#
#
# The Nimrod Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This file implements the new evaluation engine for Nimrod code.
## An instruction is 1-2 int32s in memory, it is a register based VM.
import ast except getstr
import
strutils, astalgo, msgs, vmdef, vmgen, nimsets, types, passes, unsigned,
parser, vmdeps, idents, trees, renderer, options
from semfold import leValueConv, ordinalValToString
from evaltempl import evalTemplate
when hasFFI:
import evalffi
type
PStackFrame* = ref TStackFrame
TStackFrame* = object
prc: PSym # current prc; proc that is evaluated
slots: TNodeSeq # parameters passed to the proc + locals;
# parameters come first
next: PStackFrame # for stacking
comesFrom: int
safePoints: seq[int] # used for exception handling
# XXX 'break' should perform cleanup actions
# What does the C backend do for it?
proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int) =
if x != nil:
stackTraceAux(c, x.next, x.comesFrom)
var info = c.debug[pc]
# we now use the same format as in system/except.nim
var s = toFilename(info)
var line = toLinenumber(info)
if line > 0:
add(s, '(')
add(s, $line)
add(s, ')')
if x.prc != nil:
for k in 1..max(1, 25-s.len): add(s, ' ')
add(s, x.prc.name.s)
msgWriteln(s)
proc stackTrace(c: PCtx, tos: PStackFrame, pc: int,
msg: TMsgKind, arg = "") =
msgWriteln("stack trace: (most recent call last)")
stackTraceAux(c, tos, pc)
localError(c.debug[pc], msg, arg)
proc bailOut(c: PCtx; tos: PStackFrame) =
stackTrace(c, tos, c.exceptionInstr, errUnhandledExceptionX,
c.currentExceptionA.sons[2].strVal)
when not defined(nimComputedGoto):
{.pragma: computedGoto.}
proc myreset(n: PNode) =
when defined(system.reset):
var oldInfo = n.info
reset(n[])
n.info = oldInfo
proc skipMeta(n: PNode): PNode = (if n.kind != nkMetaNode: n else: n.sons[0])
proc setMeta(n, child: PNode) =
assert n.kind == nkMetaNode
let child = child.skipMeta
if n.sons.isNil: n.sons = @[child]
else: n.sons[0] = child
proc uast(n: PNode): PNode {.inline.} =
# "underlying ast"
assert n.kind == nkMetaNode
n.sons[0]
template ensureKind(k: expr) {.immediate, dirty.} =
if regs[ra].kind != k:
myreset(regs[ra])
regs[ra].kind = k
template decodeB(k: expr) {.immediate, dirty.} =
let rb = instr.regB
ensureKind(k)
template decodeBC(k: expr) {.immediate, dirty.} =
let rb = instr.regB
let rc = instr.regC
ensureKind(k)
template declBC() {.immediate, dirty.} =
let rb = instr.regB
let rc = instr.regC
template decodeBImm(k: expr) {.immediate, dirty.} =
let rb = instr.regB
let imm = instr.regC - byteExcess
ensureKind(k)
template decodeBx(k: expr) {.immediate, dirty.} =
let rbx = instr.regBx - wordExcess
ensureKind(k)
template move(a, b: expr) {.immediate, dirty.} = system.shallowCopy(a, b)
# XXX fix minor 'shallowCopy' overloading bug in compiler
proc moveConst(x, y: PNode) =
if x.kind != y.kind:
myreset(x)
x.kind = y.kind
x.typ = y.typ
case x.kind
of nkCharLit..nkInt64Lit: x.intVal = y.intVal
of nkFloatLit..nkFloat64Lit: x.floatVal = y.floatVal
of nkStrLit..nkTripleStrLit: move(x.strVal, y.strVal)
of nkIdent: x.ident = y.ident
of nkSym: x.sym = y.sym
of nkMetaNode:
if x.sons.isNil: x.sons = @[y.sons[0]]
else: x.sons[0] = y.sons[0]
else:
if x.kind notin {nkEmpty..nkNilLit}:
move(x.sons, y.sons)
# this seems to be the best way to model the reference semantics
# of PNimrodNode:
template asgnRef(x, y: expr) = moveConst(x, y)
proc copyValue(src: PNode): PNode =
if src == nil or nfIsRef in src.flags:
return src
result = newNode(src.kind)
result.info = src.info
result.typ = src.typ
result.flags = src.flags * PersistentNodeFlags
when defined(useNodeIds):
if result.id == nodeIdToDebug:
echo "COMES FROM ", src.id
case src.Kind
of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
of nkSym: result.sym = src.sym
of nkIdent: result.ident = src.ident
of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
else:
newSeq(result.sons, sonsLen(src))
for i in countup(0, sonsLen(src) - 1):
result.sons[i] = copyValue(src.sons[i])
proc asgnComplex(x, y: PNode) =
if x.kind != y.kind:
myreset(x)
x.kind = y.kind
x.typ = y.typ
case x.kind
of nkCharLit..nkInt64Lit: x.intVal = y.intVal
of nkFloatLit..nkFloat64Lit: x.floatVal = y.floatVal
of nkStrLit..nkTripleStrLit: x.strVal = y.strVal
of nkIdent: x.ident = y.ident
of nkSym: x.sym = y.sym
of nkMetaNode:
if x.sons.isNil: x.sons = @[y.sons[0]]
else: x.sons[0] = y.sons[0]
else:
if x.kind notin {nkEmpty..nkNilLit}:
let y = y.copyValue
for i in countup(0, sonsLen(y) - 1): addSon(x, y.sons[i])
template getstr(a: expr): expr =
(if a.kind in {nkStrLit..nkTripleStrLit}: a.strVal else: $chr(int(a.intVal)))
proc pushSafePoint(f: PStackFrame; pc: int) =
if f.safePoints.isNil: f.safePoints = @[]
f.safePoints.add(pc)
proc popSafePoint(f: PStackFrame) = discard f.safePoints.pop()
proc cleanUpOnException(c: PCtx; tos: PStackFrame; regs: TNodeSeq): int =
let raisedType = c.currentExceptionA.typ.skipTypes(abstractPtrs)
var f = tos
while true:
while f.safePoints.isNil or f.safePoints.len == 0:
f = f.next
if f.isNil: return -1
var pc2 = f.safePoints[f.safePoints.high]
var nextExceptOrFinally = -1
if c.code[pc2].opcode == opcExcept:
nextExceptOrFinally = pc2 + c.code[pc2].regBx - wordExcess
inc pc2
while c.code[pc2].opcode == opcExcept:
let exceptType = c.types[c.code[pc2].regBx-wordExcess].skipTypes(
abstractPtrs)
if inheritanceDiff(exceptType, raisedType) <= 0:
# mark exception as handled but keep it in B for
# the getCurrentException() builtin:
c.currentExceptionB = c.currentExceptionA
c.currentExceptionA = nil
# execute the corresponding handler:
return pc2
inc pc2
if nextExceptOrFinally >= 0:
pc2 = nextExceptOrFinally
if c.code[pc2].opcode == opcFinally:
# execute the corresponding handler, but don't quit walking the stack:
return pc2
# not the right one:
discard f.safePoints.pop
proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
if f.safePoints.isNil: return -1
for s in f.safePoints:
var pc = s
while c.code[pc].opcode == opcExcept:
pc = pc + c.code[pc].regBx - wordExcess
if c.code[pc].opcode == opcFinally:
return pc
return -1
proc opConv*(dest, src: PNode, typ: PType): bool =
if typ.kind == tyString:
if dest.kind != nkStrLit:
myreset(dest)
dest.kind = nkStrLit
case src.typ.skipTypes(abstractRange).kind
of tyEnum:
dest.strVal = ordinalValToString(src)
of tyInt..tyInt64, tyUInt..tyUInt64:
dest.strVal = $src.intVal
of tyBool:
dest.strVal = if src.intVal == 0: "false" else: "true"
of tyFloat..tyFloat128:
dest.strVal = $src.floatVal
of tyString, tyCString:
dest.strVal = src.strVal
of tyChar:
dest.strVal = $chr(src.intVal)
else:
internalError("cannot convert to string " & typ.typeToString)
else:
case skipTypes(typ, abstractRange).kind
of tyInt..tyInt64:
if dest.kind != nkIntLit:
myreset(dest); dest.kind = nkIntLit
case skipTypes(src.typ, abstractRange).kind
of tyFloat..tyFloat64:
dest.intVal = system.toInt(src.floatVal)
else:
dest.intVal = src.intVal
if dest.intVal < firstOrd(typ) or dest.intVal > lastOrd(typ):
return true
of tyUInt..tyUInt64:
if dest.kind != nkIntLit:
myreset(dest); dest.kind = nkIntLit
case skipTypes(src.typ, abstractRange).kind
of tyFloat..tyFloat64:
dest.intVal = system.toInt(src.floatVal)
else:
dest.intVal = src.intVal and ((1 shl typ.size)-1)
of tyFloat..tyFloat64:
if dest.kind != nkFloatLit:
myreset(dest); dest.kind = nkFloatLit
case skipTypes(src.typ, abstractRange).kind
of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
dest.floatVal = toFloat(src.intVal.int)
else:
dest.floatVal = src.floatVal
else:
asgnComplex(dest, src)
proc compile(c: PCtx, s: PSym): int =
result = vmgen.genProc(c, s)
#c.echoCode
proc regsContents(regs: TNodeSeq) =
for i in 0.. <regs.len:
echo "Register ", i
#debug regs[i]
proc rawExecute(c: PCtx, start: int, tos: PStackFrame): PNode =
var pc = start
var tos = tos
var regs: TNodeSeq # alias to tos.slots for performance
move(regs, tos.slots)
#echo "NEW RUN ------------------------"
while true:
#{.computedGoto.}
let instr = c.code[pc]
let ra = instr.regA
#echo "PC ", pc, " ", c.code[pc].opcode, " ra ", ra
#message(c.debug[pc], warnUser, "gah")
case instr.opcode
of opcEof: return regs[ra]
of opcRet:
# XXX perform any cleanup actions
pc = tos.comesFrom
tos = tos.next
let retVal = regs[0]
if tos.isNil:
#echo "RET ", retVal.rendertree
return retVal
move(regs, tos.slots)
assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
if c.code[pc].opcode == opcIndCallAsgn:
regs[c.code[pc].regA] = retVal
#echo "RET2 ", retVal.rendertree, " ", c.code[pc].regA
of opcYldYoid: assert false
of opcYldVal: assert false
of opcAsgnInt:
decodeB(nkIntLit)
regs[ra].intVal = regs[rb].intVal
of opcAsgnStr:
decodeB(nkStrLit)
regs[ra].strVal = regs[rb].strVal
of opcAsgnFloat:
decodeB(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal
of opcAsgnComplex:
asgnComplex(regs[ra], regs[instr.regB])
of opcAsgnRef:
asgnRef(regs[ra], regs[instr.regB])
of opcWrGlobalRef:
asgnRef(c.globals.sons[instr.regBx-wordExcess-1], regs[ra])
of opcWrGlobal:
asgnComplex(c.globals.sons[instr.regBx-wordExcess-1], regs[ra])
of opcLdArr:
# a = b[c]
let rb = instr.regB
let rc = instr.regC
let idx = regs[rc].intVal.int
# XXX what if the array is not 0-based? -> codegen should insert a sub
assert regs[rb].kind != nkMetaNode
let src = regs[rb]
if src.kind notin {nkEmpty..nkNilLit} and idx <% src.len:
asgnComplex(regs[ra], src.sons[idx])
else:
stackTrace(c, tos, pc, errIndexOutOfBounds)
of opcLdStrIdx:
decodeBC(nkIntLit)
let idx = regs[rc].intVal.int
if idx <=% regs[rb].strVal.len:
regs[ra].intVal = regs[rb].strVal[idx].ord
else:
stackTrace(c, tos, pc, errIndexOutOfBounds)
of opcWrArr:
# a[b] = c
let rb = instr.regB
let rc = instr.regC
let idx = regs[rb].intVal.int
if idx <% regs[ra].len:
asgnComplex(regs[ra].sons[idx], regs[rc])
else:
stackTrace(c, tos, pc, errIndexOutOfBounds)
of opcWrArrRef:
let rb = instr.regB
let rc = instr.regC
let idx = regs[rb].intVal.int
if idx <% regs[ra].len:
asgnRef(regs[ra].sons[idx], regs[rc])
else:
stackTrace(c, tos, pc, errIndexOutOfBounds)
of opcLdObj:
# a = b.c
let rb = instr.regB
let rc = instr.regC
# XXX this creates a wrong alias
#Message(c.debug[pc], warnUser, $regs[rb].len & " " & $rc)
asgnComplex(regs[ra], regs[rb].sons[rc])
of opcWrObj:
# a.b = c
let rb = instr.regB
let rc = instr.regC
#if regs[ra].isNil or regs[ra].sons.isNil or rb >= len(regs[ra]):
# debug regs[ra]
# debug regs[rc]
# echo "RB ", rb
# internalError(c.debug[pc], "argl")
asgnComplex(regs[ra].sons[rb], regs[rc])
of opcWrObjRef:
let rb = instr.regB
let rc = instr.regC
asgnRef(regs[ra].sons[rb], regs[rc])
of opcWrStrIdx:
decodeBC(nkStrLit)
let idx = regs[rb].intVal.int
if idx <% regs[ra].strVal.len:
regs[ra].strVal[idx] = chr(regs[rc].intVal)
else:
stackTrace(c, tos, pc, errIndexOutOfBounds)
of opcAddr:
decodeB(nkRefTy)
if regs[ra].len == 0: regs[ra].add regs[rb]
else: regs[ra].sons[0] = regs[rb]
of opcDeref:
# a = b[]
let rb = instr.regB
if regs[rb].kind == nkNilLit:
stackTrace(c, tos, pc, errNilAccess)
assert regs[rb].kind == nkRefTy
# XXX this is not correct
regs[ra] = regs[rb].sons[0]
of opcAddInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal + regs[rc].intVal
of opcAddImmInt:
decodeBImm(nkIntLit)
regs[ra].intVal = regs[rb].intVal + imm
of opcSubInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal - regs[rc].intVal
of opcSubImmInt:
decodeBImm(nkIntLit)
regs[ra].intVal = regs[rb].intVal - imm
of opcLenSeq:
decodeBImm(nkIntLit)
#assert regs[rb].kind == nkBracket
# also used by mNLen:
regs[ra].intVal = regs[rb].skipMeta.len - imm
of opcLenStr:
decodeBImm(nkIntLit)
assert regs[rb].kind == nkStrLit
regs[ra].intVal = regs[rb].strVal.len - imm
of opcIncl:
decodeB(nkCurly)
if not inSet(regs[ra], regs[rb]): addSon(regs[ra], copyTree(regs[rb]))
of opcInclRange:
decodeBC(nkCurly)
var r = newNode(nkRange)
r.add regs[rb]
r.add regs[rc]
addSon(regs[ra], r.copyTree)
of opcExcl:
decodeB(nkCurly)
var b = newNodeIT(nkCurly, regs[rb].info, regs[rb].typ)
addSon(b, regs[rb])
var r = diffSets(regs[ra], b)
discardSons(regs[ra])
for i in countup(0, sonsLen(r) - 1): addSon(regs[ra], r.sons[i])
of opcCard:
decodeB(nkIntLit)
regs[ra].intVal = nimsets.cardSet(regs[rb])
of opcMulInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal * regs[rc].intVal
of opcDivInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
of opcModInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
of opcAddFloat:
decodeBC(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
of opcSubFloat:
decodeBC(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
of opcMulFloat:
decodeBC(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
of opcDivFloat:
decodeBC(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
of opcShrInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal shr regs[rc].intVal
of opcShlInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
of opcBitandInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
of opcBitorInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
of opcBitxorInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
of opcAddu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
of opcSubu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
of opcMulu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
of opcDivu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
of opcModu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
of opcEqInt:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
of opcLeInt:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
of opcLtInt:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
of opcEqFloat:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
of opcLeFloat:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
of opcLtFloat:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
of opcLeu:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
of opcLtu:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
of opcEqRef:
decodeBC(nkIntLit)
regs[ra].intVal = ord((regs[rb].kind == nkNilLit and
regs[rc].kind == nkNilLit) or
regs[rb].sons == regs[rc].sons)
of opcEqNimrodNode:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].skipMeta == regs[rc].skipMeta)
of opcXor:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
of opcNot:
decodeB(nkIntLit)
assert regs[rb].kind == nkIntLit
regs[ra].intVal = 1 - regs[rb].intVal
of opcUnaryMinusInt:
decodeB(nkIntLit)
assert regs[rb].kind == nkIntLit
regs[ra].intVal = -regs[rb].intVal
of opcUnaryMinusFloat:
decodeB(nkFloatLit)
assert regs[rb].kind == nkFloatLit
regs[ra].floatVal = -regs[rb].floatVal
of opcBitnotInt:
decodeB(nkIntLit)
assert regs[rb].kind == nkIntLit
regs[ra].intVal = not regs[rb].intVal
of opcEqStr:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].strVal == regs[rc].strVal)
of opcLeStr:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].strVal <= regs[rc].strVal)
of opcLtStr:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].strVal < regs[rc].strVal)
of opcLeSet:
decodeBC(nkIntLit)
regs[ra].intVal = ord(containsSets(regs[rb], regs[rc]))
of opcEqSet:
decodeBC(nkIntLit)
regs[ra].intVal = ord(equalSets(regs[rb], regs[rc]))
of opcLtSet:
decodeBC(nkIntLit)
let a = regs[rb]
let b = regs[rc]
regs[ra].intVal = ord(containsSets(a, b) and not equalSets(a, b))
of opcMulSet:
decodeBC(nkCurly)
move(regs[ra].sons, nimsets.intersectSets(regs[rb], regs[rc]).sons)
of opcPlusSet:
decodeBC(nkCurly)
move(regs[ra].sons, nimsets.unionSets(regs[rb], regs[rc]).sons)
of opcMinusSet:
decodeBC(nkCurly)
move(regs[ra].sons, nimsets.diffSets(regs[rb], regs[rc]).sons)
of opcSymdiffSet:
decodeBC(nkCurly)
move(regs[ra].sons, nimsets.symdiffSets(regs[rb], regs[rc]).sons)
of opcConcatStr:
decodeBC(nkStrLit)
regs[ra].strVal = getstr(regs[rb])
for i in rb+1..rb+rc-1:
regs[ra].strVal.add getstr(regs[i])
of opcAddStrCh:
decodeB(nkStrLit)
regs[ra].strVal.add(regs[rb].intVal.chr)
of opcAddStrStr:
decodeB(nkStrLit)
regs[ra].strVal.add(regs[rb].strVal)
of opcAddSeqElem:
decodeB(nkBracket)
regs[ra].add(copyTree(regs[rb]))
of opcEcho:
let rb = instr.regB
for i in ra..ra+rb-1:
#if regs[i].kind != nkStrLit: debug regs[i]
write(stdout, regs[i].strVal)
writeln(stdout, "")
of opcContainsSet:
decodeBC(nkIntLit)
regs[ra].intVal = ord(inSet(regs[rb], regs[rc]))
of opcSubStr:
decodeBC(nkStrLit)
inc pc
assert c.code[pc].opcode == opcSubStr
let rd = c.code[pc].regA
regs[ra].strVal = substr(regs[rb].strVal, regs[rc].intVal.int,
regs[rd].intVal.int)
of opcRangeChck:
let rb = instr.regB
let rc = instr.regC
if not (leValueConv(regs[rb], regs[ra]) and
leValueConv(regs[ra], regs[rc])):
stackTrace(c, tos, pc, errGenerated,
msgKindToString(errIllegalConvFromXtoY) % [
"unknown type" , "unknown type"])
of opcIndCall, opcIndCallAsgn:
# dest = call regStart, n; where regStart = fn, arg1, ...
let rb = instr.regB
let rc = instr.regC
let isClosure = regs[rb].kind == nkPar
let prc = if not isClosure: regs[rb].sym else: regs[rb].sons[0].sym
if sfImportc in prc.flags:
if allowFFI notin c.features:
globalError(c.debug[pc], errGenerated, "VM not allowed to do FFI")
# we pass 'tos.slots' instead of 'regs' so that the compiler can keep
# 'regs' in a register:
when hasFFI:
let prcValue = c.globals.sons[prc.position-1]
if prcValue.kind == nkEmpty:
globalError(c.debug[pc], errGenerated, "canot run " & prc.name.s)
let newValue = callForeignFunction(prcValue, prc.typ, tos.slots,
rb+1, rc-1, c.debug[pc])
if newValue.kind != nkEmpty:
assert instr.opcode == opcIndCallAsgn
asgnRef(regs[ra], newValue)
else:
globalError(c.debug[pc], errGenerated, "VM not built with FFI support")
elif prc.kind != skTemplate:
let newPc = compile(c, prc)
#echo "new pc ", newPc, " calling: ", prc.name.s
var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
newSeq(newFrame.slots, prc.offset)
if not isEmptyType(prc.typ.sons[0]) or prc.kind == skMacro:
newFrame.slots[0] = getNullValue(prc.typ.sons[0], prc.info)
# pass every parameter by var (the language definition allows this):
for i in 1 .. rc-1:
newFrame.slots[i] = regs[rb+i]
if isClosure:
newFrame.slots[rc] = regs[rb].sons[1]
# allocate the temporaries:
for i in rc+ord(isClosure) .. <prc.offset:
newFrame.slots[i] = newNode(nkEmpty)
tos = newFrame
move(regs, newFrame.slots)
# -1 for the following 'inc pc'
pc = newPc-1
else:
# for 'getAst' support we need to support template expansion here:
let genSymOwner = if tos.next != nil and tos.next.prc != nil:
tos.next.prc
else:
c.module
var macroCall = newNodeI(nkCall, c.debug[pc])
macroCall.add(newSymNode(prc))
for i in 1 .. rc-1: macroCall.add(regs[rb+i].skipMeta)
let a = evalTemplate(macroCall, prc, genSymOwner)
ensureKind(nkMetaNode)
setMeta(regs[ra], a)
of opcTJmp:
# jump Bx if A != 0
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
if regs[ra].intVal != 0:
inc pc, rbx
of opcFJmp:
# jump Bx if A == 0
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
if regs[ra].intVal == 0:
inc pc, rbx
of opcJmp:
# jump Bx
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
of opcBranch:
# we know the next instruction is a 'fjmp':
let branch = c.constants[instr.regBx-wordExcess]
var cond = false
for j in countup(0, sonsLen(branch) - 2):
if overlap(regs[ra], branch.sons[j]):
cond = true
break
assert c.code[pc+1].opcode == opcFJmp
inc pc
# we skip this instruction so that the final 'inc(pc)' skips
# the following jump
if not cond:
let instr2 = c.code[pc]
let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
of opcTry:
let rbx = instr.regBx - wordExcess
tos.pushSafePoint(pc + rbx)
of opcExcept:
# just skip it; it's followed by a jump;
# we'll execute in the 'raise' handler
discard
of opcFinally:
# just skip it; it's followed by the code we need to execute anyway
tos.popSafePoint()
of opcFinallyEnd:
if c.currentExceptionA != nil:
# we are in a cleanup run:
pc = cleanUpOnException(c, tos, regs)-1
if pc < 0:
bailOut(c, tos)
return
of opcRaise:
let raised = regs[ra]
c.currentExceptionA = raised
c.exceptionInstr = pc
# -1 because of the following 'inc'
pc = cleanUpOnException(c, tos, regs) - 1
if pc < 0:
bailOut(c, tos)
return
of opcNew:
let typ = c.types[instr.regBx - wordExcess]
regs[ra] = getNullValue(typ, regs[ra].info)
regs[ra].flags.incl nfIsRef
of opcNewSeq:
let typ = c.types[instr.regBx - wordExcess]
inc pc
ensureKind(nkBracket)
let instr2 = c.code[pc]
let rb = instr2.regA
regs[ra].typ = typ
newSeq(regs[ra].sons, rb)
for i in 0 .. <rb:
regs[ra].sons[i] = getNullValue(typ, regs[ra].info)
of opcNewStr:
decodeB(nkStrLit)
regs[ra].strVal = newString(regs[rb].intVal.int)
of opcLdImmInt:
# dest = immediate value
decodeBx(nkIntLit)
regs[ra].intVal = rbx
of opcLdNull:
let typ = c.types[instr.regBx - wordExcess]
regs[ra] = getNullValue(typ, c.debug[pc])
of opcLdConst:
let rb = instr.regBx - wordExcess
if regs[ra].isNil:
regs[ra] = copyTree(c.constants.sons[rb])
else:
moveConst(regs[ra], c.constants.sons[rb])
of opcAsgnConst:
let rb = instr.regBx - wordExcess
if regs[ra].isNil:
regs[ra] = copyTree(c.constants.sons[rb])
else:
asgnComplex(regs[ra], c.constants.sons[rb])
of opcLdGlobal:
let rb = instr.regBx - wordExcess - 1
if regs[ra].isNil:
regs[ra] = copyTree(c.globals.sons[rb])
else:
asgnComplex(regs[ra], c.globals.sons[rb])
of opcRepr:
decodeB(nkStrLit)
regs[ra].strVal = renderTree(regs[rb].skipMeta, {renderNoComments})
of opcQuit:
if c.mode in {emRepl, emStaticExpr, emStaticStmt}:
message(c.debug[pc], hintQuitCalled)
quit(int(getOrdValue(regs[ra])))
else:
return nil
of opcSetLenStr:
decodeB(nkStrLit)
regs[ra].strVal.setLen(regs[rb].getOrdValue.int)
of opcOf:
decodeBC(nkIntLit)
let typ = c.types[regs[rc].intVal.int]
regs[ra].intVal = ord(inheritanceDiff(regs[rb].typ, typ) >= 0)
of opcIs:
decodeBC(nkIntLit)
let t1 = regs[rb].typ.skipTypes({tyTypeDesc})
let t2 = c.types[regs[rc].intVal.int]
let match = if t2.kind == tyTypeClass: matchTypeClass(t2, t1)
else: sameType(t1, t2)
regs[ra].intVal = ord(match)
of opcSetLenSeq:
decodeB(nkBracket)
let newLen = regs[rb].getOrdValue.int
setLen(regs[ra].sons, newLen)
of opcSwap, opcReset:
internalError(c.debug[pc], "too implement")
of opcIsNil:
decodeB(nkIntLit)
regs[ra].intVal = ord(regs[rb].skipMeta.kind == nkNilLit)
of opcNBindSym:
decodeBx(nkMetaNode)
setMeta(regs[ra], copyTree(c.constants.sons[rbx]))
of opcNChild:
decodeBC(nkMetaNode)
if regs[rb].kind != nkMetaNode:
internalError(c.debug[pc], "no MetaNode")
let idx = regs[rc].intVal.int
let src = regs[rb].uast
if src.kind notin {nkEmpty..nkNilLit} and idx <% src.len:
setMeta(regs[ra], src.sons[idx])
else:
stackTrace(c, tos, pc, errIndexOutOfBounds)
of opcNSetChild:
decodeBC(nkMetaNode)
let idx = regs[rb].intVal.int
var dest = regs[ra].uast
if dest.kind notin {nkEmpty..nkNilLit} and idx <% dest.len:
dest.sons[idx] = regs[rc].uast
else:
stackTrace(c, tos, pc, errIndexOutOfBounds)
of opcNAdd:
decodeBC(nkMetaNode)
var u = regs[rb].uast
u.add(regs[rc].uast)
setMeta(regs[ra], u)
of opcNAddMultiple:
decodeBC(nkMetaNode)
let x = regs[rc]
var u = regs[rb].uast
# XXX can be optimized:
for i in 0.. <x.len: u.add(x.sons[i].skipMeta)
setMeta(regs[ra], u)
of opcNKind:
decodeB(nkIntLit)
regs[ra].intVal = ord(regs[rb].uast.kind)
of opcNIntVal:
decodeB(nkIntLit)
let a = regs[rb].uast
case a.kind
of nkCharLit..nkInt64Lit: regs[ra].intVal = a.intVal
else: stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
of opcNFloatVal:
decodeB(nkFloatLit)
let a = regs[rb].uast
case a.kind
of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
else: stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
of opcNSymbol:
decodeB(nkSym)
let a = regs[rb].uast
if a.kind == nkSym:
regs[ra].sym = a.sym
else:
stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
of opcNIdent:
decodeB(nkIdent)
let a = regs[rb].uast
if a.kind == nkIdent:
regs[ra].ident = a.ident
else:
stackTrace(c, tos, pc, errFieldXNotFound, "ident")
of opcNGetType:
internalError(c.debug[pc], "unknown opcode " & $instr.opcode)
of opcNStrVal:
decodeB(nkStrLit)
let a = regs[rb].uast
case a.kind
of nkStrLit..nkTripleStrLit: regs[ra].strVal = a.strVal
else: stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
of opcSlurp:
decodeB(nkStrLit)
regs[ra].strVal = opSlurp(regs[rb].strVal, c.debug[pc], c.module)
of opcGorge:
decodeBC(nkStrLit)
regs[ra].strVal = opGorge(regs[rb].strVal, regs[rc].strVal)
of opcNError:
stackTrace(c, tos, pc, errUser, regs[ra].strVal)
of opcNWarning:
message(c.debug[pc], warnUser, regs[ra].strVal)
of opcNHint:
message(c.debug[pc], hintUser, regs[ra].strVal)
of opcParseExprToAst:
decodeB(nkMetaNode)
# c.debug[pc].line.int - countLines(regs[rb].strVal) ?
let ast = parseString(regs[rb].strVal, c.debug[pc].toFilename,
c.debug[pc].line.int)
if sonsLen(ast) != 1:
globalError(c.debug[pc], errExprExpected, "multiple statements")
setMeta(regs[ra], ast.sons[0])
of opcParseStmtToAst:
decodeB(nkMetaNode)
let ast = parseString(regs[rb].strVal, c.debug[pc].toFilename,
c.debug[pc].line.int)
setMeta(regs[ra], ast)
of opcCallSite:
ensureKind(nkMetaNode)
if c.callsite != nil: setMeta(regs[ra], c.callsite)
else: stackTrace(c, tos, pc, errFieldXNotFound, "callsite")
of opcNLineInfo:
decodeB(nkStrLit)
let n = regs[rb]
regs[ra].strVal = n.info.toFileLineCol
regs[ra].info = c.debug[pc]
of opcEqIdent:
decodeBC(nkIntLit)
if regs[rb].kind == nkIdent and regs[rc].kind == nkIdent:
regs[ra].intVal = ord(regs[rb].ident.id == regs[rc].ident.id)
else:
regs[ra].intVal = 0
of opcStrToIdent:
decodeB(nkIdent)
if regs[rb].kind notin {nkStrLit..nkTripleStrLit}:
stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
else:
regs[ra].info = c.debug[pc]
regs[ra].ident = getIdent(regs[rb].strVal)
of opcIdentToStr:
decodeB(nkStrLit)
let a = regs[rb]
regs[ra].info = c.debug[pc]
if a.kind == nkSym:
regs[ra].strVal = a.sym.name.s
elif a.kind == nkIdent:
regs[ra].strVal = a.ident.s
else:
stackTrace(c, tos, pc, errFieldXNotFound, "ident")
of opcSetType:
regs[ra].typ = c.types[instr.regBx - wordExcess]
of opcConv:
let rb = instr.regB
inc pc
let typ = c.types[c.code[pc].regBx - wordExcess]
if opConv(regs[ra], regs[rb], typ):
stackTrace(c, tos, pc, errGenerated,
msgKindToString(errIllegalConvFromXtoY) % [
"unknown type" , "unknown type"])
of opcCast:
let rb = instr.regB
inc pc
let typ = c.types[c.code[pc].regBx - wordExcess]
when hasFFI:
let dest = fficast(regs[rb], typ)
asgnRef(regs[ra], dest)
else:
globalError(c.debug[pc], "cannot evaluate cast")
of opcNSetIntVal:
decodeB(nkMetaNode)
var dest = regs[ra].uast
if dest.kind in {nkCharLit..nkInt64Lit} and
regs[rb].kind in {nkCharLit..nkInt64Lit}:
dest.intVal = regs[rb].intVal
else:
stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
of opcNSetFloatVal:
decodeB(nkMetaNode)
var dest = regs[ra].uast
if dest.kind in {nkFloatLit..nkFloat64Lit} and
regs[rb].kind in {nkFloatLit..nkFloat64Lit}:
dest.floatVal = regs[rb].floatVal
else:
stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
of opcNSetSymbol:
decodeB(nkMetaNode)
var dest = regs[ra].uast
if dest.kind == nkSym and regs[rb].kind == nkSym:
dest.sym = regs[rb].sym
else:
stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
of opcNSetIdent:
decodeB(nkMetaNode)
var dest = regs[ra].uast
if dest.kind == nkIdent and regs[rb].kind == nkIdent:
dest.ident = regs[rb].ident
else:
stackTrace(c, tos, pc, errFieldXNotFound, "ident")
of opcNSetType:
decodeB(nkMetaNode)
let b = regs[rb].skipMeta
internalAssert b.kind == nkSym and b.sym.kind == skType
regs[ra].uast.typ = b.sym.typ
of opcNSetStrVal:
decodeB(nkMetaNode)
var dest = regs[ra].uast
if dest.kind in {nkStrLit..nkTripleStrLit} and
regs[rb].kind in {nkStrLit..nkTripleStrLit}:
dest.strVal = regs[rb].strVal
else:
stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
of opcNNewNimNode:
decodeBC(nkMetaNode)
var k = regs[rb].intVal
if k < 0 or k > ord(high(TNodeKind)) or k == ord(nkMetaNode):
internalError(c.debug[pc],
"request to create a NimNode of invalid kind")
let cc = regs[rc].skipMeta
setMeta(regs[ra], newNodeI(TNodeKind(int(k)),
if cc.kind == nkNilLit: c.debug[pc] else: cc.info))
regs[ra].sons[0].flags.incl nfIsRef
of opcNCopyNimNode:
decodeB(nkMetaNode)
setMeta(regs[ra], copyNode(regs[rb]))
of opcNCopyNimTree:
decodeB(nkMetaNode)
setMeta(regs[ra], copyTree(regs[rb]))
of opcNDel:
decodeBC(nkMetaNode)
let bb = regs[rb].intVal.int
for i in countup(0, regs[rc].intVal.int-1):
delSon(regs[ra].uast, bb)
of opcGenSym:
decodeBC(nkMetaNode)
let k = regs[rb].intVal
let name = if regs[rc].strVal.len == 0: ":tmp" else: regs[rc].strVal
if k < 0 or k > ord(high(TSymKind)):
internalError(c.debug[pc], "request to create symbol of invalid kind")
var sym = newSym(k.TSymKind, name.getIdent, c.module, c.debug[pc])
incl(sym.flags, sfGenSym)
setMeta(regs[ra], newSymNode(sym))
of opcTypeTrait:
# XXX only supports 'name' for now; we can use regC to encode the
# type trait operation
decodeB(nkStrLit)
let typ = regs[rb].sym.typ.skipTypes({tyTypeDesc})
regs[ra].strVal = typ.typeToString(preferExported)
of opcGlobalOnce:
let rb = instr.regBx
if c.globals.sons[rb - wordExcess - 1].kind != nkEmpty:
# skip initialization instructions:
while true:
inc pc
if c.code[pc].opcode in {opcWrGlobal, opcWrGlobalRef} and
c.code[pc].regBx == rb:
break
of opcGlobalAlias:
let rb = instr.regBx - wordExcess - 1
regs[ra] = c.globals.sons[rb]
inc pc
proc fixType(result, n: PNode) {.inline.} =
# XXX do it deeply for complex values
#if result.typ.isNil: result.typ = n.typ
proc execute(c: PCtx, start: int): PNode =
var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
newSeq(tos.slots, c.prc.maxSlots)
for i in 0 .. <c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos)
proc evalStmt*(c: PCtx, n: PNode) =
let start = genStmt(c, n)
# execute new instructions; this redundant opcEof check saves us lots
# of allocations in 'execute':
if c.code[start].opcode != opcEof:
discard execute(c, start)
proc evalExpr*(c: PCtx, n: PNode): PNode =
let start = genExpr(c, n)
assert c.code[start].opcode != opcEof
result = execute(c, start)
if not result.isNil:
result = result.skipMeta
fixType(result, n)
# for now we share the 'globals' environment. XXX Coming soon: An API for
# storing&loading the 'globals' environment to get what a component system
# requires.
var
globalCtx: PCtx
proc setupGlobalCtx(module: PSym) =
if globalCtx.isNil: globalCtx = newCtx(module)
else: refresh(globalCtx, module)
proc myOpen(module: PSym): PPassContext =
#var c = newEvalContext(module, emRepl)
#c.features = {allowCast, allowFFI, allowInfiniteLoops}
#pushStackFrame(c, newStackFrame())
# XXX produce a new 'globals' environment here:
setupGlobalCtx(module)
result = globalCtx
when hasFFI:
globalCtx.features = {allowFFI, allowCast}
var oldErrorCount: int
proc myProcess(c: PPassContext, n: PNode): PNode =
# don't eval errornous code:
if oldErrorCount == msgs.gErrorCounter:
evalStmt(PCtx(c), n)
result = emptyNode
else:
result = n
oldErrorCount = msgs.gErrorCounter
const evalPass* = makePass(myOpen, nil, myProcess, myProcess)
proc evalConstExprAux(module, prc: PSym, n: PNode, mode: TEvalMode): PNode =
setupGlobalCtx(module)
var c = globalCtx
c.mode = mode
let start = genExpr(c, n, requiresValue = mode!=emStaticStmt)
assert c.code[start].opcode != opcEof
var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
newSeq(tos.slots, c.prc.maxSlots)
for i in 0 .. <c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos)
fixType(result, n)
proc evalConstExpr*(module: PSym, e: PNode): PNode =
result = evalConstExprAux(module, nil, e, emConst)
proc evalStaticExpr*(module: PSym, e: PNode, prc: PSym): PNode =
result = evalConstExprAux(module, prc, e, emStaticExpr)
proc evalStaticStmt*(module: PSym, e: PNode, prc: PSym) =
discard evalConstExprAux(module, prc, e, emStaticStmt)
proc setupMacroParam(x: PNode): PNode =
result = x
if result.kind in {nkHiddenSubConv, nkHiddenStdConv}: result = result.sons[1]
let y = result
y.flags.incl nfIsRef
result = newNode(nkMetaNode)
result.add y
result.typ = x.typ
var evalMacroCounter: int
proc evalMacroCall*(module: PSym, n, nOrig: PNode, sym: PSym): PNode =
# XXX GlobalError() is ugly here, but I don't know a better solution for now
inc(evalMacroCounter)
if evalMacroCounter > 100:
globalError(n.info, errTemplateInstantiationTooNested)
setupGlobalCtx(module)
var c = globalCtx
c.callsite = nOrig
let start = genProc(c, sym)
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
let maxSlots = sym.offset
newSeq(tos.slots, maxSlots)
# setup arguments:
var L = n.safeLen
if L == 0: L = 1
# This is wrong for tests/reject/tind1.nim where the passed 'else' part
# doesn't end up in the parameter:
#InternalAssert tos.slots.len >= L
# return value:
tos.slots[0] = newNodeIT(nkNilLit, n.info, sym.typ.sons[0])
# setup parameters:
for i in 1 .. < min(tos.slots.len, L):
tos.slots[i] = setupMacroParam(n.sons[i])
# temporary storage:
for i in L .. <maxSlots: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos)
if cyclicTree(result): globalError(n.info, errCyclicTree)
dec(evalMacroCounter)
if result != nil:
result = result.skipMeta
c.callsite = nil