolve it here.
# One step is enough, because the recursive nature of
# handleGenericInvocation will handle the alias-to-alias-to-alias case
if newbody.isGenericAlias: newbody = newbody.skipGenericAlias
rawAddSon(result, newbody)
checkPartialConstructedType(cl.c.config, cl.info, newbody)
let dc = newbody.deepCopy
if cl.allowMetaTypes == false:
if dc != nil and sfFromGeneric notin newbody.deepCopy.flags:
# 'deepCopy' needs to be instantiated for
# generics *when the type is constructed*:
newbody.deepCopy = cl.c.instTypeBoundOp(cl.c, dc, result, cl.info,
attachedDeepCopy, 1)
if bodyIsNew and newbody.typeInst == nil:
#doassert newbody.typeInst == nil
newbody.typeInst = result
if tfRefsAnonObj in newbody.flags and newbody.kind != tyGenericInst:
# can come here for tyGenericInst too, see tests/metatype/ttypeor.nim
# need to look into this issue later
assert newbody.kind in {tyRef, tyPtr}
assert newbody.lastSon.typeInst == nil
newbody.lastSon.typeInst = result
if destructor in cl.c.features:
cl.c.typesWithOps.add((newbody, result))
else:
typeBound(cl.c, newbody, result, assignment, cl.info)
let methods = skipTypes(bbody, abstractPtrs).methods
for col, meth in items(methods):
# we instantiate the known methods belonging to that type, this causes
# them to be registered and that's enough, so we 'discard' the result.
discard cl.c.instTypeBoundOp(cl.c, meth, result, cl.info,
attachedAsgn, col)
proc eraseVoidParams*(t: PType) =
# transform '(): void' into '()' because old parts of the compiler really
# don't deal with '(): void':
if t.sons[0] != nil and t.sons[0].kind == tyVoid:
t.sons[0] = nil
for i in 1 ..< t.sonsLen:
# don't touch any memory unless necessary
if t.sons[i].kind == tyVoid:
var pos = i
for j in i+1 ..< t.sonsLen:
if t.sons[j].kind != tyVoid:
t.sons[pos] = t.sons[j]
t.n.sons[pos] = t.n.sons[j]
inc pos
setLen t.sons, pos
setLen t.n.sons, pos
return
proc skipIntLiteralParams*(t: PType) =
for i in 0 ..< t.sonsLen:
let p = t.sons[i]
if p == nil: continue
let skipped = p.skipIntLit
if skipped != p:
t.sons[i] = skipped
if i > 0: t.n.sons[i].sym.typ = skipped
# when the typeof operator is used on a static input
# param, the results gets infected with static as well:
if t.sons[0] != nil and t.sons[0].kind == tyStatic:
t.sons[0] = t.sons[0].base
proc propagateFieldFlags(t: PType, n: PNode) =
# This is meant for objects and tuples
# The type must be fully instantiated!
if n.isNil:
return
#internalAssert n.kind != nkRecWhen
case n.kind
of nkSym:
propagateToOwner(t, n.sym.typ)
of nkRecList, nkRecCase, nkOfBranch, nkElse:
for son in n:
propagateFieldFlags(t, son)
else: discard
proc replaceTypeVarsTAux(cl: var TReplTypeVars, t: PType): PType =
template bailout =
if cl.recursionLimit > 100:
# bail out, see bug #2509. But note this caching is in general wrong,
# look at this example where TwoVectors should not share the generic
# instantiations (bug #3112):
# type
# Vector[N: static[int]] = array[N, float64]
# TwoVectors[Na, Nb: static[int]] = (Vector[Na], Vector[Nb])
result = PType(idTableGet(cl.localCache, t))
if result != nil: return result
inc cl.recursionLimit
result = t
if t == nil: return
if t.kind in {tyStatic, tyGenericParam} + tyTypeClasses:
let lookup = cl.typeMap.lookup(t)
if lookup != nil: return lookup
case t.kind
of tyGenericInvocation:
result = handleGenericInvocation(cl, t)
if result.lastSon.kind == tyUserTypeClass:
result.kind = tyUserTypeClassInst
of tyGenericBody:
localError(cl.c.config, cl.info, "cannot instantiate: " & typeToString(t))
result = errorType(cl.c)
#result = replaceTypeVarsT(cl, lastSon(t))
of tyFromExpr:
if cl.allowMetaTypes: return
# This assert is triggered when a tyFromExpr was created in a cyclic
# way. You should break the cycle at the point of creation by introducing
# a call such as: `n.typ = makeTypeFromExpr(c, n.copyTree)`
# Otherwise, the cycle will be fatal for the prepareNode call below
assert t.n.typ != t
var n = prepareNode(cl, t.n)
if n.kind != nkEmpty:
n = cl.c.semConstExpr(cl.c, n)
if n.typ.kind == tyTypeDesc:
# XXX: sometimes, chained typedescs enter here.
# It may be worth investigating why this is happening,
# because it may cause other bugs elsewhere.
result = n.typ.skipTypes({tyTypeDesc})
# result = n.typ.base
else:
if n.typ.kind != tyStatic:
# XXX: In the future, semConstExpr should
# return tyStatic values to let anyone make
# use of this knowledge. The patching here
# won't be necessary then.
result = newTypeS(tyStatic, cl.c)
result.sons = @[n.typ]
result.n = n
else:
result = n.typ
of tyInt, tyFloat:
result = skipIntLit(t)
of tyTypeDesc:
let lookup = cl.typeMap.lookup(t)
if lookup != nil:
result = lookup
if tfUnresolved in t.flags or cl.skipTypedesc: result = result.base
elif t.sons[0].kind != tyNone:
result = makeTypeDesc(cl.c, replaceTypeVarsT(cl, t.sons[0]))
of tyUserTypeClass, tyStatic:
result = t
of tyGenericInst, tyUserTypeClassInst:
bailout()
result = instCopyType(cl, t)
idTablePut(cl.localCache, t, result)
for i in 1 ..< result.sonsLen:
result.sons[i] = replaceTypeVarsT(cl, result.sons[i])
propagateToOwner(result, result.lastSon)
else:
if containsGenericType(t):
#if not cl.allowMetaTypes:
bailout()
result = instCopyType(cl, t)
result.size = -1 # needs to be recomputed
#if not cl.allowMetaTypes:
idTablePut(cl.localCache, t, result)
for i in countup(0, sonsLen(result) - 1):
if result.sons[i] != nil:
var r = replaceTypeVarsT(cl, result.sons[i])
if result.kind == tyObject:
# carefully coded to not skip the precious tyGenericInst:
let r2 = r.skipTypes({tyAlias, tySink})
if r2.kind in {tyPtr, tyRef}:
r = skipTypes(r2, {tyPtr, tyRef})
result.sons[i] = r
if result.kind != tyArray or i != 0:
propagateToOwner(result, r)
# bug #4677: Do not instantiate effect lists
result.n = replaceTypeVarsN(cl, result.n, ord(result.kind==tyProc))
case result.kind
of tyArray:
let idx = result.sons[0]
internalAssert cl.c.config, idx.kind != tyStatic
of tyObject, tyTuple:
propagateFieldFlags(result, result.n)
of tyProc:
eraseVoidParams(result)
skipIntLiteralParams(result)
else: discard
proc instAllTypeBoundOp*(c: PContext, info: TLineInfo) =
if destructor notin c.features: return
var i = 0
while i < c.typesWithOps.len:
let (newty, oldty) = c.typesWithOps[i]
typeBound(c, newty, oldty, destructor, info)
typeBound(c, newty, oldty, sink, info)
typeBound(c, newty, oldty, assignment, info)
inc i
setLen(c.typesWithOps, 0)
proc initTypeVars*(p: PContext, typeMap: ptr LayeredIdTable, info: TLineInfo;
owner: PSym): TReplTypeVars =
initIdTable(result.symMap)
initIdTable(result.localCache)
result.typeMap = typeMap
result.info = info
result.c = p
result.owner = owner
proc replaceTypesInBody*(p: PContext, pt: TIdTable, n: PNode;
owner: PSym, allowMetaTypes = false): PNode =
var typeMap = initLayeredTypeMap(pt)
var cl = initTypeVars(p, addr(typeMap), n.info, owner)
cl.allowMetaTypes = allowMetaTypes
pushInfoContext(n.info)
result = replaceTypeVarsN(cl, n)
popInfoContext()
proc replaceTypesForLambda*(p: PContext, pt: TIdTable, n: PNode;
original, new: PSym): PNode =
var typeMap = initLayeredTypeMap(pt)
var cl = initTypeVars(p, addr(typeMap), n.info, original)
idTablePut(cl.symMap, original, new)
pushInfoContext(n.info)
result = replaceTypeVarsN(cl, n)
popInfoContext()
proc generateTypeInstance*(p: PContext, pt: TIdTable, info: TLineInfo,
t: PType): PType =
var typeMap = initLayeredTypeMap(pt)
var cl = initTypeVars(p, addr(typeMap), info, nil)
pushInfoContext(info)
result = replaceTypeVarsT(cl, t)
popInfoContext()
proc prepareMetatypeForSigmatch*(p: PContext, pt: TIdTable, info: TLineInfo,
t: PType): PType =
var typeMap = initLayeredTypeMap(pt)
var cl = initTypeVars(p, addr(typeMap), info, nil)
cl.allowMetaTypes = true
pushInfoContext(info)
result = replaceTypeVarsT(cl, t)
popInfoContext()
template generateTypeInstance*(p: PContext, pt: TIdTable, arg: PNode,
t: PType): untyped =
generateTypeInstance(p, pt, arg.info, t)