#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Computes hash values for routine (proc, method etc) signatures.
import ast, md5
from hashes import Hash
from astalgo import debug
from types import typeToString, preferDesc
from strutils import startsWith, contains
when false:
type
SigHash* = uint32 ## a hash good enough for a filename or a proc signature
proc sdbmHash(hash: SigHash, c: char): SigHash {.inline.} =
return SigHash(c) + (hash shl 6) + (hash shl 16) - hash
template `&=`*(x: var SigHash, c: char) = x = sdbmHash(x, c)
template `&=`*(x: var SigHash, s: string) =
for c in s: x = sdbmHash(x, c)
else:
type
SigHash* = distinct Md5Digest
const
cb64 = [
"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N",
"O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z",
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n",
"o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z",
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9a",
"9b", "9c"]
proc toBase64a(s: cstring, len: int): string =
## encodes `s` into base64 representation.
result = newStringOfCap(((len + 2) div 3) * 4)
result.add '_'
var i = 0
while i < len - 2:
let a = ord(s[i])
let b = ord(s[i+1])
let c = ord(s[i+2])
result.add cb64[a shr 2]
result.add cb64[((a and 3) shl 4) or ((b and 0xF0) shr 4)]
result.add cb64[((b and 0x0F) shl 2) or ((c and 0xC0) shr 6)]
result.add cb64[c and 0x3F]
inc(i, 3)
if i < len-1:
let a = ord(s[i])
let b = ord(s[i+1])
result.add cb64[a shr 2]
result.add cb64[((a and 3) shl 4) or ((b and 0xF0) shr 4)]
result.add cb64[((b and 0x0F) shl 2)]
elif i < len:
let a = ord(s[i])
result.add cb64[a shr 2]
result.add cb64[(a and 3) shl 4]
proc `$`*(u: SigHash): string =
toBase64a(cast[cstring](unsafeAddr u), sizeof(u))
proc `&=`(c: var MD5Context, s: string) = md5Update(c, s, s.len)
proc `&=`(c: var MD5Context, ch: char) = md5Update(c, unsafeAddr ch, 1)
proc `&=`(c: var MD5Context, i: BiggestInt) =
md5Update(c, cast[cstring](unsafeAddr i), sizeof(i))
template lowlevel(v) =
md5Update(c, cast[cstring](unsafeAddr(v)), sizeof(v))
proc `==`*(a, b: SigHash): bool =
# {.borrow.}
result = equalMem(unsafeAddr a, unsafeAddr b, sizeof(a))
proc hash*(u: SigHash): Hash =
result = 0
for x in 0..3:
result = (result shl 8) or u.MD5Digest[x].int
type
ConsiderFlag* = enum
CoProc
CoType
CoOwnerSig
proc hashType(c: var MD5Context, t: PType; flags: set[ConsiderFlag])
proc hashSym(c: var MD5Context, s: PSym) =
if sfAnon in s.flags or s.kind == skGenericParam:
c &= ":anon"
else:
var it = s
while it != nil:
c &= it.name.s
c &= "."
it = it.owner
proc hashTypeSym(c: var MD5Context, s: PSym) =
if sfAnon in s.flags or s.kind == skGenericParam:
c &= ":anon"
else:
var it = s
while it != nil:
if sfFromGeneric in it.flags and it.kind in routineKinds and
it.typ != nil:
hashType c, it.typ, {CoProc}
c &= it.name.s
c &= "."
it = it.owner
proc hashTree(c: var MD5Context, n: PNode) =
if n == nil:
c &= "\255"
return
let k = n.kind
c &= char(k)
# we really must not hash line information. 'n.typ' is debatable but
# shouldn't be necessary for now and avoids potential infinite recursions.
case n.kind
of nkEmpty, nkNilLit, nkType: discard
of nkIdent:
c &= n.ident.s
of nkSym:
hashSym(c, n.sym)
of nkCharLit..nkUInt64Lit:
let v = n.intVal
lowlevel v
of nkFloatLit..nkFloat64Lit:
let v = n.floatVal
lowlevel v
of nkStrLit..nkTripleStrLit:
c &= n.strVal
else:
for i in 0.. <n.len: hashTree(c, n.sons[i])
proc hashType(c: var MD5Context, t: PType; flags: set[ConsiderFlag]) =
if t == nil:
c &= "\254"
return
case t.kind
of tyGenericInvocation:
for i in countup(0, sonsLen(t) - 1):
c.hashType t.sons[i], flags
return
of tyDistinct:
if CoType in flags:
c.hashType t.lastSon, flags
else:
c.hashSym(t.sym)
return
of tyAlias, tyGenericInst:
c.hashType t.lastSon, flags
return
else:
discard
c &= char(t.kind)
case t.kind
of tyBool, tyChar, tyInt..tyUInt64:
# no canonicalization for integral types, so that e.g. ``pid_t`` is
# produced instead of ``NI``:
if t.sym != nil and {sfImportc, sfExportc} * t.sym.flags != {}:
c.hashSym(t.sym)
of tyObject, tyEnum:
if t.typeInst != nil:
assert t.typeInst.kind == tyGenericInst
for i in countup(1, sonsLen(t.typeInst) - 2):
c.hashType t.typeInst.sons[i], flags
# Every cyclic type in Nim need to be constructed via some 't.sym', so this
# is actually safe without an infinite recursion check:
if t.sym != nil:
#if "Future:" in t.sym.name.s and t.typeInst == nil:
# writeStackTrace()
# echo "yes ", t.sym.name.s
# #quit 1
if CoOwnerSig in flags:
c.hashTypeSym(t.sym)
else:
c.hashSym(t.sym)
if sfAnon in t.sym.flags:
# generated object names can be identical, so we need to
# disambiguate furthermore by hashing the field types and names:
# mild hack to prevent endless recursions (makes nimforum compile again):
excl t.sym.flags, sfAnon
let n = t.n
for i in 0 ..< n.len:
assert n[i].kind == nkSym
let s = n[i].sym
c.hashSym s
c.hashType s.typ, flags
incl t.sym.flags, sfAnon
else:
c &= t.id
if t.len > 0 and t.sons[0] != nil:
hashType c, t.sons[0], flags
of tyRef, tyPtr, tyGenericBody, tyVar:
c.hashType t.lastSon, flags
if tfVarIsPtr in t.flags: c &= ".varisptr"
of tyUserTypeClass:
if t.sym != nil and t.sym.owner != nil:
c &= t.sym.owner.name.s
else:
c &= "unknown typeclass"
of tyUserTypeClassInst:
let body = t.sons[0]
c.hashSym body.sym
for i in countup(1, sonsLen(t) - 2):
c.hashType t.sons[i], flags
of tyFromExpr, tyFieldAccessor:
c.hashTree(t.n)
of tyTuple:
if t.n != nil and CoType notin flags:
assert(sonsLen(t.n) == sonsLen(t))
for i in countup(0, sonsLen(t.n) - 1):
assert(t.n.sons[i].kind == nkSym)
c &= t.n.sons[i].sym.name.s
c &= ':'
c.hashType(t.sons[i], flags)
c &= ','
else:
for i in countup(0, sonsLen(t) - 1): c.hashType t.sons[i], flags
of tyRange, tyStatic:
#if CoType notin flags:
c.hashTree(t.n)
c.hashType(t.sons[0], flags)
of tyProc:
c &= (if tfIterator in t.flags: "iterator " else: "proc ")
if CoProc in flags and t.n != nil:
let params = t.n
for i in 1..<params.len:
let param = params[i].sym
c &= param.name.s
c &= ':'
c.hashType(param.typ, flags)
c &= ','
c.hashType(t.sons[0], flags)
else:
for i in 0.. <t.len: c.hashType(t.sons[i], flags)
c &= char(t.callConv)
if CoType notin flags:
if tfNoSideEffect in t.flags: c &= ".noSideEffect"
if tfThread in t.flags: c &= ".thread"
if tfVarargs in t.flags: c &= ".varargs"
else:
for i in 0.. <t.len: c.hashType(t.sons[i], flags)
if tfNotNil in t.flags and CoType notin flags: c &= "not nil"
when defined(debugSigHashes):
import db_sqlite
let db = open(connection="sighashes.db", user="araq", password="",
database="sighashes")
db.exec(sql"DROP TABLE IF EXISTS sighashes")
db.exec sql"""CREATE TABLE sighashes(
id integer primary key,
hash varchar(5000) not null,
type varchar(5000) not null,
unique (hash, type))"""
# select hash, type from sighashes where hash in
# (select hash from sighashes group by hash having count(*) > 1) order by hash;
proc hashType*(t: PType; flags: set[ConsiderFlag] = {CoType}): SigHash =
var c: MD5Context
md5Init c
hashType c, t, flags+{CoOwnerSig}
md5Final c, result.Md5Digest
when defined(debugSigHashes):
db.exec(sql"INSERT OR IGNORE INTO sighashes(type, hash) VALUES (?, ?)",
typeToString(t), $result)
proc hashProc*(s: PSym): SigHash =
var c: MD5Context
md5Init c
hashType c, s.typ, {CoProc}
var m = s
while m.kind != skModule: m = m.owner
let p = m.owner
assert p.kind == skPackage
c &= p.name.s
c &= "."
c &= m.name.s
if sfDispatcher in s.flags:
c &= ".dispatcher"
# so that createThread[void]() (aka generic specialization) gets a unique
# hash, we also hash the line information. This is pretty bad, but the best
# solution for now:
#c &= s.info.line
md5Final c, result.Md5Digest
proc hashNonProc*(s: PSym): SigHash =
var c: MD5Context
md5Init c
hashSym(c, s)
var it = s
while it != nil:
c &= it.name.s
c &= "."
it = it.owner
# for bug #5135 we also take the position into account, but only
# for parameters, because who knows what else position dependency
# might cause:
if s.kind == skParam:
c &= s.position
md5Final c, result.Md5Digest
proc hashOwner*(s: PSym): SigHash =
var c: MD5Context
md5Init c
var m = s
while m.kind != skModule: m = m.owner
let p = m.owner
assert p.kind == skPackage
c &= p.name.s
c &= "."
c &= m.name.s
md5Final c, result.Md5Digest