#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import ast, types, msgs, os, options, idents, lineinfos
from pathutils import AbsoluteFile
proc opSlurp*(file: string, info: TLineInfo, module: PSym; conf: ConfigRef): string =
try:
var filename = parentDir(toFullPath(conf, info)) / file
if not fileExists(filename):
filename = findFile(conf, file).string
result = readFile(filename)
# we produce a fake include statement for every slurped filename, so that
# the module dependencies are accurate:
discard conf.fileInfoIdx(AbsoluteFile filename)
appendToModule(module, newNode(nkIncludeStmt, info, @[
newStrNode(nkStrLit, filename)]))
except IOError:
localError(conf, info, "cannot open file: " & file)
result = ""
proc atomicTypeX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo): PNode =
let sym = newSym(skType, getIdent(cache, name), t.owner, info)
sym.magic = m
sym.typ = t
result = newSymNode(sym)
result.typ = t
proc atomicTypeX(s: PSym; info: TLineInfo): PNode =
result = newSymNode(s)
result.info = info
proc mapTypeToAstX(cache: IdentCache; t: PType; info: TLineInfo;
inst=false; allowRecursionX=false): PNode
proc mapTypeToBracketX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo;
inst=false): PNode =
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicTypeX(cache, name, m, t, info)
for i in 0..<t.len:
if t[i] == nil:
let void = atomicTypeX(cache, "void", mVoid, t, info)
void.typ = newType(tyVoid, t.owner)
result.add void
else:
result.add mapTypeToAstX(cache, t[i], info, inst)
proc objectNode(cache: IdentCache; n: PNode): PNode =
if n.kind == nkSym:
result = newNodeI(nkIdentDefs, n.info)
result.add n # name
result.add mapTypeToAstX(cache, n.sym.typ, n.info, true, false) # type
result.add newNodeI(nkEmpty, n.info) # no assigned value
else:
result = copyNode(n)
for i in 0..<n.safeLen:
result.add objectNode(cache, n[i])
proc mapTypeToAstX(cache: IdentCache; t: PType; info: TLineInfo;
inst=false; allowRecursionX=false): PNode =
var allowRecursion = allowRecursionX
template atomicType(name, m): untyped = atomicTypeX(cache, name, m, t, info)
template atomicType(s): untyped = atomicTypeX(s, info)
template mapTypeToAst(t,info): untyped = mapTypeToAstX(cache, t, info, inst)
template mapTypeToAstR(t,info): untyped = mapTypeToAstX(cache, t, info, inst, true)
template mapTypeToAst(t,i,info): untyped =
if i<t.len and t[i]!=nil: mapTypeToAstX(cache, t[i], info, inst)
else: newNodeI(nkEmpty, info)
template mapTypeToBracket(name, m, t, info): untyped =
mapTypeToBracketX(cache, name, m, t, info, inst)
template newNodeX(kind): untyped =
newNodeIT(kind, if t.n.isNil: info else: t.n.info, t)
template newIdentDefs(n,t): untyped =
var id = newNodeX(nkIdentDefs)
id.add n # name
id.add mapTypeToAst(t, info) # type
id.add newNodeI(nkEmpty, info) # no assigned value
id
template newIdentDefs(s): untyped = newIdentDefs(s, s.typ)
if inst and not allowRecursion and t.sym != nil:
# getTypeInst behavior: return symbol
return atomicType(t.sym)
case t.kind
of tyNone: result = atomicType("none", mNone)
of tyBool: result = atomicType("bool", mBool)
of tyChar: result = atomicType("char", mChar)
of tyNil: result = atomicType("nil", mNil)
of tyUntyped: result = atomicType("untyped", mExpr)
of tyTyped: result = atomicType("typed", mStmt)
of tyVoid: result = atomicType("void", mVoid)
of tyEmpty: result = atomicType("empty", mNone)
of tyUncheckedArray:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("UncheckedArray", mUncheckedArray)
result.add mapTypeToAst(t[0], info)
of tyArray:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("array", mArray)
if inst and t[0].kind == tyRange:
var rng = newNodeX(nkInfix)
rng.add newIdentNode(getIdent(cache, ".."), info)
rng.add t[0].n[0].copyTree
rng.add t[0].n[1].copyTree
result.add rng
else:
result.add mapTypeToAst(t[0], info)
result.add mapTypeToAst(t[1], info)
of tyTypeDesc:
if t.base != nil:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("typeDesc", mTypeDesc)
result.add mapTypeToAst(t.base, info)
else:
result = atomicType("typeDesc", mTypeDesc)
of tyGenericInvocation:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
for i in 0..<t.len:
result.add mapTypeToAst(t[i], info)
of tyGenericInst:
if inst:
if allowRecursion:
result = mapTypeToAstR(t.lastSon, info)
else:
result = newNodeX(nkBracketExpr)
#result.add mapTypeToAst(t.lastSon, info)
result.add mapTypeToAst(t[0], info)
for i in 1..<t.len-1:
result.add mapTypeToAst(t[i], info)
else:
result = mapTypeToAstX(cache, t.lastSon, info, inst, allowRecursion)
of tyGenericBody:
if inst:
result = mapTypeToAstR(t.lastSon, info)
else:
result = mapTypeToAst(t.lastSon, info)
of tyAlias:
result = mapTypeToAstX(cache, t.lastSon, info, inst, allowRecursion)
of tyOrdinal:
result = mapTypeToAst(t.lastSon, info)
of tyDistinct:
if inst:
result = newNodeX(nkDistinctTy)
result.add mapTypeToAst(t[0], info)
else:
if allowRecursion or t.sym == nil:
result = mapTypeToBracket("distinct", mDistinct, t, info)
else:
result = atomicType(t.sym)
of tyGenericParam, tyForward:
result = atomicType(t.sym)
of tyObject:
if inst:
result = newNodeX(nkObjectTy)
var objectDef = t.sym.ast[2]
if objectDef.kind == nkRefTy:
objectDef = objectDef[0]
result.add objectDef[0].copyTree # copy object pragmas
if t[0] == nil:
result.add newNodeI(nkEmpty, info)
else: # handle parent object
var nn = newNodeX(nkOfInherit)
nn.add mapTypeToAst(t[0], info)
result.add nn
if t.n.len > 0:
result.add objectNode(cache, t.n)
else:
result.add newNodeI(nkEmpty, info)
else:
if allowRecursion or t.sym == nil:
result = newNodeIT(nkObjectTy, if t.n.isNil: info else: t.n.info, t)
result.add newNodeI(nkEmpty, info)
if t[0] == nil:
result.add newNodeI(nkEmpty, info)
else:
result.add mapTypeToAst(t[0], info)
result.add copyTree(t.n)
else:
result = atomicType(t.sym)
of tyEnum:
result = newNodeIT(nkEnumTy, if t.n.isNil: info else: t.n.info, t)
result.add newNodeI(nkEmpty, info) # pragma node, currently always empty for enum
for c in t.n.sons:
result.add copyTree(c)
of tyTuple:
if inst:
# only named tuples have a node, unnamed tuples don't
if t.n.isNil:
result = newNodeX(nkTupleConstr)
for subType in t.sons:
result.add mapTypeToAst(subType, info)
else:
result = newNodeX(nkTupleTy)
for s in t.n.sons:
result.add newIdentDefs(s)
else:
result = mapTypeToBracket("tuple", mTuple, t, info)
of tySet: result = mapTypeToBracket("set", mSet, t, info)
of tyPtr:
if inst:
result = newNodeX(nkPtrTy)
result.add mapTypeToAst(t[0], info)
else:
result = mapTypeToBracket("ptr", mPtr, t, info)
of tyRef:
if inst:
result = newNodeX(nkRefTy)
result.add mapTypeToAst(t[0], info)
else:
result = mapTypeToBracket("ref", mRef, t, info)
of tyVar:
if inst:
result = newNodeX(nkVarTy)
result.add mapTypeToAst(t[0], info)
else:
result = mapTypeToBracket("var", mVar, t, info)
of tyLent: result = mapTypeToBracket("lent", mBuiltinType, t, info)
of tySink: result = mapTypeToBracket("sink", mBuiltinType, t, info)
of tySequence: result = mapTypeToBracket("seq", mSeq, t, info)
of tyProc:
if inst:
result = newNodeX(nkProcTy)
var fp = newNodeX(nkFormalParams)
if t[0] == nil:
fp.add newNodeI(nkEmpty, info)
else:
fp.add mapTypeToAst(t[0], t.n[0].info)
for i in 1..<t.len:
fp.add newIdentDefs(t.n[i], t[i])
result.add fp
result.add if t.n[0].len > 0: t.n[0][pragmasEffects].copyTree
else: newNodeI(nkEmpty, info)
else:
result = mapTypeToBracket("proc", mNone, t, info)
of tyOpenArray: result = mapTypeToBracket("openArray", mOpenArray, t, info)
of tyRange:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("range", mRange)
if inst and t.n.len == 2:
let rng = newNodeX(nkInfix)
rng.add newIdentNode(getIdent(cache, ".."), info)
rng.add t.n[0].copyTree
rng.add t.n[1].copyTree
result.add rng
else:
result.add t.n[0].copyTree
if t.n.len > 1:
result.add t.n[1].copyTree
of tyPointer: result = atomicType("pointer", mPointer)
of tyString: result = atomicType("string", mString)
of tyCString: result = atomicType("cstring", mCstring)
of tyInt: result = atomicType("int", mInt)
of tyInt8: result = atomicType("int8", mInt8)
of tyInt16: result = atomicType("int16", mInt16)
of tyInt32: result = atomicType("int32", mInt32)
of tyInt64: result = atomicType("int64", mInt64)
of tyFloat: result = atomicType("float", mFloat)
of tyFloat32: result = atomicType("float32", mFloat32)
of tyFloat64: result = atomicType("float64", mFloat64)
of tyFloat128: result = atomicType("float128", mFloat128)
of tyUInt: result = atomicType("uint", mUInt)
of tyUInt8: result = atomicType("uint8", mUInt8)
of tyUInt16: result = atomicType("uint16", mUInt16)
of tyUInt32: result = atomicType("uint32", mUInt32)
of tyUInt64: result = atomicType("uint64", mUInt64)
of tyVarargs: result = mapTypeToBracket("varargs", mVarargs, t, info)
of tyProxy: result = atomicType("error", mNone)
of tyBuiltInTypeClass:
result = mapTypeToBracket("builtinTypeClass", mNone, t, info)
of tyUserTypeClass, tyUserTypeClassInst:
if t.isResolvedUserTypeClass:
result = mapTypeToAst(t.lastSon, info)
else:
result = mapTypeToBracket("concept", mNone, t, info)
result.add t.n.copyTree
of tyCompositeTypeClass:
result = mapTypeToBracket("compositeTypeClass", mNone, t, info)
of tyAnd: result = mapTypeToBracket("and", mAnd, t, info)
of tyOr: result = mapTypeToBracket("or", mOr, t, info)
of tyNot: result = mapTypeToBracket("not", mNot, t, info)
of tyAnything: result = atomicType("anything", mNone)
of tyInferred: assert false
of tyStatic, tyFromExpr:
if inst:
if t.n != nil: result = t.n.copyTree
else: result = atomicType("void", mVoid)
else:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("static", mNone)
if t.n != nil:
result.add t.n.copyTree
of tyOwned: result = mapTypeToBracket("owned", mBuiltinType, t, info)
of tyOptDeprecated: doAssert false
proc opMapTypeToAst*(cache: IdentCache; t: PType; info: TLineInfo): PNode =
result = mapTypeToAstX(cache, t, info, inst=false, allowRecursionX=true)
# the "Inst" version includes generic parameters in the resulting type tree
# and also tries to look like the corresponding Nim type declaration
proc opMapTypeInstToAst*(cache: IdentCache; t: PType; info: TLineInfo): PNode =
result = mapTypeToAstX(cache, t, info, inst=true, allowRecursionX=false)
# the "Impl" version includes generic parameters in the resulting type tree
# and also tries to look like the corresponding Nim type implementation
proc opMapTypeImplToAst*(cache: IdentCache; t: PType; info: TLineInfo): PNode =
result = mapTypeToAstX(cache, t, info, inst=true, allowRecursionX=true)