=============
Nimrod Manual
=============
:Authors: Andreas Rumpf, Zahary Karadjov
:Version: |nimrodversion|
.. contents::
"Complexity" seems to be a lot like "energy": you can transfer it from the end
user to one/some of the other players, but the total amount seems to remain
pretty much constant for a given task. -- Ran
About this document
===================
**Note**: This document is a draft! Several of Nimrod's features need more
precise wording. This manual will evolve into a proper specification some
day.
This document describes the lexis, the syntax, and the semantics of Nimrod.
The language constructs are explained using an extended BNF, in
which ``(a)*`` means 0 or more ``a``'s, ``a+`` means 1 or more ``a``'s, and
``(a)?`` means an optional *a*. Parentheses may be used to group elements.
``&`` is the lookahead operator; ``&a`` means that an ``a`` is expected but
not consumed. It will be consumed in the following rule.
The ``|``, ``/`` symbols are used to mark alternatives and have the lowest
precedence. ``/`` is the ordered choice that requires the parser to try the
alternatives in the given order. ``/`` is often used to ensure the grammar
is not ambiguous.
Non-terminals start with a lowercase letter, abstract terminal symbols are in
UPPERCASE. Verbatim terminal symbols (including keywords) are quoted
with ``'``. An example::
ifStmt = 'if' expr ':' stmts ('elif' expr ':' stmts)* ('else' stmts)?
The binary ``^*`` operator is used as a shorthand for 0 or more occurances
separated by its second argument; likewise ``^+`` means 1 or more
occurances: ``a ^+ b`` is short for ``a (b a)*``
and ``a ^* b`` is short for ``(a (b a)*)?``. Example::
arrayConstructor = '[' expr ^* ',' ']'
Other parts of Nimrod - like scoping rules or runtime semantics are only
described in an informal manner for now.
Definitions
===========
A Nimrod program specifies a computation that acts on a memory consisting of
components called `locations`:idx:. A variable is basically a name for a
location. Each variable and location is of a certain `type`:idx:. The
variable's type is called `static type`:idx:, the location's type is called
`dynamic type`:idx:. If the static type is not the same as the dynamic type,
it is a super-type or subtype of the dynamic type.
An `identifier`:idx: is a symbol declared as a name for a variable, type,
procedure, etc. The region of the program over which a declaration applies is
called the `scope`:idx: of the declaration. Scopes can be nested. The meaning
of an identifier is determined by the smallest enclosing scope in which the
identifier is declared unless overloading resolution rules suggest otherwise.
An expression specifies a computation that produces a value or location.
Expressions that produce locations are called `l-values`:idx:. An l-value
can denote either a location or the value the location contains, depending on
the context. Expressions whose values can be determined statically are called
`constant expressions`:idx:; they are never l-values.
A `static error`:idx: is an error that the implementation detects before
program execution. Unless explicitly classified, an error is a static error.
A `checked runtime error`:idx: is an error that the implementation detects
and reports at runtime. The method for reporting such errors is via *raising
exceptions* or *dying with a fatal error*. However, the implementation
provides a means to disable these runtime checks. See the section pragmas_
for details.
Wether a checked runtime error results in an exception or in a fatal error at
runtime is implementation specific. Thus the following program is always
invalid:
.. code-block:: nimrod
var a: array[0..1, char]
let i = 5
try:
a[i] = 'N'
except EInvalidIndex:
echo "invalid index"
An `unchecked runtime error`:idx: is an error that is not guaranteed to be
detected, and can cause the subsequent behavior of the computation to
be arbitrary. Unchecked runtime errors cannot occur if only `safe`:idx:
language features are used.
Lexical Analysis
================
Encoding
--------
All Nimrod source files are in the UTF-8 encoding (or its ASCII subset). Other
encodings are not supported. Any of the standard platform line termination
sequences can be used - the Unix form using ASCII LF (linefeed), the Windows
form using the ASCII sequence CR LF (return followed by linefeed), or the old
Macintosh form using the ASCII CR (return) character. All of these forms can be
used equally, regardless of platform.
Indentation
-----------
Nimrod's standard grammar describes an `indentation sensitive`:idx: language.
This means that all the control structures are recognized by indentation.
Indentation consists only of spaces; tabulators are not allowed.
The indentation handling is implemented as follows: The lexer annotates the
following token with the preceding number of spaces; indentation is not
a separate token. This trick allows parsing of Nimrod with only 1 token of
lookahead.
The parser uses a stack of indentation levels: the stack consists of integers
counting the spaces. The indentation information is queried at strategic
places in the parser but ignored otherwise: The pseudo terminal ``IND{>}``
denotes an indentation that consists of more spaces than the entry at the top
of the stack; IND{=} an indentation that has the same number of spaces. ``DED``
is another pseudo terminal that describes the *action* of popping a value
from the stack, ``IND{>}`` then implies to push onto the stack.
With this notation we can now easily define the core of the grammar: A block of
statements (simplified example)::
ifStmt = 'if' expr ':' stmt
(IND{=} 'elif' expr ':' stmt)*
(IND{=} 'else' ':' stmt)?
simpleStmt = ifStmt / ...
stmt = IND{>} stmt ^+ IND{=} DED # list of statements
/ simpleStmt # or a simple statement
Comments
--------
Comments start anywhere outside a string or character literal with the
hash character ``#``.
Comments consist of a concatenation of `comment pieces`:idx:. A comment piece
starts with ``#`` and runs until the end of the line. The end of line characters
belong to the piece. If the next line only consists of a comment piece which is
aligned to the preceding one, it does not start a new comment:
.. code-block:: nimrod
i = 0 # This is a single comment over multiple lines belonging to the
# assignment statement. The scanner merges these two pieces.
# This is a new comment belonging to the current block, but to no particular
# statement.
i = i + 1 # This a new comment that is NOT
echo(i) # continued here, because this comment refers to the echo statement
The alignment requirement does not hold if the preceding comment piece ends in
a backslash (followed by optional whitespace):
.. code-block:: nimrod
type
TMyObject {.final, pure, acyclic.} = object # comment continues: \
# we have lots of space here to comment 'TMyObject'.
# This line belongs to the comment as it's properly aligned.
Comments are tokens; they are only allowed at certain places in the input file
as they belong to the syntax tree! This feature enables perfect source-to-source
transformations (such as pretty-printing) and superior documentation generators.
A nice side-effect is that the human reader of the code always knows exactly
which code snippet the comment refers to.
Identifiers & Keywords
----------------------
Identifiers in Nimrod can be any string of letters, digits
and underscores, beginning with a letter. Two immediate following
underscores ``__`` are not allowed::
letter ::= 'A'..'Z' | 'a'..'z' | '\x80'..'\xff'
digit ::= '0'..'9'
IDENTIFIER ::= letter ( ['_'] (letter | digit) )*
Currently any unicode character with an ordinal value > 127 (non ASCII) is
classified as a ``letter`` and may thus be part of an identifier but later
versions of the language may assign some Unicode characters to belong to the
operator characters instead.
The following keywords are reserved and cannot be used as identifiers:
.. code-block:: nimrod
:file: keywords.txt
Some keywords are unused; they are reserved for future developments of the
language.
Nimrod is a `style-insensitive`:idx: language. This means that it is not
case-sensitive and even underscores are ignored:
**type** is a reserved word, and so is **TYPE** or **T_Y_P_E**. The idea behind
this is that this allows programmers to use their own preferred spelling style
and libraries written by different programmers cannot use incompatible
conventions. A Nimrod-aware editor or IDE can show the identifiers as
preferred. Another advantage is that it frees the programmer from remembering
the exact spelling of an identifier.
String literals
---------------
Terminal symbol in the grammar: ``STR_LIT``.
String literals can be delimited by matching double quotes, and can
contain the following `escape sequences`:idx:\ :
================== ===================================================
Escape sequence Meaning
================== ===================================================
``\n`` `newline`:idx:
``\r``, ``\c`` `carriage return`:idx:
``\l`` `line feed`:idx:
``\f`` `form feed`:idx:
``\t`` `tabulator`:idx:
``\v`` `vertical tabulator`:idx:
``\\`` `backslash`:idx:
``\"`` `quotation mark`:idx:
``\'`` `apostrophe`:idx:
``\`` '0'..'9'+ `character with decimal value d`:idx:;
all decimal digits directly
following are used for the character
``\a`` `alert`:idx:
``\b`` `backspace`:idx:
``\e`` `escape`:idx: `[ESC]`:idx:
``\x`` HH `character with hex value HH`:idx:;
exactly two hex digits are allowed
================== ===================================================
Strings in Nimrod may contain any 8-bit value, even embedded zeros. However
some operations may interpret the first binary zero as a terminator.
Triple quoted string literals
-----------------------------
Terminal symbol in the grammar: ``TRIPLESTR_LIT``.
String literals can also be delimited by three double quotes
``"""`` ... ``"""``.
Literals in this form may run for several lines, may contain ``"`` and do not
interpret any escape sequences.
For convenience, when the opening ``"""`` is followed by a newline (there may
be whitespace between the opening ``"""`` and the newline),
the newline (and the preceding whitespace) is not included in the string. The
ending of the string literal is defined by the pattern ``"""[^"]``, so this:
.. code-block:: nimrod
""""long string within quotes""""
Produces::
"long string within quotes"
Raw string literals
-------------------
Terminal symbol in the grammar: ``RSTR_LIT``.
There are also raw string literals that are preceded with the
letter ``r`` (or ``R``) and are delimited by matching double quotes (just
like ordinary string literals) and do not interpret the escape sequences.
This is especially convenient for regular expressions or Windows paths:
.. code-block:: nimrod
var f = openFile(r"C:\texts\text.txt") # a raw string, so ``\t`` is no tab
To produce a single ``"`` within a raw string literal, it has to be doubled:
.. code-block:: nimrod
r"a""b"
Produces::
a"b
``r""""`` is not possible with this notation, because the three leading
quotes introduce a triple quoted string literal. ``r"""`` is the same
as ``"""`` since triple quoted string literals do not interpret escape
sequences either.
Generalized raw string literals
-------------------------------
Terminal symbols in the grammar: ``GENERALIZED_STR_LIT``,
``GENERALIZED_TRIPLESTR_LIT``.
The construct ``identifier"string literal"`` (without whitespace between the
identifier and the opening quotation mark) is a
generalized raw string literal. It is a shortcut for the construct
``identifier(r"string literal")``, so it denotes a procedure call with a
raw string literal as its only argument. Generalized raw string literals
are especially convenient for embedding mini languages directly into Nimrod
(for example regular expressions).
The construct ``identifier"""string literal"""`` exists too. It is a shortcut
for ``identifier("""string literal""")``.
Character literals
------------------
Character literals are enclosed in single quotes ``''`` and can contain the
same escape sequences as strings - with one exception: `newline`:idx: (``\n``)
is not allowed as it may be wider than one character (often it is the pair
CR/LF for example). Here are the valid `escape sequences`:idx: for character
literals:
================== ===================================================
Escape sequence Meaning
================== ===================================================
``\r``, ``\c`` `carriage return`:idx:
``\l`` `line feed`:idx:
``\f`` `form feed`:idx:
``\t`` `tabulator`:idx:
``\v`` `vertical tabulator`:idx:
``\\`` `backslash`:idx:
``\"`` `quotation mark`:idx:
``\'`` `apostrophe`:idx:
``\`` '0'..'9'+ `character with decimal value d`:idx:;
all decimal digits directly
following are used for the character
``\a`` `alert`:idx:
``\b`` `backspace`:idx:
``\e`` `escape`:idx: `[ESC]`:idx:
``\x`` HH `character with hex value HH`:idx:;
exactly two hex digits are allowed
================== ===================================================
A character is not an Unicode character but a single byte. The reason for this
is efficiency: for the overwhelming majority of use-cases, the resulting
programs will still handle UTF-8 properly as UTF-8 was specially designed for
this. Another reason is that Nimrod can thus support ``array[char, int]`` or
``set[char]`` efficiently as many algorithms rely on this feature. The `TRune`
type is used for Unicode characters, it can represent any Unicode character.
``TRune`` is declared in the `unicode module <unicode.html>`_.
Numerical constants
-------------------
Numerical constants are of a single type and have the form::
hexdigit = digit | 'A'..'F' | 'a'..'f'
octdigit = '0'..'7'
bindigit = '0'..'1'
HEX_LIT = '0' ('x' | 'X' ) hexdigit ( ['_'] hexdigit )*
DEC_LIT = digit ( ['_'] digit )*
OCT_LIT = '0o' octdigit ( ['_'] octdigit )*
BIN_LIT = '0' ('b' | 'B' ) bindigit ( ['_'] bindigit )*
INT_LIT = HEX_LIT
| DEC_LIT
| OCT_LIT
| BIN_LIT
INT8_LIT = INT_LIT ['\''] ('i' | 'I') '8'
INT16_LIT = INT_LIT ['\''] ('i' | 'I') '16'
INT32_LIT = INT_LIT ['\''] ('i' | 'I') '32'
INT64_LIT = INT_LIT ['\''] ('i' | 'I') '64'
UINT8_LIT = INT_LIT ['\''] ('u' | 'U')
UINT8_LIT = INT_LIT ['\''] ('u' | 'U') '8'
UINT16_LIT = INT_LIT ['\''] ('u' | 'U') '16'
UINT32_LIT = INT_LIT ['\''] ('u' | 'U') '32'
UINT64_LIT = INT_LIT ['\''] ('u' | 'U') '64'
exponent = ('e' | 'E' ) ['+' | '-'] digit ( ['_'] digit )*
FLOAT_LIT = digit (['_'] digit)* (('.' (['_'] digit)* [exponent]) |exponent)
FLOAT32_LIT = HEX_LIT '\'' ('f'|'F') '32'
| (FLOAT_LIT | DEC_LIT | OCT_LIT | BIN_LIT) ['\''] ('f'|'F') '32'
FLOAT64_LIT = HEX_LIT '\'' ('f'|'F') '64'
| (FLOAT_LIT | DEC_LIT | OCT_LIT | BIN_LIT) ['\''] ('f'|'F') '64'
As can be seen in the productions, numerical constants can contain underscores
for readability. Integer and floating point literals may be given in decimal (no
prefix), binary (prefix ``0b``), octal (prefix ``0o``) and hexadecimal
(prefix ``0x``) notation.
There exists a literal for each numerical type that is
defined. The suffix starting with an apostrophe ('\'') is called a
`type suffix`:idx:. Literals without a type suffix are of the type ``int``,
unless the literal contains a dot or ``E|e`` in which case it is of
type ``float``. For notational convenience the apostrophe of a type suffix
is optional if it is not ambiguous (only hexadecimal floating point literals
with a type suffix can be ambiguous).
The type suffixes are:
================= =========================
Type Suffix Resulting type of literal
================= =========================
``'i8`` int8
``'i16`` int16
``'i32`` int32
``'i64`` int64
``'u`` uint
``'u8`` uint8
``'u16`` uint16
``'u32`` uint32
``'u64`` uint64
``'f32`` float32
``'f64`` float64
================= =========================
Floating point literals may also be in binary, octal or hexadecimal
notation:
``0B0_10001110100_0000101001000111101011101111111011000101001101001001'f64``
is approximately 1.72826e35 according to the IEEE floating point standard.
Operators
---------
In Nimrod one can define his own operators. An operator is any
combination of the following characters::
= + - * / < >
@ $ ~ & % |
! ? ^ . : \
These keywords are also operators:
``and or not xor shl shr div mod in notin is isnot of``.
`=`:tok:, `:`:tok:, `::`:tok: are not available as general operators; they
are used for other notational purposes.
``*:`` is as a special case the two tokens `*`:tok: and `:`:tok:
(to support ``var v*: T``).
Other tokens
------------
The following strings denote other tokens::
` ( ) { } [ ] , ; [. .] {. .} (. .)
The `slice`:idx: operator `..`:tok: takes precedence over other tokens that
contain a dot: `{..}`:tok: are the three tokens `{`:tok:, `..`:tok:, `}`:tok:
and not the two tokens `{.`:tok:, `.}`:tok:.
Syntax
======
This section lists Nimrod's standard syntax. How the parser handles
the indentation is already described in the `Lexical Analysis`_ section.
Nimrod allows user-definable operators.
Binary operators have 10 different levels of precedence.
Relevant character
------------------
An operator symbol's *relevant character* is its first
character unless the first character is ``\`` and its length is greater than 1
then it is the second character.
This rule allows to escape operator symbols with ``\`` and keeps the operator's
precedence and associativity; this is useful for meta programming.
Associativity
-------------
Binary operators whose relevant character is ``^`` are right-associative, all
other binary operators are left-associative.
Precedence
----------
Unary operators always bind stronger than any binary
operator: ``$a + b`` is ``($a) + b`` and not ``$(a + b)``.
If an unary operator's relevant character is ``@`` it is a `sigil-like`:idx:
operator which binds stronger than a ``primarySuffix``: ``@x.abc`` is parsed
as ``(@x).abc`` whereas ``$x.abc`` is parsed as ``$(x.abc)``.
For binary operators that are not keywords the precedence is determined by the
following rules:
If the operator ends with ``=`` and its relevant character is none of
``<``, ``>``, ``!``, ``=``, ``~``, ``?``, it is an *assignment operator* which
has the lowest precedence.
Otherwise precedence is determined by the relevant character.
================ =============================================== ================== ===============
Precedence level Operators Relevant character Terminal symbol
================ =============================================== ================== ===============
9 (highest) ``$ ^`` OP9
8 ``* / div mod shl shr %`` ``* % \ /`` OP8
7 ``+ -`` ``+ ~ |`` OP7
6 ``&`` ``&`` OP6
5 ``..`` ``.`` OP5
4 ``== <= < >= > != in notin is isnot not of`` ``= < > !`` OP4
3 ``and`` OP3
2 ``or xor`` OP2
1 ``@ : ?`` OP1
0 (lowest) *assignment operator* (like ``+=``, ``*=``) OP0
================ =============================================== ================== ===============
Strong spaces
-------------
The number of spaces preceeding a non-keyword operator affects precedence
if the experimental parser directive ``#!strongSpaces`` is used. Indentation
is not used to determine the number of spaces. If 2 or more operators have the
same number of preceding spaces the precedence table applies, so ``1 + 3 * 4``
is still parsed as ``1 + (3 * 4)``, but ``1+3 * 4`` is parsed as ``(1+3) * 4``:
.. code-block:: nimrod
#! strongSpaces
if foo+4 * 4 == 8 and b&c | 9 ++
bar:
echo ""
# is parsed as
if ((foo+4)*4 == 8) and (((b&c) | 9) ++ bar): echo ""
Furthermore whether an operator is used a prefix operator is affected by the
number of spaces:
.. code-block:: nimrod
#! strongSpaces
echo $foo
# is parsed as
echo($foo)
This also affects whether ``[]``, ``{}``, ``()`` are parsed as constructors
or as accessors:
.. code-block:: nimrod
#! strongSpaces
echo (1,2)
# is parsed as
echo((1,2))
Only 0, 1, 2, 4 or 8 spaces are allowed to specify precedence and it is
enforced that infix operators have the same amount of spaces before and after
them. This rules does not apply when a newline follows after the operator,
then only the preceding spaces are considered.
Grammar
-------
The grammar's start symbol is ``module``.
.. include:: grammar.txt
:literal:
Types
=====
All expressions have a type which is known at compile time. Nimrod
is statically typed. One can declare new types, which is in essence defining
an identifier that can be used to denote this custom type.
These are the major type classes:
* ordinal types (consist of integer, bool, character, enumeration
(and subranges thereof) types)
* floating point types
* string type
* structured types
* reference (pointer) type
* procedural type
* generic type
Ordinal types
-------------
Ordinal types have the following characteristics:
- Ordinal types are countable and ordered. This property allows
the operation of functions as ``Inc``, ``Ord``, ``Dec`` on ordinal types to
be defined.
- Ordinal values have a smallest possible value. Trying to count further
down than the smallest value gives a checked runtime or static error.
- Ordinal values have a largest possible value. Trying to count further
than the largest value gives a checked runtime or static error.
Integers, bool, characters and enumeration types (and subranges of these
types) belong to ordinal types. For reasons of simplicity of implementation
the types ``uint`` and ``uint64`` are not ordinal types.
Pre-defined integer types
-------------------------
These integer types are pre-defined:
``int``
the generic signed integer type; its size is platform dependent and has the
same size as a pointer. This type should be used in general. An integer
literal that has no type suffix is of this type.
intXX
additional signed integer types of XX bits use this naming scheme
(example: int16 is a 16 bit wide integer).
The current implementation supports ``int8``, ``int16``, ``int32``, ``int64``.
Literals of these types have the suffix 'iXX.
``uint``
the generic `unsigned integer`:idx: type; its size is platform dependent and
has the same size as a pointer. An integer literal with the type
suffix ``'u`` is of this type.
uintXX
additional signed integer types of XX bits use this naming scheme
(example: uint16 is a 16 bit wide unsigned integer).
The current implementation supports ``uint8``, ``uint16``, ``uint32``,
``uint64``. Literals of these types have the suffix 'uXX.
Unsigned operations all wrap around; they cannot lead to over- or
underflow errors.
In addition to the usual arithmetic operators for signed and unsigned integers
(``+ - *`` etc.) there are also operators that formally work on *signed*
integers but treat their arguments as *unsigned*: They are mostly provided
for backwards compatibility with older versions of the language that lacked
unsigned integer types. These unsigned operations for signed integers use
the ``%`` suffix as convention:
====================== ======================================================
operation meaning
====================== ======================================================
``a +% b`` unsigned integer addition
``a -% b`` unsigned integer subtraction
``a *% b`` unsigned integer multiplication
``a /% b`` unsigned integer division
``a %% b`` unsigned integer modulo operation
``a <% b`` treat ``a`` and ``b`` as unsigned and compare
``a <=% b`` treat ``a`` and ``b`` as unsigned and compare
``ze(a)`` extends the bits of ``a`` with zeros until it has the
width of the ``int`` type
``toU8(a)`` treats ``a`` as unsigned and converts it to an
unsigned integer of 8 bits (but still the
``int8`` type)
``toU16(a)`` treats ``a`` as unsigned and converts it to an
unsigned integer of 16 bits (but still the
``int16`` type)
``toU32(a)`` treats ``a`` as unsigned and converts it to an
unsigned integer of 32 bits (but still the
``int32`` type)
====================== ======================================================
`Automatic type conversion`:idx: is performed in expressions where different
kinds of integer types are used: the smaller type is converted to the larger.
A `narrowing type conversion`:idx: converts a larger to a smaller type (for
example ``int32 -> int16``. A `widening type conversion`:idx: converts a
smaller type to a larger type (for example ``int16 -> int32``). In Nimrod only
widening type conversions are *implicit*:
.. code-block:: nimrod
var myInt16 = 5i16
var myInt: int
myInt16 + 34 # of type ``int16``
myInt16 + myInt # of type ``int``
myInt16 + 2i32 # of type ``int32``
However, ``int`` literals are implicitly convertible to a smaller integer type
if the literal's value fits this smaller type and such a conversion is less
expensive than other implicit conversions, so ``myInt16 + 34`` produces
an ``int16`` result.
For further details, see `Convertible relation`_.
Subrange types
--------------
A subrange type is a range of values from an ordinal type (the base
type). To define a subrange type, one must specify it's limiting values: the
lowest and highest value of the type:
.. code-block:: nimrod
type
TSubrange = range[0..5]
``TSubrange`` is a subrange of an integer which can only hold the values 0
to 5. Assigning any other value to a variable of type ``TSubrange`` is a
checked runtime error (or static error if it can be statically
determined). Assignments from the base type to one of its subrange types
(and vice versa) are allowed.
A subrange type has the same size as its base type (``int`` in the example).
Nimrod requires `interval arithmetic`:idx: for subrange types over a set
of built-in operators that involve constants: ``x %% 3`` is of
type ``range[0..2]``. The following built-in operators for integers are
affected by this rule: ``-``, ``+``, ``*``, ``min``, ``max``, ``succ``,
``pred``, ``mod``, ``div``, ``%%``, ``and`` (bitwise ``and``).
Bitwise ``and`` only produces a ``range`` if one of its operands is a
constant *x* so that (x+1) is a number of two.
(Bitwise ``and`` is then a ``%%`` operation.)
This means that the following code is accepted:
.. code-block:: nimrod
case (x and 3) + 7
of 7: echo "A"
of 8: echo "B"
of 9: echo "C"
of 10: echo "D"
# note: no ``else`` required as (x and 3) + 7 has the type: range[7..10]
Pre-defined floating point types
--------------------------------
The following floating point types are pre-defined:
``float``
the generic floating point type; its size is platform dependent
(the compiler chooses the processor's fastest floating point type).
This type should be used in general.
floatXX
an implementation may define additional floating point types of XX bits using
this naming scheme (example: float64 is a 64 bit wide float). The current
implementation supports ``float32`` and ``float64``. Literals of these types
have the suffix 'fXX.
Automatic type conversion in expressions with different kinds
of floating point types is performed: See `Convertible relation`_ for further
details. Arithmetic performed on floating point types follows the IEEE
standard. Integer types are not converted to floating point types automatically
and vice versa.
The IEEE standard defines five types of floating-point exceptions:
* Invalid: operations with mathematically invalid operands,
for example 0.0/0.0, sqrt(-1.0), and log(-37.8).
* Division by zero: divisor is zero and dividend is a finite nonzero number,
for example 1.0/0.0.
* Overflow: operation produces a result that exceeds the range of the exponent,
for example MAXDOUBLE+0.0000000000001e308.
* Underflow: operation produces a result that is too small to be represented
as a normal number, for example, MINDOUBLE * MINDOUBLE.
* Inexact: operation produces a result that cannot be represented with infinite
precision, for example, 2.0 / 3.0, log(1.1) and 0.1 in input.
The IEEE exceptions are either ignored at runtime or mapped to the
Nimrod exceptions: `EFloatInvalidOp`:idx:, `EFloatDivByZero`:idx:,
`EFloatOverflow`:idx:, `EFloatUnderflow`:idx:, and `EFloatInexact`:idx:.
These exceptions inherit from the `EFloatingPoint`:idx: base class.
Nimrod provides the pragmas `NaNChecks`:idx: and `InfChecks`:idx: to control
whether the IEEE exceptions are ignored or trap a Nimrod exception:
.. code-block:: nimrod
{.NanChecks: on, InfChecks: on.}
var a = 1.0
var b = 0.0
echo b / b # raises EFloatInvalidOp
echo a / b # raises EFloatOverflow
In the current implementation ``EFloatDivByZero`` and ``EFloatInexact`` are
never raised. ``EFloatOverflow`` is raised instead of ``EFloatDivByZero``.
There is also a `floatChecks`:idx: pragma that is a short-cut for the
combination of ``NaNChecks`` and ``InfChecks`` pragmas. ``floatChecks`` are
turned off as default.
The only operations that are affected by the ``floatChecks`` pragma are
the ``+``, ``-``, ``*``, ``/`` operators for floating point types.
Boolean type
------------
The boolean type is named `bool`:idx: in Nimrod and can be one of the two
pre-defined values ``true`` and ``false``. Conditions in while,
if, elif, when statements need to be of type bool.
This condition holds::
ord(false) == 0 and ord(true) == 1
The operators ``not, and, or, xor, <, <=, >, >=, !=, ==`` are defined
for the bool type. The ``and`` and ``or`` operators perform short-cut
evaluation. Example:
.. code-block:: nimrod
while p != nil and p.name != "xyz":
# p.name is not evaluated if p == nil
p = p.next
The size of the bool type is one byte.
Character type
--------------
The character type is named ``char`` in Nimrod. Its size is one byte.
Thus it cannot represent an UTF-8 character, but a part of it.
The reason for this is efficiency: for the overwhelming majority of use-cases,
the resulting programs will still handle UTF-8 properly as UTF-8 was specially
designed for this.
Another reason is that Nimrod can support ``array[char, int]`` or
``set[char]`` efficiently as many algorithms rely on this feature. The
`TRune` type is used for Unicode characters, it can represent any Unicode
character. ``TRune`` is declared in the `unicode module <unicode.html>`_.
Enumeration types
-----------------
Enumeration types define a new type whose values consist of the ones
specified. The values are ordered. Example:
.. code-block:: nimrod
type
TDirection = enum
north, east, south, west
Now the following holds::
ord(north) == 0
ord(east) == 1
ord(south) == 2
ord(west) == 3
Thus, north < east < south < west. The comparison operators can be used
with enumeration types.
For better interfacing to other programming languages, the fields of enum
types can be assigned an explicit ordinal value. However, the ordinal values
have to be in ascending order. A field whose ordinal value is not
explicitly given is assigned the value of the previous field + 1.
An explicit ordered enum can have *holes*:
.. code-block:: nimrod
type
TTokenType = enum
a = 2, b = 4, c = 89 # holes are valid
However, it is then not an ordinal anymore, so it is not possible to use these
enums as an index type for arrays. The procedures ``inc``, ``dec``, ``succ``
and ``pred`` are not available for them either.
The compiler supports the built-in stringify operator ``$`` for enumerations.
The stringify's result can be controlled by explicitly giving the string
values to use:
.. code-block:: nimrod
type
TMyEnum = enum
valueA = (0, "my value A"),
valueB = "value B",
valueC = 2,
valueD = (3, "abc")
As can be seen from the example, it is possible to both specify a field's
ordinal value and its string value by using a tuple. It is also
possible to only specify one of them.
An enum can be marked with the ``pure`` pragma so that it's fields are not
added to the current scope, so they always need to be accessed
via ``TMyEnum.value``:
.. code-block:: nimrod
type
TMyEnum {.pure.} = enum
valueA, valueB, valueC, valueD
echo valueA # error: Unknown identifier
echo TMyEnum.valueA # works
String type
-----------
All string literals are of the type ``string``. A string in Nimrod is very
similar to a sequence of characters. However, strings in Nimrod are both
zero-terminated and have a length field. One can retrieve the length with the
builtin ``len`` procedure; the length never counts the terminating zero.
The assignment operator for strings always copies the string.
The ``&`` operator concatenates strings.
Strings are compared by their lexicographical order. All comparison operators
are available. Strings can be indexed like arrays (lower bound is 0). Unlike
arrays, they can be used in case statements:
.. code-block:: nimrod
case paramStr(i)
of "-v": incl(options, optVerbose)
of "-h", "-?": incl(options, optHelp)
else: write(stdout, "invalid command line option!\n")
Per convention, all strings are UTF-8 strings, but this is not enforced. For
example, when reading strings from binary files, they are merely a sequence of
bytes. The index operation ``s[i]`` means the i-th *char* of ``s``, not the
i-th *unichar*. The iterator ``runes`` from the `unicode module
<unicode.html>`_ can be used for iteration over all Unicode characters.
CString type
------------
The ``cstring`` type represents a pointer to a zero-terminated char array
compatible to the type ``char*`` in Ansi C. Its primary purpose lies in easy
interfacing with C. The index operation ``s[i]`` means the i-th *char* of
``s``; however no bounds checking for ``cstring`` is performed making the
index operation unsafe.
A Nimrod ``string`` is implicitly convertible
to ``cstring`` for convenience. If a Nimrod string is passed to a C-style
variadic proc, it is implicitly converted to ``cstring`` too:
.. code-block:: nimrod
proc printf(formatstr: cstring) {.importc: "printf", varargs,
header: "<stdio.h>".}
printf("This works %s", "as expected")
Even though the conversion is implicit, it is not *safe*: The garbage collector
does not consider a ``cstring`` to be a root and may collect the underlying
memory. However in practice this almost never happens as the GC considers
stack roots conservatively. One can use the builtin procs ``GC_ref`` and
``GC_unref`` to keep the string data alive for the rare cases where it does
not work.
A `$` proc is defined for cstrings that returns a string. Thus to get a nimrod
string from a cstring:
.. code-block:: nimrod
var str: string = "Hello!"
var cstr: cstring = s
var newstr: string = $cstr
Structured types
----------------
A variable of a structured type can hold multiple values at the same
time. Structured types can be nested to unlimited levels. Arrays, sequences,
tuples, objects and sets belong to the structured types.
Array and sequence types
------------------------
Arrays are a homogeneous type, meaning that each element in the array
has the same type. Arrays always have a fixed length which is specified at
compile time (except for open arrays). They can be indexed by any ordinal type.
A parameter ``A`` may be an *open array*, in which case it is indexed by
integers from 0 to ``len(A)-1``. An array expression may be constructed by the
array constructor ``[]``.
Sequences are similar to arrays but of dynamic length which may change
during runtime (like strings). Sequences are implemented as growable arrays,
allocating pieces of memory as items are added. A sequence ``S`` is always
indexed by integers from 0 to ``len(S)-1`` and its bounds are checked.
Sequences can be constructed by the array constructor ``[]`` in conjunction
with the array to sequence operator ``@``. Another way to allocate space for a
sequence is to call the built-in ``newSeq`` procedure.
A sequence may be passed to a parameter that is of type *open array*.
Example:
.. code-block:: nimrod
type
TIntArray = array[0..5, int] # an array that is indexed with 0..5
TIntSeq = seq[int] # a sequence of integers
var
x: TIntArray
y: TIntSeq
x = [1, 2, 3, 4, 5, 6] # [] is the array constructor
y = @[1, 2, 3, 4, 5, 6] # the @ turns the array into a sequence
The lower bound of an array or sequence may be received by the built-in proc
``low()``, the higher bound by ``high()``. The length may be
received by ``len()``. ``low()`` for a sequence or an open array always returns
0, as this is the first valid index.
One can append elements to a sequence with the ``add()`` proc or the ``&``
operator, and remove (and get) the last element of a sequence with the
``pop()`` proc.
The notation ``x[i]`` can be used to access the i-th element of ``x``.
Arrays are always bounds checked (at compile-time or at runtime). These
checks can be disabled via pragmas or invoking the compiler with the
``--boundChecks:off`` command line switch.
Open arrays
-----------
Often fixed size arrays turn out to be too inflexible; procedures should
be able to deal with arrays of different sizes. The `openarray`:idx: type
allows this; it can only be used for parameters. Openarrays are always
indexed with an ``int`` starting at position 0. The ``len``, ``low``
and ``high`` operations are available for open arrays too. Any array with
a compatible base type can be passed to an openarray parameter, the index
type does not matter. In addition to arrays sequences can also be passed
to an open array parameter.
The openarray type cannot be nested: multidimensional openarrays are not
supported because this is seldom needed and cannot be done efficiently.
Varargs
-------
A ``varargs`` parameter is an openarray parameter that additionally
allows to pass a variable number of arguments to a procedure. The compiler
converts the list of arguments to an array implicitly:
.. code-block:: nimrod
proc myWriteln(f: TFile, a: varargs[string]) =
for s in items(a):
write(f, s)
write(f, "\n")
myWriteln(stdout, "abc", "def", "xyz")
# is transformed to:
myWriteln(stdout, ["abc", "def", "xyz"])
This transformation is only done if the varargs parameter is the
last parameter in the procedure header. It is also possible to perform
type conversions in this context:
.. code-block:: nimrod
proc myWriteln(f: TFile, a: varargs[string, `$`]) =
for s in items(a):
write(f, s)
write(f, "\n")
myWriteln(stdout, 123, "abc", 4.0)
# is transformed to:
myWriteln(stdout, [$123, $"def", $4.0])
In this example ``$`` is applied to any argument that is passed to the
parameter ``a``. (Note that ``$`` applied to strings is a nop.)
Tuples and object types
-----------------------
A variable of a tuple or object type is a heterogeneous storage
container.
A tuple or object defines various named *fields* of a type. A tuple also
defines an *order* of the fields. Tuples are meant for heterogeneous storage
types with no overhead and few abstraction possibilities. The constructor ``()``
can be used to construct tuples. The order of the fields in the constructor
must match the order of the tuple's definition. Different tuple-types are
*equivalent* if they specify the same fields of the same type in the same
order. The *names* of the fields also have to be identical but this might
change in a future version of the language.
The assignment operator for tuples copies each component.
The default assignment operator for objects copies each component. Overloading
of the assignment operator for objects is not possible, but this will change
in future versions of the compiler.
.. code-block:: nimrod
type
TPerson = tuple[name: string, age: int] # type representing a person:
# a person consists of a name
# and an age
var
person: TPerson
person = (name: "Peter", age: 30)
# the same, but less readable:
person = ("Peter", 30)
The implementation aligns the fields for best access performance. The alignment
is compatible with the way the C compiler does it.
For consistency with ``object`` declarations, tuples in a ``type`` section
can also be defined with indentation instead of ``[]``:
.. code-block:: nimrod
type
TPerson = tuple # type representing a person
name: string # a person consists of a name
age: natural # and an age
Objects provide many features that tuples do not. Object provide inheritance
and information hiding. Objects have access to their type at runtime, so that
the ``of`` operator can be used to determine the object's type.
.. code-block:: nimrod
type
TPerson {.inheritable.} = object
name*: string # the * means that `name` is accessible from other modules
age: int # no * means that the field is hidden
TStudent = object of TPerson # a student is a person
id: int # with an id field
var
student: TStudent
person: TPerson
assert(student of TStudent) # is true
Object fields that should be visible from outside the defining module, have to
be marked by ``*``. In contrast to tuples, different object types are
never *equivalent*. Objects that have no ancestor are implicitly ``final``
and thus have no hidden type field. One can use the ``inheritable`` pragma to
introduce new object roots apart from ``system.TObject``.
Object construction
-------------------
Objects can also be created with an `object construction expression`:idx: that
has the syntax ``T(fieldA: valueA, fieldB: valueB, ...)`` where ``T`` is
an ``object`` type or a ``ref object`` type:
.. code-block:: nimrod
var student = TStudent(name: "Anton", age: 5, id: 3)
For a ``ref object`` type ``system.new`` is invoked implicitly.
Object variants
---------------
Often an object hierarchy is overkill in certain situations where simple
variant types are needed.
An example:
.. code-block:: nimrod
# This is an example how an abstract syntax tree could be modelled in Nimrod
type
TNodeKind = enum # the different node types
nkInt, # a leaf with an integer value
nkFloat, # a leaf with a float value
nkString, # a leaf with a string value
nkAdd, # an addition
nkSub, # a subtraction
nkIf # an if statement
PNode = ref TNode
TNode = object
case kind: TNodeKind # the ``kind`` field is the discriminator
of nkInt: intVal: int
of nkFloat: floatVal: float
of nkString: strVal: string
of nkAdd, nkSub:
leftOp, rightOp: PNode
of nkIf:
condition, thenPart, elsePart: PNode
# create a new case object:
var n = PNode(kind: nkIf, condition: nil)
# accessing n.thenPart is valid because the ``nkIf`` branch is active:
n.thenPart = PNode(kind: nkFloat, floatVal: 2.0)
# the following statement raises an `EInvalidField` exception, because
# n.kind's value does not fit and the ``nkString`` branch is not active:
n.strVal = ""
# invalid: would change the active object branch:
n.kind = nkInt
var x = PNode(kind: nkAdd, leftOp: PNode(kind: nkInt, intVal: 4),
rightOp: PNode(kind: nkInt, intVal: 2))
# valid: does not change the active object branch:
x.kind = nkSub
As can been seen from the example, an advantage to an object hierarchy is that
no casting between different object types is needed. Yet, access to invalid
object fields raises an exception.
The syntax of ``case`` in an object declaration follows closely the syntax of
the ``case`` statement: The branches in a ``case`` section may be indented too.
In the example the ``kind`` field is called the `discriminator`:idx:\: For
safety its address cannot be taken and assignments to it are restricted: The
new value must not lead to a change of the active object branch. For an object
branch switch ``system.reset`` has to be used.
Set type
--------
The set type models the mathematical notion of a set. The set's
basetype can only be an ordinal type. The reason is that sets are implemented
as high performance bit vectors.
Sets can be constructed via the set constructor: ``{}`` is the empty set. The
empty set is type compatible with any special set type. The constructor
can also be used to include elements (and ranges of elements) in the set:
.. code-block:: nimrod
{'a'..'z', '0'..'9'} # This constructs a set that contains the
# letters from 'a' to 'z' and the digits
# from '0' to '9'
These operations are supported by sets:
================== ========================================================
operation meaning
================== ========================================================
``A + B`` union of two sets
``A * B`` intersection of two sets
``A - B`` difference of two sets (A without B's elements)
``A == B`` set equality
``A <= B`` subset relation (A is subset of B or equal to B)
``A < B`` strong subset relation (A is a real subset of B)
``e in A`` set membership (A contains element e)
``A -+- B`` symmetric set difference (= (A - B) + (B - A))
``card(A)`` the cardinality of A (number of elements in A)
``incl(A, elem)`` same as A = A + {elem}
``excl(A, elem)`` same as A = A - {elem}
================== ========================================================
Reference and pointer types
---------------------------
References (similar to pointers in other programming languages) are a
way to introduce many-to-one relationships. This means different references can
point to and modify the same location in memory (also called `aliasing`:idx:).
Nimrod distinguishes between `traced`:idx: and `untraced`:idx: references.
Untraced references are also called *pointers*. Traced references point to
objects of a garbage collected heap, untraced references point to
manually allocated objects or to objects somewhere else in memory. Thus
untraced references are *unsafe*. However for certain low-level operations
(accessing the hardware) untraced references are unavoidable.
Traced references are declared with the **ref** keyword, untraced references
are declared with the **ptr** keyword.
An empty subscript ``[]`` notation can be used to derefer a reference,
the ``addr`` procedure returns the address of an item. An address is always
an untraced reference.
Thus the usage of ``addr`` is an *unsafe* feature.
The ``.`` (access a tuple/object field operator)
and ``[]`` (array/string/sequence index operator) operators perform implicit
dereferencing operations for reference types:
.. code-block:: nimrod
type
PNode = ref TNode
TNode = object
le, ri: PNode
data: int
var
n: PNode
new(n)
n.data = 9
# no need to write n[].data; in fact n[].data is highly discouraged!
As a syntactical extension ``object`` types can be anonymous if
declared in a type section via the ``ref object`` or ``ptr object`` notations.
This feature is useful if an object should only gain reference semantics:
.. code-block:: nimrod
type
Node = ref object
le, ri: Node
data: int
To allocate a new traced object, the built-in procedure ``new`` has to be used.
To deal with untraced memory, the procedures ``alloc``, ``dealloc`` and
``realloc`` can be used. The documentation of the system module contains
further information.
If a reference points to *nothing*, it has the value ``nil``.
Special care has to be taken if an untraced object contains traced objects like
traced references, strings or sequences: in order to free everything properly,
the built-in procedure ``GCunref`` has to be called before freeing the untraced
memory manually:
.. code-block:: nimrod
type
TData = tuple[x, y: int, s: string]
# allocate memory for TData on the heap:
var d = cast[ptr TData](alloc0(sizeof(TData)))
# create a new string on the garbage collected heap:
d.s = "abc"
# tell the GC that the string is not needed anymore:
GCunref(d.s)
# free the memory:
dealloc(d)
Without the ``GCunref`` call the memory allocated for the ``d.s`` string would
never be freed. The example also demonstrates two important features for low
level programming: the ``sizeof`` proc returns the size of a type or value
in bytes. The ``cast`` operator can circumvent the type system: the compiler
is forced to treat the result of the ``alloc0`` call (which returns an untyped
pointer) as if it would have the type ``ptr TData``. Casting should only be
done if it is unavoidable: it breaks type safety and bugs can lead to
mysterious crashes.
**Note**: The example only works because the memory is initialized to zero
(``alloc0`` instead of ``alloc`` does this): ``d.s`` is thus initialized to
``nil`` which the string assignment can handle. One needs to know low level
details like this when mixing garbage collected data with unmanaged memory.
.. XXX finalizers for traced objects
Not nil annotation
------------------
All types for that ``nil`` is a valid value can be annotated to
exclude ``nil`` as a valid value with the ``not nil`` annotation:
.. code-block:: nimrod
type
PObject = ref TObj not nil
TProc = (proc (x, y: int)) not nil
proc p(x: PObject) =
echo "not nil"
# compiler catches this:
p(nil)
# and also this:
var x: PObject
p(x)
The compiler ensures that every code path initializes variables which contain
not nilable pointers. The details of this analysis are still to be specified
here.
Memory regions
--------------
The types ``ref`` and ``ptr`` can get an optional ``region`` annotation.
A region has to be an object type.
Regions are very useful to separate user space and kernel memory in the
development of OS kernels:
.. code-block:: nimrod
type
Kernel = object
Userspace = object
var a: Kernel ptr Stat
var b: Userspace ptr Stat
# the following does not compile as the pointer types are incompatible:
a = b
As the example shows ``ptr`` can also be used as a binary
operator, ``region ptr T`` is a shortcut for ``ptr[region, T]``.
In order to make generic code easier to write ``ptr T`` is a subtype
of ``ptr[R, T]`` for any ``R``.
Furthermore the subtype relation of the region object types is lifted to
the pointer types: If ``A <: B`` then ``ptr[A, T] <: ptr[B, T]``. This can be
used to model subregions of memory. As a special typing rule ``ptr[R, T]`` is
not compatible to ``pointer`` to prevent the following from compiling:
.. code-block:: nimrod
# from system
proc dealloc(p: pointer)
# wrap some scripting language
type
PythonsHeap = object
PyObjectHeader = object
rc: int
typ: pointer
PyObject = ptr[PythonsHeap, PyObjectHeader]
proc createPyObject(): PyObject {.importc: "...".}
proc destroyPyObject(x: PyObject) {.importc: "...".}
var foo = createPyObject()
# type error here, how convenient:
dealloc(foo)
Future directions:
* Memory regions might become available for ``string`` and ``seq`` too.
* Builtin regions like ``private``, ``global`` and ``local`` will
prove very useful for the upcoming OpenCL target.
* Builtin "regions" can model ``lent`` and ``unique`` pointers.
Procedural type
---------------
A procedural type is internally a pointer to a procedure. ``nil`` is
an allowed value for variables of a procedural type. Nimrod uses procedural
types to achieve `functional`:idx: programming techniques.
Examples:
.. code-block:: nimrod
proc printItem(x: int) = ...
proc forEach(c: proc (x: int) {.cdecl.}) =
...
forEach(printItem) # this will NOT work because calling conventions differ
.. code-block:: nimrod
type
TOnMouseMove = proc (x, y: int) {.closure.}
proc onMouseMove(mouseX, mouseY: int) =
# has default calling convention
echo "x: ", mouseX, " y: ", mouseY
proc setOnMouseMove(mouseMoveEvent: TOnMouseMove) = discard
# ok, 'onMouseMove' has the default calling convention, which is compatible
# to 'closure':
setOnMouseMove(onMouseMove)
A subtle issue with procedural types is that the calling convention of the
procedure influences the type compatibility: procedural types are only
compatible if they have the same calling convention. As a special extension,
a procedure of the calling convention ``nimcall`` can be passed to a parameter
that expects a proc of the calling convention ``closure``.
Nimrod supports these `calling conventions`:idx:\:
`nimcall`:idx:
is the default convention used for a Nimrod **proc**. It is the
same as ``fastcall``, but only for C compilers that support ``fastcall``.
`closure`:idx:
is the default calling convention for a **procedural type** that lacks
any pragma annotations. It indicates that the procedure has a hidden
implicit parameter (an *environment*). Proc vars that have the calling
convention ``closure`` take up two machine words: One for the proc pointer
and another one for the pointer to implicitly passed environment.
`stdcall`:idx:
This the stdcall convention as specified by Microsoft. The generated C
procedure is declared with the ``__stdcall`` keyword.
`cdecl`:idx:
The cdecl convention means that a procedure shall use the same convention
as the C compiler. Under windows the generated C procedure is declared with
the ``__cdecl`` keyword.
`safecall`:idx:
This is the safecall convention as specified by Microsoft. The generated C
procedure is declared with the ``__safecall`` keyword. The word *safe*
refers to the fact that all hardware registers shall be pushed to the
hardware stack.
`inline`:idx:
The inline convention means the the caller should not call the procedure,
but inline its code directly. Note that Nimrod does not inline, but leaves
this to the C compiler; it generates ``__inline`` procedures. This is
only a hint for the compiler: it may completely ignore it and
it may inline procedures that are not marked as ``inline``.
`fastcall`:idx:
Fastcall means different things to different C compilers. One gets whatever
the C ``__fastcall`` means.
`syscall`:idx:
The syscall convention is the same as ``__syscall`` in C. It is used for
interrupts.
`noconv`:idx:
The generated C code will not have any explicit calling convention and thus
use the C compiler's default calling convention. This is needed because
Nimrod's default calling convention for procedures is ``fastcall`` to
improve speed.
Most calling conventions exist only for the Windows 32-bit platform.
Assigning/passing a procedure to a procedural variable is only allowed if one
of the following conditions hold:
1) The procedure that is accessed resides in the current module.
2) The procedure is marked with the ``procvar`` pragma (see `procvar pragma`_).
3) The procedure has a calling convention that differs from ``nimcall``.
4) The procedure is anonymous.
The rules' purpose is to prevent the case that extending a non-``procvar``
procedure with default parameters breaks client code.
The default calling convention is ``nimcall``, unless it is an inner proc (a
proc inside of a proc). For an inner proc an analysis is performed whether it
accesses its environment. If it does so, it has the calling convention
``closure``, otherwise it has the calling convention ``nimcall``.
Distinct type
-------------
A ``distinct`` type is new type derived from a `base type`:idx: that is
incompatible with its base type. In particular, it is an essential property
of a distinct type that it **does not** imply a subtype relation between it
and its base type. Explicit type conversions from a distinct type to its
base type and vice versa are allowed.
Modelling currencies
~~~~~~~~~~~~~~~~~~~~
A distinct type can be used to model different physical `units`:idx: with a
numerical base type, for example. The following example models currencies.
Different currencies should not be mixed in monetary calculations. Distinct
types are a perfect tool to model different currencies:
.. code-block:: nimrod
type
TDollar = distinct int
TEuro = distinct int
var
d: TDollar
e: TEuro
echo d + 12
# Error: cannot add a number with no unit and a ``TDollar``
Unfortunately, ``d + 12.TDollar`` is not allowed either,
because ``+`` is defined for ``int`` (among others), not for ``TDollar``. So
a ``+`` for dollars needs to be defined:
.. code-block::
proc `+` (x, y: TDollar): TDollar =
result = TDollar(int(x) + int(y))
It does not make sense to multiply a dollar with a dollar, but with a
number without unit; and the same holds for division:
.. code-block::
proc `*` (x: TDollar, y: int): TDollar =
result = TDollar(int(x) * y)
proc `*` (x: int, y: TDollar): TDollar =
result = TDollar(x * int(y))
proc `div` ...
This quickly gets tedious. The implementations are trivial and the compiler
should not generate all this code only to optimize it away later - after all
``+`` for dollars should produce the same binary code as ``+`` for ints.
The pragma `borrow`:idx: has been designed to solve this problem; in principle
it generates the above trivial implementations:
.. code-block:: nimrod
proc `*` (x: TDollar, y: int): TDollar {.borrow.}
proc `*` (x: int, y: TDollar): TDollar {.borrow.}
proc `div` (x: TDollar, y: int): TDollar {.borrow.}
The ``borrow`` pragma makes the compiler use the same implementation as
the proc that deals with the distinct type's base type, so no code is
generated.
But it seems all this boilerplate code needs to be repeated for the ``TEuro``
currency. This can be solved with templates_.
.. code-block:: nimrod
template additive(typ: typedesc): stmt =
proc `+` *(x, y: typ): typ {.borrow.}
proc `-` *(x, y: typ): typ {.borrow.}
# unary operators:
proc `+` *(x: typ): typ {.borrow.}
proc `-` *(x: typ): typ {.borrow.}
template multiplicative(typ, base: typedesc): stmt =
proc `*` *(x: typ, y: base): typ {.borrow.}
proc `*` *(x: base, y: typ): typ {.borrow.}
proc `div` *(x: typ, y: base): typ {.borrow.}
proc `mod` *(x: typ, y: base): typ {.borrow.}
template comparable(typ: typedesc): stmt =
proc `<` * (x, y: typ): bool {.borrow.}
proc `<=` * (x, y: typ): bool {.borrow.}
proc `==` * (x, y: typ): bool {.borrow.}
template defineCurrency(typ, base: expr): stmt =
type
typ* = distinct base
additive(typ)
multiplicative(typ, base)
comparable(typ)
defineCurrency(TDollar, int)
defineCurrency(TEuro, int)
The borrow pragma can also be used to annotate the distinct type to allow
certain builtin operations to be lifted:
.. code-block:: nimrod
type
Foo = object
a, b: int
s: string
Bar {.borrow: `.`.} = distinct Foo
var bb: ref Bar
new bb
# field access now valid
bb.a = 90
bb.s = "abc"
Currently only the dot accessor can be borrowed in this way.
Avoiding SQL injection attacks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An SQL statement that is passed from Nimrod to an SQL database might be
modelled as a string. However, using string templates and filling in the
values is vulnerable to the famous `SQL injection attack`:idx:\:
.. code-block:: nimrod
import strutils
proc query(db: TDbHandle, statement: string) = ...
var
username: string
db.query("SELECT FROM users WHERE name = '$1'" % username)
# Horrible security hole, but the compiler does not mind!
This can be avoided by distinguishing strings that contain SQL from strings
that don't. Distinct types provide a means to introduce a new string type
``TSQL`` that is incompatible with ``string``:
.. code-block:: nimrod
type
TSQL = distinct string
proc query(db: TDbHandle, statement: TSQL) = ...
var
username: string
db.query("SELECT FROM users WHERE name = '$1'" % username)
# Error at compile time: `query` expects an SQL string!
It is an essential property of abstract types that they **do not** imply a
subtype relation between the abtract type and its base type. Explict type
conversions from ``string`` to ``TSQL`` are allowed:
.. code-block:: nimrod
import strutils, sequtils
proc properQuote(s: string): TSQL =
# quotes a string properly for an SQL statement
return TSQL(s)
proc `%` (frmt: TSQL, values: openarray[string]): TSQL =
# quote each argument:
let v = values.mapIt(TSQL, properQuote(it))
# we need a temporary type for the type conversion :-(
type TStrSeq = seq[string]
# call strutils.`%`:
result = TSQL(string(frmt) % TStrSeq(v))
db.query("SELECT FROM users WHERE name = '$1'".TSQL % [username])
Now we have compile-time checking against SQL injection attacks. Since
``"".TSQL`` is transformed to ``TSQL("")`` no new syntax is needed for nice
looking ``TSQL`` string literals. The hypothetical ``TSQL`` type actually
exists in the library as the `TSqlQuery type <db_sqlite.html#TSqlQuery>`_ of
modules like `db_sqlite <db_sqlite.html>`_.
Void type
---------
The ``void`` type denotes the absense of any type. Parameters of
type ``void`` are treated as non-existent, ``void`` as a return type means that
the procedure does not return a value:
.. code-block:: nimrod
proc nothing(x, y: void): void =
echo "ha"
nothing() # writes "ha" to stdout
The ``void`` type is particularly useful for generic code:
.. code-block:: nimrod
proc callProc[T](p: proc (x: T), x: T) =
when T is void:
p()
else:
p(x)
proc intProc(x: int) = discard
proc emptyProc() = discard
callProc[int](intProc, 12)
callProc[void](emptyProc)
However, a ``void`` type cannot be inferred in generic code:
.. code-block:: nimrod
callProc(emptyProc)
# Error: type mismatch: got (proc ())
# but expected one of:
# callProc(p: proc (T), x: T)
The ``void`` type is only valid for parameters and return types; other symbols
cannot have the type ``void``.
Type relations
==============
The following section defines several relations on types that are needed to
describe the type checking done by the compiler.
Type equality
-------------
Nimrod uses structural type equivalence for most types. Only for objects,
enumerations and distinct types name equivalence is used. The following
algorithm (in pseudo-code) determines type equality:
.. code-block:: nimrod
proc typeEqualsAux(a, b: PType,
s: var set[PType * PType]): bool =
if (a,b) in s: return true
incl(s, (a,b))
if a.kind == b.kind:
case a.kind
of int, intXX, float, floatXX, char, string, cstring, pointer,
bool, nil, void:
# leaf type: kinds identical; nothing more to check
result = true
of ref, ptr, var, set, seq, openarray:
result = typeEqualsAux(a.baseType, b.baseType, s)
of range:
result = typeEqualsAux(a.baseType, b.baseType, s) and
(a.rangeA == b.rangeA) and (a.rangeB == b.rangeB)
of array:
result = typeEqualsAux(a.baseType, b.baseType, s) and
typeEqualsAux(a.indexType, b.indexType, s)
of tuple:
if a.tupleLen == b.tupleLen:
for i in 0..a.tupleLen-1:
if not typeEqualsAux(a[i], b[i], s): return false
result = true
of object, enum, distinct:
result = a == b
of proc:
result = typeEqualsAux(a.parameterTuple, b.parameterTuple, s) and
typeEqualsAux(a.resultType, b.resultType, s) and
a.callingConvention == b.callingConvention
proc typeEquals(a, b: PType): bool =
var s: set[PType * PType] = {}
result = typeEqualsAux(a, b, s)
Since types are graphs which can have cycles, the above algorithm needs an
auxiliary set ``s`` to detect this case.
Type equality modulo type distinction
-------------------------------------
The following algorithm (in pseudo-code) determines whether two types
are equal with no respect to ``distinct`` types. For brevity the cycle check
with an auxiliary set ``s`` is omitted:
.. code-block:: nimrod
proc typeEqualsOrDistinct(a, b: PType): bool =
if a.kind == b.kind:
case a.kind
of int, intXX, float, floatXX, char, string, cstring, pointer,
bool, nil, void:
# leaf type: kinds identical; nothing more to check
result = true
of ref, ptr, var, set, seq, openarray:
result = typeEqualsOrDistinct(a.baseType, b.baseType)
of range:
result = typeEqualsOrDistinct(a.baseType, b.baseType) and
(a.rangeA == b.rangeA) and (a.rangeB == b.rangeB)
of array:
result = typeEqualsOrDistinct(a.baseType, b.baseType) and
typeEqualsOrDistinct(a.indexType, b.indexType)
of tuple:
if a.tupleLen == b.tupleLen:
for i in 0..a.tupleLen-1:
if not typeEqualsOrDistinct(a[i], b[i]): return false
result = true
of distinct:
result = typeEqualsOrDistinct(a.baseType, b.baseType)
of object, enum:
result = a == b
of proc:
result = typeEqualsOrDistinct(a.parameterTuple, b.parameterTuple) and
typeEqualsOrDistinct(a.resultType, b.resultType) and
a.callingConvention == b.callingConvention
elif a.kind == distinct:
result = typeEqualsOrDistinct(a.baseType, b)
elif b.kind == distinct:
result = typeEqualsOrDistinct(a, b.baseType)
Subtype relation
----------------
If object ``a`` inherits from ``b``, ``a`` is a subtype of ``b``. This subtype
relation is extended to the types ``var``, ``ref``, ``ptr``:
.. code-block:: nimrod
proc isSubtype(a, b: PType): bool =
if a.kind == b.kind:
case a.kind
of object:
var aa = a.baseType
while aa != nil and aa != b: aa = aa.baseType
result = aa == b
of var, ref, ptr:
result = isSubtype(a.baseType, b.baseType)
.. XXX nil is a special value!
Convertible relation
--------------------
A type ``a`` is **implicitly** convertible to type ``b`` iff the following
algorithm returns true:
.. code-block:: nimrod
# XXX range types?
proc isImplicitlyConvertible(a, b: PType): bool =
case a.kind
of int: result = b in {int8, int16, int32, int64, uint, uint8, uint16,
uint32, uint64, float, float32, float64}
of int8: result = b in {int16, int32, int64, int}
of int16: result = b in {int32, int64, int}
of int32: result = b in {int64, int}
of uint: result = b in {uint32, uint64}
of uint8: result = b in {uint16, uint32, uint64}
of uint16: result = b in {uint32, uint64}
of uint32: result = b in {uint64}
of float: result = b in {float32, float64}
of float32: result = b in {float64, float}
of float64: result = b in {float32, float}
of seq:
result = b == openArray and typeEquals(a.baseType, b.baseType)
of array:
result = b == openArray and typeEquals(a.baseType, b.baseType)
if a.baseType == char and a.indexType.rangeA == 0:
result = b = cstring
of cstring, ptr:
result = b == pointer
of string:
result = b == cstring
A type ``a`` is **explicitly** convertible to type ``b`` iff the following
algorithm returns true:
.. code-block:: nimrod
proc isIntegralType(t: PType): bool =
result = isOrdinal(t) or t.kind in {float, float32, float64}
proc isExplicitlyConvertible(a, b: PType): bool =
result = false
if isImplicitlyConvertible(a, b): return true
if typeEqualsOrDistinct(a, b): return true
if isIntegralType(a) and isIntegralType(b): return true
if isSubtype(a, b) or isSubtype(b, a): return true
The convertible relation can be relaxed by a user-defined type
`converter`:idx:.
.. code-block:: nimrod
converter toInt(x: char): int = result = ord(x)
var
x: int
chr: char = 'a'
# implicit conversion magic happens here
x = chr
echo x # => 97
# you can use the explicit form too
x = chr.toInt
echo x # => 97
The type conversion ``T(a)`` is an L-value if ``a`` is an L-value and
``typeEqualsOrDistinct(T, type(a))`` holds.
Assignment compatibility
------------------------
An expression ``b`` can be assigned to an expression ``a`` iff ``a`` is an
`l-value` and ``isImplicitlyConvertible(b.typ, a.typ)`` holds.
Overloading resolution
----------------------
To be written.
Statements and expressions
==========================
Nimrod uses the common statement/expression paradigm: Statements do not
produce a value in contrast to expressions. However, some expressions are
statements.
Statements are separated into `simple statements`:idx: and
`complex statements`:idx:.
Simple statements are statements that cannot contain other statements like
assignments, calls or the ``return`` statement; complex statements can
contain other statements. To avoid the `dangling else problem`:idx:, complex
statements always have to be intended. The details can be found in the grammar.
Statement list expression
-------------------------
Statements can also occur in an expression context that looks
like ``(stmt1; stmt2; ...; ex)``. This is called
an statement list expression or ``(;)``. The type
of ``(stmt1; stmt2; ...; ex)`` is the type of ``ex``. All the other statements
must be of type ``void``. (One can use ``discard`` to produce a ``void`` type.)
``(;)`` does not introduce a new scope.
Discard statement
-----------------
Example:
.. code-block:: nimrod
proc p(x, y: int): int =
result = x + y
discard p(3, 4) # discard the return value of `p`
The ``discard`` statement evaluates its expression for side-effects and
throws the expression's resulting value away.
Ignoring the return value of a procedure without using a discard statement is
a static error.
The return value can be ignored implicitly if the called proc/iterator has
been declared with the `discardable`:idx: pragma:
.. code-block:: nimrod
proc p(x, y: int): int {.discardable.} =
result = x + y
p(3, 4) # now valid
An empty ``discard`` statement is often used as a null statement:
.. code-block:: nimrod
proc classify(s: string) =
case s[0]
of SymChars, '_': echo "an identifier"
of '0'..'9': echo "a number"
else: discard
Var statement
-------------
Var statements declare new local and global variables and
initialize them. A comma separated list of variables can be used to specify
variables of the same type:
.. code-block:: nimrod
var
a: int = 0
x, y, z: int
If an initializer is given the type can be omitted: the variable is then of the
same type as the initializing expression. Variables are always initialized
with a default value if there is no initializing expression. The default
value depends on the type and is always a zero in binary.
============================ ==============================================
Type default value
============================ ==============================================
any integer type 0
any float 0.0
char '\\0'
bool false
ref or pointer type nil
procedural type nil
sequence nil (*not* ``@[]``)
string nil (*not* "")
tuple[x: A, y: B, ...] (default(A), default(B), ...)
(analogous for objects)
array[0..., T] [default(T), ...]
range[T] default(T); this may be out of the valid range
T = enum cast[T](0); this may be an invalid value
============================ ==============================================
The implicit initialization can be avoided for optimization reasons with the
`noinit`:idx: pragma:
.. code-block:: nimrod
var
a {.noInit.}: array [0..1023, char]
If a proc is annotated with the ``noinit`` pragma this refers to its implicit
``result`` variable:
.. code-block:: nimrod
proc returnUndefinedValue: int {.noinit.} = discard
The implicit initialization can be also prevented by the `requiresInit`:idx:
type pragma. The compiler requires an explicit initialization then. However
it does a `control flow analysis`:idx: to prove the variable has been
initialized and does not rely on syntactic properties:
.. code-block:: nimrod
type
TMyObject = object {.requiresInit.}
proc p() =
# the following is valid:
var x: TMyObject
if someCondition():
x = a()
else:
x = a()
use x
let statement
-------------
A ``let`` statement declares new local and global `single assignment`:idx:
variables and binds a value to them. The syntax is the of the ``var``
statement, except that the keyword ``var`` is replaced by the keyword ``let``.
Let variables are not l-values and can thus not be passed to ``var`` parameters
nor can their address be taken. They cannot be assigned new values.
For let variables the same pragmas are available as for ordinary variables.
Const section
-------------
`Constants`:idx: are symbols which are bound to a value. The constant's value
cannot change. The compiler must be able to evaluate the expression in a
constant declaration at compile time.
Nimrod contains a sophisticated compile-time evaluator, so procedures which
have no side-effect can be used in constant expressions too:
.. code-block:: nimrod
import strutils
const
constEval = contains("abc", 'b') # computed at compile time!
The rules for compile-time computability are:
1. Literals are compile-time computable.
2. Type conversions are compile-time computable.
3. Procedure calls of the form ``p(X)`` are compile-time computable if
``p`` is a proc without side-effects (see the `noSideEffect pragma`_
for details) and if ``X`` is a (possibly empty) list of compile-time
computable arguments.
Constants cannot be of type ``ptr``, ``ref``, ``var`` or ``object``, nor can
they contain such a type.
Static statement/expression
---------------------------
A static statement/expression can be used to enforce compile
time evaluation explicitly. Enforced compile time evaluation can even evaluate
code that has side effects:
.. code-block::
static:
echo "echo at compile time"
It's a static error if the compiler cannot perform the evaluation at compile
time.
The current implementation poses some restrictions for compile time
evaluation: Code which contains ``cast`` or makes use of the foreign function
interface cannot be evaluated at compile time. Later versions of Nimrod will
support the FFI at compile time.
If statement
------------
Example:
.. code-block:: nimrod
var name = readLine(stdin)
if name == "Andreas":
echo("What a nice name!")
elif name == "":
echo("Don't you have a name?")
else:
echo("Boring name...")
The ``if`` statement is a simple way to make a branch in the control flow:
The expression after the keyword ``if`` is evaluated, if it is true
the corresponding statements after the ``:`` are executed. Otherwise
the expression after the ``elif`` is evaluated (if there is an
``elif`` branch), if it is true the corresponding statements after
the ``:`` are executed. This goes on until the last ``elif``. If all
conditions fail, the ``else`` part is executed. If there is no ``else``
part, execution continues with the statement after the ``if`` statement.
The scoping for an ``if`` statement is slightly subtle to support an important
use case. A new scope starts for the ``if``/``elif`` condition and ends after
the corresponding *then* block:
.. code-block:: nimrod
if {| (let m = input =~ re"(\w+)=\w+"; m.isMatch):
echo "key ", m[0], " value ", m[1] |}
elif {| (let m = input =~ re""; m.isMatch):
echo "new m in this scope" |}
else:
# 'm' not declared here
In the example the scopes have been enclosed in ``{| |}``.
Case statement
--------------
Example:
.. code-block:: nimrod
case readline(stdin)
of "delete-everything", "restart-computer":
echo("permission denied")
of "go-for-a-walk": echo("please yourself")
else: echo("unknown command")
# indentation of the branches is also allowed; and so is an optional colon
# after the selecting expression:
case readline(stdin):
of "delete-everything", "restart-computer":
echo("permission denied")
of "go-for-a-walk": echo("please yourself")
else: echo("unknown command")
The ``case`` statement is similar to the if statement, but it represents
a multi-branch selection. The expression after the keyword ``case`` is
evaluated and if its value is in a *slicelist* the corresponding statements
(after the ``of`` keyword) are executed. If the value is not in any
given *slicelist* the ``else`` part is executed. If there is no ``else``
part and not all possible values that ``expr`` can hold occur in a
``slicelist``, a static error occurs. This holds only for expressions of
ordinal types. "All possible values" of ``expr`` are determined by ``expr``'s
type.
If the expression is not of an ordinal type, and no ``else`` part is
given, control passes after the ``case`` statement.
To suppress the static error in the ordinal case an ``else`` part with an
empty ``discard`` statement can be used.
As a special semantic extension, an expression in an ``of`` branch of a case
statement may evaluate to a set or array constructor; the set or array is then
expanded into a list of its elements:
.. code-block:: nimrod
const
SymChars: set[char] = {'a'..'z', 'A'..'Z', '\x80'..'\xFF'}
proc classify(s: string) =
case s[0]
of SymChars, '_': echo "an identifier"
of '0'..'9': echo "a number"
else: echo "other"
# is equivalent to:
proc classify(s: string) =
case s[0]
of 'a'..'z', 'A'..'Z', '\x80'..'\xFF', '_': echo "an identifier"
of '0'..'9': echo "a number"
else: echo "other"
When statement
--------------
Example:
.. code-block:: nimrod
when sizeof(int) == 2:
echo("running on a 16 bit system!")
elif sizeof(int) == 4:
echo("running on a 32 bit system!")
elif sizeof(int) == 8:
echo("running on a 64 bit system!")
else:
echo("cannot happen!")
The ``when`` statement is almost identical to the ``if`` statement with some
exceptions:
* Each condition (``expr``) has to be a constant expression (of type ``bool``).
* The statements do not open a new scope.
* The statements that belong to the expression that evaluated to true are
translated by the compiler, the other statements are not checked for
semantics! However, each condition is checked for semantics.
The ``when`` statement enables conditional compilation techniques. As
a special syntactic extension, the ``when`` construct is also available
within ``object`` definitions.
Return statement
----------------
Example:
.. code-block:: nimrod
return 40+2
The ``return`` statement ends the execution of the current procedure.
It is only allowed in procedures. If there is an ``expr``, this is syntactic
sugar for:
.. code-block:: nimrod
result = expr
return result
``return`` without an expression is a short notation for ``return result`` if
the proc has a return type. The `result`:idx: variable is always the return
value of the procedure. It is automatically declared by the compiler. As all
variables, ``result`` is initialized to (binary) zero:
.. code-block:: nimrod
proc returnZero(): int =
# implicitly returns 0
Yield statement
---------------
Example:
.. code-block:: nimrod
yield (1, 2, 3)
The ``yield`` statement is used instead of the ``return`` statement in
iterators. It is only valid in iterators. Execution is returned to the body
of the for loop that called the iterator. Yield does not end the iteration
process, but execution is passed back to the iterator if the next iteration
starts. See the section about iterators (`Iterators and the for statement`_)
for further information.
Block statement
---------------
Example:
.. code-block:: nimrod
var found = false
block myblock:
for i in 0..3:
for j in 0..3:
if a[j][i] == 7:
found = true
break myblock # leave the block, in this case both for-loops
echo(found)
The block statement is a means to group statements to a (named) ``block``.
Inside the block, the ``break`` statement is allowed to leave the block
immediately. A ``break`` statement can contain a name of a surrounding
block to specify which block is to leave.
Break statement
---------------
Example:
.. code-block:: nimrod
break
The ``break`` statement is used to leave a block immediately. If ``symbol``
is given, it is the name of the enclosing block that is to leave. If it is
absent, the innermost block is left.
While statement
---------------
Example:
.. code-block:: nimrod
echo("Please tell me your password: \n")
var pw = readLine(stdin)
while pw != "12345":
echo("Wrong password! Next try: \n")
pw = readLine(stdin)
The ``while`` statement is executed until the ``expr`` evaluates to false.
Endless loops are no error. ``while`` statements open an `implicit block`,
so that they can be left with a ``break`` statement.
Continue statement
------------------
A ``continue`` statement leads to the immediate next iteration of the
surrounding loop construct. It is only allowed within a loop. A continue
statement is syntactic sugar for a nested block:
.. code-block:: nimrod
while expr1:
stmt1
continue
stmt2
Is equivalent to:
.. code-block:: nimrod
while expr1:
block myBlockName:
stmt1
break myBlockName
stmt2
Assembler statement
-------------------
The direct embedding of assembler code into Nimrod code is supported
by the unsafe ``asm`` statement. Identifiers in the assembler code that refer to
Nimrod identifiers shall be enclosed in a special character which can be
specified in the statement's pragmas. The default special character is ``'`'``:
.. code-block:: nimrod
{.push stackTrace:off.}
proc addInt(a, b: int): int =
# a in eax, and b in edx
asm """
mov eax, `a`
add eax, `b`
jno theEnd
call `raiseOverflow`
theEnd:
"""
{.pop.}
If the GNU assembler is used, quotes and newlines are inserted automatically:
.. code-block:: nimrod
proc addInt(a, b: int): int =
asm """
addl %%ecx, %%eax
jno 1
call `raiseOverflow`
1:
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
"""
Instead of:
.. code-block:: nimrod
proc addInt(a, b: int): int =
asm """
"addl %%ecx, %%eax\n"
"jno 1\n"
"call `raiseOverflow`\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
"""
Using statement
---------------
**Warning**: The ``using`` statement is highly experimental!
The using statement provides syntactic convenience for procs that
heavily use a single contextual parameter. When applied to a variable or a
constant, it will instruct Nimrod to automatically consider the used symbol as
a hidden leading parameter for any procedure calls, following the using
statement in the current scope. Thus, it behaves much like the hidden `this`
parameter available in some object-oriented programming languages.
.. code-block:: nimrod
var s = socket()
using s
connect(host, port)
send(data)
while true:
let line = readLine(timeout)
...
When applied to a callable symbol, it brings the designated symbol in the
current scope. Thus, it can be used to disambiguate between imported symbols
from different modules having the same name.
.. code-block:: nimrod
import windows, sdl
using sdl.SetTimer
Note that ``using`` only *adds* to the current context, it doesn't remove or
replace, **neither** does it create a new scope. What this means is that if one
applies this to multiple variables the compiler will find conflicts in what
variable to use:
.. code-block:: nimrod
var a, b = "kill it"
using a
add(" with fire")
using b
add(" with water")
echo a
echo b
When the compiler reaches the second ``add`` call, both ``a`` and ``b`` could
be used with the proc, so one gets ``Error: expression '(a|b)' has no type (or
is ambiguous)``. To solve this you would need to nest ``using`` with a
``block`` statement so as to control the reach of the ``using`` statement.
If expression
-------------
An `if expression` is almost like an if statement, but it is an expression.
Example:
.. code-block:: nimrod
var y = if x > 8: 9 else: 10
An if expression always results in a value, so the ``else`` part is
required. ``Elif`` parts are also allowed.
When expression
---------------
Just like an `if expression`, but corresponding to the when statement.
Case expression
---------------
The `case expression` is again very similar to the case statement:
.. code-block:: nimrod
var favoriteFood = case animal
of "dog": "bones"
of "cat": "mice"
elif animal.endsWith"whale": "plankton"
else:
echo "I'm not sure what to serve, but everybody loves ice cream"
"ice cream"
As seen in the above example, the case expression can also introduce side
effects. When multiple statements are given for a branch, Nimrod will use
the last expression as the result value, much like in an `expr` template.
Table constructor
-----------------
A table constructor is syntactic sugar for an array constructor:
.. code-block:: nimrod
{"key1": "value1", "key2", "key3": "value2"}
# is the same as:
[("key1", "value1"), ("key2", "value2"), ("key3", "value2")]
The empty table can be written ``{:}`` (in contrast to the empty set
which is ``{}``) which is thus another way to write as the empty array
constructor ``[]``. This slightly unusal way of supporting tables
has lots of advantages:
* The order of the (key,value)-pairs is preserved, thus it is easy to
support ordered dicts with for example ``{key: val}.newOrderedTable``.
* A table literal can be put into a ``const`` section and the compiler
can easily put it into the executable's data section just like it can
for arrays and the generated data section requires a minimal amount
of memory.
* Every table implementation is treated equal syntactically.
* Apart from the minimal syntactic sugar the language core does not need to
know about tables.
Type conversions
----------------
Syntactically a `type conversion` is like a procedure call, but a
type name replaces the procedure name. A type conversion is always
safe in the sense that a failure to convert a type to another
results in an exception (if it cannot be determined statically).
Type casts
----------
Example:
.. code-block:: nimrod
cast[int](x)
Type casts are a crude mechanism to interpret the bit pattern of
an expression as if it would be of another type. Type casts are
only needed for low-level programming and are inherently unsafe.
The addr operator
-----------------
The ``addr`` operator returns the address of an l-value. If the type of the
location is ``T``, the `addr` operator result is of the type ``ptr T``. An
address is always an untraced reference. Taking the address of an object that
resides on the stack is **unsafe**, as the pointer may live longer than the
object on the stack and can thus reference a non-existing object. One can get
the address of variables, but one can't use it on variables declared through
``let`` statements:
.. code-block:: nimrod
let t1 = "Hello"
var
t2 = t1
t3 : pointer = addr(t2)
echo repr(addr(t2))
# --> ref 0x7fff6b71b670 --> 0x10bb81050"Hello"
echo cast[ptr string](t3)[]
# --> Hello
# The following line doesn't compile:
echo repr(addr(t1))
# Error: expression has no address
Procedures
==========
What most programming languages call `methods`:idx: or `functions`:idx: are
called `procedures`:idx: in Nimrod (which is the correct terminology). A
procedure declaration defines an identifier and associates it with a block
of code.
A procedure may call itself recursively. A parameter may be given a default
value that is used if the caller does not provide a value for this parameter.
If the proc declaration has no body, it is a `forward`:idx: declaration. If
the proc returns a value, the procedure body can access an implicitly declared
variable named `result`:idx: that represents the return value. Procs can be
overloaded. The overloading resolution algorithm tries to find the proc that is
the best match for the arguments. Example:
.. code-block:: nimrod
proc toLower(c: Char): Char = # toLower for characters
if c in {'A'..'Z'}:
result = chr(ord(c) + (ord('a') - ord('A')))
else:
result = c
proc toLower(s: string): string = # toLower for strings
result = newString(len(s))
for i in 0..len(s) - 1:
result[i] = toLower(s[i]) # calls toLower for characters; no recursion!
Calling a procedure can be done in many different ways:
.. code-block:: nimrod
proc callme(x, y: int, s: string = "", c: char, b: bool = false) = ...
# call with positional arguments # parameter bindings:
callme(0, 1, "abc", '\t', true) # (x=0, y=1, s="abc", c='\t', b=true)
# call with named and positional arguments:
callme(y=1, x=0, "abd", '\t') # (x=0, y=1, s="abd", c='\t', b=false)
# call with named arguments (order is not relevant):
callme(c='\t', y=1, x=0) # (x=0, y=1, s="", c='\t', b=false)
# call as a command statement: no () needed:
callme 0, 1, "abc", '\t'
A procedure cannot modify its parameters (unless the parameters have the type
`var`).
`Operators`:idx: are procedures with a special operator symbol as identifier:
.. code-block:: nimrod
proc `$` (x: int): string =
# converts an integer to a string; this is a prefix operator.
result = intToStr(x)
Operators with one parameter are prefix operators, operators with two
parameters are infix operators. (However, the parser distinguishes these from
the operator's position within an expression.) There is no way to declare
postfix operators: all postfix operators are built-in and handled by the
grammar explicitly.
Any operator can be called like an ordinary proc with the '`opr`'
notation. (Thus an operator can have more than two parameters):
.. code-block:: nimrod
proc `*+` (a, b, c: int): int =
# Multiply and add
result = a * b + c
assert `*+`(3, 4, 6) == `*`(a, `+`(b, c))
Method call syntax
------------------
For object oriented programming, the syntax ``obj.method(args)`` can be used
instead of ``method(obj, args)``. The parentheses can be omitted if there are no
remaining arguments: ``obj.len`` (instead of ``len(obj)``).
This method call syntax is not restricted to objects, it can be used
to supply any type of first argument for procedures:
.. code-block:: nimrod
echo("abc".len) # is the same as echo(len("abc"))
echo("abc".toUpper())
echo({'a', 'b', 'c'}.card)
stdout.writeln("Hallo") # the same as writeln(stdout, "Hallo")
Another way to look at the method call syntax is that it provides the missing
postfix notation.
Properties
----------
Nimrod has no need for *get-properties*: Ordinary get-procedures that are called
with the *method call syntax* achieve the same. But setting a value is
different; for this a special setter syntax is needed:
.. code-block:: nimrod
type
TSocket* = object of TObject
FHost: int # cannot be accessed from the outside of the module
# the `F` prefix is a convention to avoid clashes since
# the accessors are named `host`
proc `host=`*(s: var TSocket, value: int) {.inline.} =
## setter of hostAddr
s.FHost = value
proc host*(s: TSocket): int {.inline.} =
## getter of hostAddr
s.FHost
var
s: TSocket
s.host = 34 # same as `host=`(s, 34)
Command invocation syntax
-------------------------
Routines can be invoked without the ``()`` if the call is syntatically
a statement. This command invocation syntax also works for
expressions, but then only a single argument may follow. This restriction
means ``echo f 1, f 2`` is parsed as ``echo(f(1), f(2))`` and not as
``echo(f(1, f(2)))``. The method call syntax may be used to provide one
more argument in this case:
.. code-block:: nimrod
proc optarg(x:int, y:int = 0):int = x + y
proc singlearg(x:int):int = 20*x
echo optarg 1, " ", singlearg 2 # prints "1 40"
let fail = optarg 1, optarg 8 # Wrong. Too many arguments for a command call
let x = optarg(1, optarg 8) # traditional procedure call with 2 arguments
let y = 1.optarg optarg 8 # same thing as above, w/o the parenthesis
assert x == y
The command invocation syntax also can't have complex expressions as arguments.
For example: (`anonymous procs`_), ``if``, ``case`` or ``try``. The (`do
notation`_) is limited, but usable for a single proc (see the example in the
corresponding section). Function calls with no arguments still needs () to
distinguish between a call and the function itself as a first class value.
Closures
--------
Procedures can appear at the top level in a module as well as inside other
scopes, in which case they are called nested procs. A nested proc can access
local variables from its enclosing scope and if it does so it becomes a
closure. Any captured variables are stored in a hidden additional argument
to the closure (its environment) and they are accessed by reference by both
the closure and its enclosing scope (i.e. any modifications made to them are
visible in both places). The closure environment may be allocated on the heap
or on the stack if the compiler determines that this would be safe.
Anonymous Procs
---------------
Procs can also be treated as expressions, in which case it's allowed to omit
the proc's name.
.. code-block:: nimrod
var cities = @["Frankfurt", "Tokyo", "New York"]
cities.sort(proc (x,y: string): int =
cmp(x.len, y.len))
Procs as expressions can appear both as nested procs and inside top level
executable code.
Do notation
-----------
As a special more convenient notation, proc expressions involved in procedure
calls can use the ``do`` keyword:
.. code-block:: nimrod
sort(cities) do (x,y: string) -> int:
cmp(x.len, y.len)
# Less parenthesis using the method plus command syntax:
cities = cities.map do (x:string) -> string:
"City of " & x
``do`` is written after the parentheses enclosing the regular proc params.
The proc expression represented by the do block is appended to them.
More than one ``do`` block can appear in a single call:
.. code-block:: nimrod
proc performWithUndo(task: proc(), undo: proc()) = ...
performWithUndo do:
# multiple-line block of code
# to perform the task
do:
# code to undo it
For compatibility with ``stmt`` templates and macros, the ``do`` keyword can be
omitted if the supplied proc doesn't have any parameters and return value.
The compatibility works in the other direction too as the ``do`` syntax can be
used with macros and templates expecting ``stmt`` blocks.
Nonoverloadable builtins
------------------------
The following builtin procs cannot be overloaded for reasons of implementation
simplicity (they require specialized semantic checking)::
defined, definedInScope, compiles, low, high, sizeOf,
is, of, echo, shallowCopy, getAst, spawn
Thus they act more like keywords than like ordinary identifiers; unlike a
keyword however, a redefinition may `shadow`:idx: the definition in
the ``system`` module.
Var parameters
--------------
The type of a parameter may be prefixed with the ``var`` keyword:
.. code-block:: nimrod
proc divmod(a, b: int; res, remainder: var int) =
res = a div b
remainder = a mod b
var
x, y: int
divmod(8, 5, x, y) # modifies x and y
assert x == 1
assert y == 3
In the example, ``res`` and ``remainder`` are `var parameters`.
Var parameters can be modified by the procedure and the changes are
visible to the caller. The argument passed to a var parameter has to be
an l-value. Var parameters are implemented as hidden pointers. The
above example is equivalent to:
.. code-block:: nimrod
proc divmod(a, b: int; res, remainder: ptr int) =
res[] = a div b
remainder[] = a mod b
var
x, y: int
divmod(8, 5, addr(x), addr(y))
assert x == 1
assert y == 3
In the examples, var parameters or pointers are used to provide two
return values. This can be done in a cleaner way by returning a tuple:
.. code-block:: nimrod
proc divmod(a, b: int): tuple[res, remainder: int] =
(a div b, a mod b)
var t = divmod(8, 5)
assert t.res == 1
assert t.remainder == 3
One can use `tuple unpacking`:idx: to access the tuple's fields:
.. code-block:: nimrod
var (x, y) = divmod(8, 5) # tuple unpacking
assert x == 1
assert y == 3
Var return type
---------------
A proc, converter or iterator may return a ``var`` type which means that the
returned value is an l-value and can be modified by the caller:
.. code-block:: nimrod
var g = 0
proc WriteAccessToG(): var int =
result = g
WriteAccessToG() = 6
assert g == 6
It is a compile time error if the implicitly introduced pointer could be
used to access a location beyond its lifetime:
.. code-block:: nimrod
proc WriteAccessToG(): var int =
var g = 0
result = g # Error!
For iterators, a component of a tuple return type can have a ``var`` type too:
.. code-block:: nimrod
iterator mpairs(a: var seq[string]): tuple[key: int, val: var string] =
for i in 0..a.high:
yield (i, a[i])
In the standard library every name of a routine that returns a ``var`` type
starts with the prefix ``m`` per convention.
Overloading of the subscript operator
-------------------------------------
The ``[]`` subscript operator for arrays/openarrays/sequences can be overloaded.
Multi-methods
=============
Procedures always use static dispatch. Multi-methods use dynamic
dispatch.
.. code-block:: nimrod
type
TExpr = object ## abstract base class for an expression
TLiteral = object of TExpr
x: int
TPlusExpr = object of TExpr
a, b: ref TExpr
method eval(e: ref TExpr): int =
# override this base method
quit "to override!"
method eval(e: ref TLiteral): int = return e.x
method eval(e: ref TPlusExpr): int =
# watch out: relies on dynamic binding
result = eval(e.a) + eval(e.b)
proc newLit(x: int): ref TLiteral =
new(result)
result.x = x
proc newPlus(a, b: ref TExpr): ref TPlusExpr =
new(result)
result.a = a
result.b = b
echo eval(newPlus(newPlus(newLit(1), newLit(2)), newLit(4)))
In the example the constructors ``newLit`` and ``newPlus`` are procs
because they should use static binding, but ``eval`` is a method because it
requires dynamic binding.
In a multi-method all parameters that have an object type are used for the
dispatching:
.. code-block:: nimrod
type
TThing = object
TUnit = object of TThing
x: int
method collide(a, b: TThing) {.inline.} =
quit "to override!"
method collide(a: TThing, b: TUnit) {.inline.} =
echo "1"
method collide(a: TUnit, b: TThing) {.inline.} =
echo "2"
var
a, b: TUnit
collide(a, b) # output: 2
Invocation of a multi-method cannot be ambiguous: collide 2 is preferred over
collide 1 because the resolution works from left to right.
In the example ``TUnit, TThing`` is preferred over ``TThing, TUnit``.
**Performance note**: Nimrod does not produce a virtual method table, but
generates dispatch trees. This avoids the expensive indirect branch for method
calls and enables inlining. However, other optimizations like compile time
evaluation or dead code elimination do not work with methods.
Iterators and the for statement
===============================
The `for`:idx: statement is an abstract mechanism to iterate over the elements
of a container. It relies on an `iterator`:idx: to do so. Like ``while``
statements, ``for`` statements open an `implicit block`:idx:, so that they
can be left with a ``break`` statement.
The ``for`` loop declares iteration variables - their scope reaches until the
end of the loop body. The iteration variables' types are inferred by the
return type of the iterator.
An iterator is similar to a procedure, except that it can be called in the
context of a ``for`` loop. Iterators provide a way to specify the iteration over
an abstract type. A key role in the execution of a ``for`` loop plays the
``yield`` statement in the called iterator. Whenever a ``yield`` statement is
reached the data is bound to the ``for`` loop variables and control continues
in the body of the ``for`` loop. The iterator's local variables and execution
state are automatically saved between calls. Example:
.. code-block:: nimrod
# this definition exists in the system module
iterator items*(a: string): char {.inline.} =
var i = 0
while i < len(a):
yield a[i]
inc(i)
for ch in items("hello world"): # `ch` is an iteration variable
echo(ch)
The compiler generates code as if the programmer would have written this:
.. code-block:: nimrod
var i = 0
while i < len(a):
var ch = a[i]
echo(ch)
inc(i)
If the iterator yields a tuple, there can be as many iteration variables
as there are components in the tuple. The i'th iteration variable's type is
the type of the i'th component. In other words, implicit tuple unpacking in a
for loop context is supported.
Implict items/pairs invocations
-------------------------------
If the for loop expression ``e`` does not denote an iterator and the for loop
has exactly 1 variable, the for loop expression is rewritten to ``items(e)``;
ie. an ``items`` iterator is implicitly invoked:
.. code-block:: nimrod
for x in [1,2,3]: echo x
If the for loop has exactly 2 variables, a ``pairs`` iterator is implicitly
invoked.
Symbol lookup of the identifiers ``items``/``pairs`` is performed after
the rewriting step, so that all overloadings of ``items``/``pairs`` are taken
into account.
First class iterators
---------------------
There are 2 kinds of iterators in Nimrod: *inline* and *closure* iterators.
An `inline iterator`:idx: is an iterator that's always inlined by the compiler
leading to zero overhead for the abstraction, but may result in a heavy
increase in code size. Inline iterators are second class citizens;
They can be passed as parameters only to other inlining code facilities like
templates, macros and other inline iterators.
In contrast to that, a `closure iterator`:idx: can be passed around more freely:
.. code-block:: nimrod
iterator count0(): int {.closure.} =
yield 0
iterator count2(): int {.closure.} =
var x = 1
yield x
inc x
yield x
proc invoke(iter: iterator(): int {.closure.}) =
for x in iter(): echo x
invoke(count0)
invoke(count2)
Closure iterators have other restrictions than inline iterators:
1. ``yield`` in a closure iterator can not occur in a ``try`` statement.
2. For now, a closure iterator cannot be evaluated at compile time.
3. ``return`` is allowed in a closure iterator (but rarely useful).
4. Both inline and closure iterators cannot be recursive.
Iterators that are neither marked ``{.closure.}`` nor ``{.inline.}`` explicitly
default to being inline, but that this may change in future versions of the
implementation.
The ``iterator`` type is always of the calling convention ``closure``
implicitly; the following example shows how to use iterators to implement
a `collaborative tasking`:idx: system:
.. code-block:: nimrod
# simple tasking:
type
TTask = iterator (ticker: int)
iterator a1(ticker: int) {.closure.} =
echo "a1: A"
yield
echo "a1: B"
yield
echo "a1: C"
yield
echo "a1: D"
iterator a2(ticker: int) {.closure.} =
echo "a2: A"
yield
echo "a2: B"
yield
echo "a2: C"
proc runTasks(t: varargs[TTask]) =
var ticker = 0
while true:
let x = t[ticker mod t.len]
if finished(x): break
x(ticker)
inc ticker
runTasks(a1, a2)
The builtin ``system.finished`` can be used to determine if an iterator has
finished its operation; no exception is raised on an attempt to invoke an
iterator that has already finished its work.
Closure iterators are *resumable functions* and so one has to provide the
arguments to every call. To get around this limitation one can capture
parameters of an outer factory proc:
.. code-block:: nimrod
proc mycount(a, b: int): iterator (): int =
result = iterator (): int =
var x = a
while x <= b:
yield x
inc x
let foo = mycount(1, 4)
for f in foo():
echo f
Implicit return type
--------------------
Since inline interators must always produce values that will be consumed in
a for loop, the compiler will implicity use the ``auto`` return type if no
type is given by the user. In contrast, since closure iterators can be used
as a collaborative tasking system, ``void`` is a valid return type for them.
Type sections
=============
Example:
.. code-block:: nimrod
type # example demonstrating mutually recursive types
PNode = ref TNode # a traced pointer to a TNode
TNode = object
le, ri: PNode # left and right subtrees
sym: ref TSym # leaves contain a reference to a TSym
TSym = object # a symbol
name: string # the symbol's name
line: int # the line the symbol was declared in
code: PNode # the symbol's abstract syntax tree
A type section begins with the ``type`` keyword. It contains multiple
type definitions. A type definition binds a type to a name. Type definitions
can be recursive or even mutually recursive. Mutually recursive types are only
possible within a single ``type`` section. Nominal types like ``objects``
or ``enums`` can only be defined in a ``type`` section.
Exception handling
==================
Try statement
-------------
Example:
.. code-block:: nimrod
# read the first two lines of a text file that should contain numbers
# and tries to add them
var
f: TFile
if open(f, "numbers.txt"):
try:
var a = readLine(f)
var b = readLine(f)
echo("sum: " & $(parseInt(a) + parseInt(b)))
except EOverflow:
echo("overflow!")
except EInvalidValue:
echo("could not convert string to integer")
except EIO:
echo("IO error!")
except:
echo("Unknown exception!")
finally:
close(f)
The statements after the ``try`` are executed in sequential order unless
an exception ``e`` is raised. If the exception type of ``e`` matches any
listed in an ``except`` clause the corresponding statements are executed.
The statements following the ``except`` clauses are called
`exception handlers`:idx:.
The empty `except`:idx: clause is executed if there is an exception that is
not listed otherwise. It is similar to an ``else`` clause in ``if`` statements.
If there is a `finally`:idx: clause, it is always executed after the
exception handlers.
The exception is *consumed* in an exception handler. However, an
exception handler may raise another exception. If the exception is not
handled, it is propagated through the call stack. This means that often
the rest of the procedure - that is not within a ``finally`` clause -
is not executed (if an exception occurs).
Except and finally statements
-----------------------------
``except`` and ``finally`` can also be used as a stand-alone statements.
Any statements following them in the current block will be considered to be
in an implicit try block:
.. code-block:: nimrod
var f = open("numbers.txt")
finally: close(f)
...
The ``except`` statement has a limitation in this form: one can't specify the
type of the exception, one has to catch everything. Also, if one wants to use
both ``finally`` and ``except`` one needs to reverse the usual sequence of the
statements. Example:
.. code-block:: nimrod
proc test() =
raise newException(E_base, "Hey ho")
proc tester() =
finally: echo "3. Finally block"
except: echo "2. Except block"
echo "1. Pre exception"
test()
echo "4. Post exception"
# --> 1, 2, 3 is printed, 4 is never reached
Raise statement
---------------
Example:
.. code-block:: nimrod
raise newEOS("operating system failed")
Apart from built-in operations like array indexing, memory allocation, etc.
the ``raise`` statement is the only way to raise an exception.
.. XXX document this better!
If no exception name is given, the current exception is `re-raised`:idx:. The
`ENoExceptionToReraise`:idx: exception is raised if there is no exception to
re-raise. It follows that the ``raise`` statement *always* raises an
exception (unless a raise hook has been provided).
OnRaise builtin
---------------
`system.onRaise() <system.html#onRaise>`_ can be used to override the
behaviour of ``raise`` for a single ``try`` statement. ``onRaise`` has to be
called within the ``try`` statement that should be affected.
This allows for a Lisp-like `condition system`:idx:\:
.. code-block:: nimrod
var myFile = open("broken.txt", fmWrite)
try:
onRaise do (e: ref E_Base)-> bool:
if e of EIO:
stdout.writeln "ok, writing to stdout instead"
else:
# do raise other exceptions:
result = true
myFile.writeln "writing to broken file"
finally:
myFile.close()
``OnRaise`` can only *filter* raised exceptions, it cannot transform one
exception into another. (Nor should ``onRaise`` raise an exception though
this is currently not enforced.) This restriction keeps the exception tracking
analysis sound.
Effect system
=============
Exception tracking
------------------
Nimrod supports exception tracking. The `raises`:idx: pragma can be used
to explicitly define which exceptions a proc/iterator/method/converter is
allowed to raise. The compiler verifies this:
.. code-block:: nimrod
proc p(what: bool) {.raises: [EIO, EOS].} =
if what: raise newException(EIO, "IO")
else: raise newException(EOS, "OS")
An empty ``raises`` list (``raises: []``) means that no exception may be raised:
.. code-block:: nimrod
proc p(): bool {.raises: [].} =
try:
unsafeCall()
result = true
except:
result = false
A ``raises`` list can also be attached to a proc type. This affects type
compatibility:
.. code-block:: nimrod
type
TCallback = proc (s: string) {.raises: [EIO].}
var
c: TCallback
proc p(x: string) =
raise newException(EOS, "OS")
c = p # type error
For a routine ``p`` the compiler uses inference rules to determine the set of
possibly raised exceptions; the algorithm operates on ``p``'s call graph:
1. Every indirect call via some proc type ``T`` is assumed to
raise ``system.E_Base`` (the base type of the exception hierarchy) and
thus any exception unless ``T`` has an explicit ``raises`` list.
However if the call is of the form ``f(...)`` where ``f`` is a parameter
of the currently analysed routine it is ignored. The call is optimistically
assumed to have no effect. Rule 2 compensates for this case.
2. Every expression of some proc type wihtin a call that is not a call
itself (and not nil) is assumed to be called indirectly somehow and thus
its raises list is added to ``p``'s raises list.
3. Every call to a proc ``q`` which has an unknown body (due to a forward
declaration or an ``importc`` pragma) is assumed to
raise ``system.E_Base`` unless ``q`` has an explicit ``raises`` list.
4. Every call to a method ``m`` is assumed to
raise ``system.E_Base`` unless ``m`` has an explicit ``raises`` list.
5. For every other call the analysis can determine an exact ``raises`` list.
6. For determining a ``raises`` list, the ``raise`` and ``try`` statements
of ``p`` are taken into consideration.
Rules 1-2 ensure the following works:
.. code-block:: nimrod
proc noRaise(x: proc()) {.raises: [].} =
# unknown call that might raise anything, but valid:
x()
proc doRaise() {.raises: [EIO].} =
raise newException(EIO, "IO")
proc use() {.raises: [].} =
# doesn't compile! Can raise EIO!
noRaise(doRaise)
So in many cases a callback does not cause the compiler to be overly
conservative in its effect analysis.
Tag tracking
------------
The exception tracking is part of Nimrod's `effect system`:idx:. Raising an
exception is an *effect*. Other effects can also be defined. A user defined
effect is a means to *tag* a routine and to perform checks against this tag:
.. code-block:: nimrod
type IO = object ## input/output effect
proc readLine(): string {.tags: [IO].}
proc no_IO_please() {.tags: [].} =
# the compiler prevents this:
let x = readLine()
A tag has to be a type name. A ``tags`` list - like a ``raises`` list - can
also be attached to a proc type. This affects type compatibility.
The inference for tag tracking is analogous to the inference for
exception tracking.
Read/Write tracking
-------------------
**Note**: Read/write tracking is not yet implemented!
The inference for read/write tracking is analogous to the inference for
exception tracking.
Effects pragma
--------------
The ``effects`` pragma has been designed to assist the programmer with the
effects analysis. It is a statement that makes the compiler output all inferred
effects up to the ``effects``'s position:
.. code-block:: nimrod
proc p(what: bool) =
if what:
raise newException(EIO, "IO")
{.effects.}
else:
raise newException(EOS, "OS")
The compiler produces a hint message that ``EIO`` can be raised. ``EOS`` is not
listed as it cannot be raised in the branch the ``effects`` pragma appears in.
Generics
========
Example:
.. code-block:: nimrod
type
TBinaryTree[T] = object # TBinaryTree is a generic type with
# with generic param ``T``
le, ri: ref TBinaryTree[T] # left and right subtrees; may be nil
data: T # the data stored in a node
PBinaryTree[T] = ref TBinaryTree[T] # a shorthand for notational convenience
proc newNode[T](data: T): PBinaryTree[T] = # constructor for a node
new(result)
result.data = data
proc add[T](root: var PBinaryTree[T], n: PBinaryTree[T]) =
if root == nil:
root = n
else:
var it = root
while it != nil:
var c = cmp(it.data, n.data) # compare the data items; uses
# the generic ``cmp`` proc that works for
# any type that has a ``==`` and ``<``
# operator
if c < 0:
if it.le == nil:
it.le = n
return
it = it.le
else:
if it.ri == nil:
it.ri = n
return
it = it.ri
iterator inorder[T](root: PBinaryTree[T]): T =
# inorder traversal of a binary tree
# recursive iterators are not yet implemented, so this does not work in
# the current compiler!
if root.le != nil: yield inorder(root.le)
yield root.data
if root.ri != nil: yield inorder(root.ri)
var
root: PBinaryTree[string] # instantiate a PBinaryTree with the type string
add(root, newNode("hallo")) # instantiates generic procs ``newNode`` and
add(root, newNode("world")) # ``add``
for str in inorder(root):
writeln(stdout, str)
Generics are Nimrod's means to parametrize procs, iterators or types with
`type parameters`:idx:. Depending on context, the brackets are used either to
introduce type parameters or to instantiate a generic proc, iterator or type.
Is operator
-----------
The ``is`` operator checks for type equivalence at compile time. It is
therefore very useful for type specialization within generic code:
.. code-block:: nimrod
type
TTable[TKey, TValue] = object
keys: seq[TKey]
values: seq[TValue]
when not (TKey is string): # nil value for strings used for optimization
deletedKeys: seq[bool]
Type operator
-------------
The ``type`` (in many other languages called `typeof`:idx:) operator can
be used to get the type of an expression:
.. code-block:: nimrod
var x = 0
var y: type(x) # y has type int
If ``type`` is used to determine the result type of a proc/iterator/converter
call ``c(X)`` (where ``X`` stands for a possibly empty list of arguments), the
interpretation where ``c`` is an iterator is preferred over the
other interpretations:
.. code-block:: nimrod
import strutils
# strutils contains both a ``split`` proc and iterator, but since an
# an iterator is the preferred interpretation, `y` has the type ``string``:
var y: type("a b c".split)
Type Classes
------------
A type class is a special pseudo-type that can be used to match against
types in the context of overload resolution or the ``is`` operator.
Nimrod supports the following built-in type classes:
================== ===================================================
type class matches
================== ===================================================
``object`` any object type
``tuple`` any tuple type
``enum`` any enumeration
``proc`` any proc type
``ref`` any ``ref`` type
``ptr`` any ``ptr`` type
``var`` any ``var`` type
``distinct`` any distinct type
``array`` any array type
``set`` any set type
``seq`` any seq type
``auto`` any type
================== ===================================================
Furthermore, every generic type automatically creates a type class of the same
name that will match any instantiation of the generic type.
Type classes can be combined using the standard boolean operators to form
more complex type classes:
.. code-block:: nimrod
# create a type class that will match all tuple and object types
type TRecordType = tuple or object
proc printFields(rec: TRecordType) =
for key, value in fieldPairs(rec):
echo key, " = ", value
Procedures utilizing type classes in such manner are considered to be
`implicitly generic`:idx:. They will be instantiated once for each unique
combination of param types used within the program.
Nimrod also allows for type classes and regular types to be specified
as `type constraints`:idx: of the generic type parameter:
.. code-block:: nimrod
proc onlyIntOrString[T: int|string](x, y: T) = discard
onlyIntOrString(450, 616) # valid
onlyIntOrString(5.0, 0.0) # type mismatch
onlyIntOrString("xy", 50) # invalid as 'T' cannot be both at the same time
By default, during overload resolution each named type class will bind to
exactly one concrete type. Here is an example taken directly from the system
module to illustrate this:
.. code-block:: nimrod
proc `==`*(x, y: tuple): bool =
## requires `x` and `y` to be of the same tuple type
## generic ``==`` operator for tuples that is lifted from the components
## of `x` and `y`.
result = true
for a, b in fields(x, y):
if a != b: result = false
Alternatively, the ``distinct`` type modifier can be applied to the type class
to allow each param matching the type class to bind to a different type.
If a proc param doesn't have a type specified, Nimrod will use the
``distinct auto`` type class (also known as ``any``):
.. code-block:: nimrod
# allow any combination of param types
proc concat(a, b): string = $a & $b
Procs written with the implicitly generic style will often need to refer to the
type parameters of the matched generic type. They can be easily accessed using
the dot syntax:
.. code-block:: nimrod
type TMatrix[T, Rows, Columns] = object
...
proc `[]`(m: TMatrix, row, col: int): TMatrix.T =
m.data[col * high(TMatrix.Columns) + row]
Alternatively, the `type` operator can be used over the proc params for similar
effect when anonymous or distinct type classes are used.
When a generic type is instantiated with a type class instead of a concrete
type, this results in another more specific type class:
.. code-block:: nimrod
seq[ref object] # Any sequence storing references to any object type
type T1 = auto
proc foo(s: seq[T1], e: T1)
# seq[T1] is the same as just `seq`, but T1 will be allowed to bind
# to a single type, while the signature is being matched
TMatrix[Ordinal] # Any TMatrix instantiation using integer values
As seen in the previous example, in such instantiations, it's not necessary to
supply all type parameters of the generic type, because any missing ones will
be inferred to have the equivalent of the `any` type class and thus they will
match anything without discrimination.
User defined type classes
-------------------------
**Note**: User defined type classes are still in development.
The user-defined type classes are available in two flavours - declarative and
imperative. Both are used to specify an arbitrary set of requirements that the
matched type must satisfy.
Declarative type classes are written in the following form:
.. code-block:: nimrod
type
Comparable = generic x, y
(x < y) is bool
Container[T] = generic c
c.len is ordinal
items(c) is iterator
for value in c:
type(value) is T
The type class will be matched if:
a) all of the expressions within the body can be compiled for the tested type
b) all statically evaluatable boolean expressions in the body must be true
The identifiers following the `generic` keyword represent instances of the
currently matched type. These instances can act both as variables of the type,
when used in contexts where a value is expected, and as the type itself when
used in contexts where a type is expected.
Please note that the ``is`` operator allows one to easily verify the precise
type signatures of the required operations, but since type inference and
default parameters are still applied in the provided block, it's also possible
to encode usage protocols that do not reveal implementation details.
As a special rule providing further convenience when writing type classes, any
type value appearing in a callable expression will be treated as a variable of
the designated type for overload resolution purposes, unless the type value was
passed in its explicit ``typedesc[T]`` form:
.. code-block:: nimrod
type
OutputStream = generic S
write(var S, string)
Much like generics, the user defined type classes will be instantiated exactly
once for each tested type and any static code included within them will also be
executed once.
Return Type Inference
---------------------
If a type class is used as the return type of a proc and it won't be bound to
a concrete type by some of the proc params, Nimrod will infer the return type
from the proc body. This is usually used with the ``auto`` type class:
.. code-block:: nimrod
proc makePair(a, b): auto = (first: a, second: b)
The return type will be treated as additional generic param and can be
explicitly specified at call sites as any other generic param.
Future versions of Nimrod may also support overloading based on the return type
of the overloads. In such settings, the expected result type at call sites may
also influence the inferred return type.
Symbol lookup in generics
-------------------------
The symbol binding rules in generics are slightly subtle: There are "open" and
"closed" symbols. A "closed" symbol cannot be re-bound in the instantiation
context, an "open" symbol can. Per default overloaded symbols are open
and every other symbol is closed.
Open symbols are looked up in two different contexts: Both the context
at definition and the context at instantiation are considered:
.. code-block:: nimrod
type
TIndex = distinct int
proc `==` (a, b: TIndex): bool {.borrow.}
var a = (0, 0.TIndex)
var b = (0, 0.TIndex)
echo a == b # works!
In the example the generic ``==`` for tuples (as defined in the system module)
uses the ``==`` operators of the tuple's components. However, the ``==`` for
the ``TIndex`` type is defined *after* the ``==`` for tuples; yet the example
compiles as the instantiation takes the currently defined symbols into account
too.
A symbol can be forced to be open by a `mixin`:idx: declaration:
.. code-block:: nimrod
proc create*[T](): ref T =
# there is no overloaded 'init' here, so we need to state that it's an
# open symbol explicitly:
mixin init
new result
init result
Bind statement
--------------
The ``bind`` statement is the counterpart to the ``mixin`` statement. It
can be used to explicitly declare identifiers that should be bound early (i.e.
the identifiers should be looked up in the scope of the template/generic
definition):
.. code-block:: nimrod
# Module A
var
lastId = 0
template genId*: expr =
bind lastId
inc(lastId)
lastId
.. code-block:: nimrod
# Module B
import A
echo genId()
But a ``bind`` is rarely useful because symbol binding from the definition
scope is the default.
Templates
=========
A template is a simple form of a macro: It is a simple substitution
mechanism that operates on Nimrod's abstract syntax trees. It is processed in
the semantic pass of the compiler.
The syntax to *invoke* a template is the same as calling a procedure.
Example:
.. code-block:: nimrod
template `!=` (a, b: expr): expr =
# this definition exists in the System module
not (a == b)
assert(5 != 6) # the compiler rewrites that to: assert(not (5 == 6))
The ``!=``, ``>``, ``>=``, ``in``, ``notin``, ``isnot`` operators are in fact
templates:
| ``a > b`` is transformed into ``b < a``.
| ``a in b`` is transformed into ``contains(b, a)``.
| ``notin`` and ``isnot`` have the obvious meanings.
The "types" of templates can be the symbols ``expr`` (stands for *expression*),
``stmt`` (stands for *statement*) or ``typedesc`` (stands for *type
description*). These are "meta types", they can only be used in certain
contexts. Real types can be used too; this implies that expressions are
expected.
Ordinary vs immediate templates
-------------------------------
There are two different kinds of templates: immediate templates and
ordinary templates. Ordinary templates take part in overloading resolution. As
such their arguments need to be type checked before the template is invoked.
So ordinary templates cannot receive undeclared identifiers:
.. code-block:: nimrod
template declareInt(x: expr) =
var x: int
declareInt(x) # error: unknown identifier: 'x'
An ``immediate`` template does not participate in overload resolution and so
its arguments are not checked for semantics before invocation. So they can
receive undeclared identifiers:
.. code-block:: nimrod
template declareInt(x: expr) {.immediate.} =
var x: int
declareInt(x) # valid
Passing a code block to a template
----------------------------------
If there is a ``stmt`` parameter it should be the last in the template
declaration, because statements are passed to a template via a
special ``:`` syntax:
.. code-block:: nimrod
template withFile(f, fn, mode: expr, actions: stmt): stmt {.immediate.} =
var f: TFile
if open(f, fn, mode):
try:
actions
finally:
close(f)
else:
quit("cannot open: " & fn)
withFile(txt, "ttempl3.txt", fmWrite):
txt.writeln("line 1")
txt.writeln("line 2")
In the example the two ``writeln`` statements are bound to the ``actions``
parameter.
Symbol binding in templates
---------------------------
A template is a `hygienic`:idx: macro and so opens a new scope. Most symbols are
bound from the definition scope of the template:
.. code-block:: nimrod
# Module A
var
lastId = 0
template genId*: expr =
inc(lastId)
lastId
.. code-block:: nimrod
# Module B
import A
echo genId() # Works as 'lastId' has been bound in 'genId's defining scope
As in generics symbol binding can be influenced via ``mixin`` or ``bind``
statements.
Identifier construction
-----------------------
In templates identifiers can be constructed with the backticks notation:
.. code-block:: nimrod
template typedef(name: expr, typ: typedesc) {.immediate.} =
type
`T name`* {.inject.} = typ
`P name`* {.inject.} = ref `T name`
typedef(myint, int)
var x: PMyInt
In the example ``name`` is instantiated with ``myint``, so \`T name\` becomes
``Tmyint``.
Lookup rules for template parameters
------------------------------------
A parameter ``p`` in a template is even substituted in the expression ``x.p``.
Thus template arguments can be used as field names and a global symbol can be
shadowed by the same argument name even when fully qualified:
.. code-block:: nimrod
# module 'm'
type
TLev = enum
levA, levB
var abclev = levB
template tstLev(abclev: TLev) =
echo abclev, " ", m.abclev
tstLev(levA)
# produces: 'levA levA'
But the global symbol can properly be captured by a ``bind`` statement:
.. code-block:: nimrod
# module 'm'
type
TLev = enum
levA, levB
var abclev = levB
template tstLev(abclev: TLev) =
bind m.abclev
echo abclev, " ", m.abclev
tstLev(levA)
# produces: 'levA levB'
Hygiene in templates
--------------------
Per default templates are `hygienic`:idx:\: Local identifiers declared in a
template cannot be accessed in the instantiation context:
.. code-block:: nimrod
template newException*(exceptn: typedesc, message: string): expr =
var
e: ref exceptn # e is implicitly gensym'ed here
new(e)
e.msg = message
e
# so this works:
let e = "message"
raise newException(EIO, e)
Whether a symbol that is declared in a template is exposed to the instantiation
scope is controlled by the `inject`:idx: and `gensym`:idx: pragmas: gensym'ed
symbols are not exposed but inject'ed are.
The default for symbols of entity ``type``, ``var``, ``let`` and ``const``
is ``gensym`` and for ``proc``, ``iterator``, ``converter``, ``template``,
``macro`` is ``inject``. However, if the name of the entity is passed as a
template parameter, it is an inject'ed symbol:
.. code-block:: nimrod
template withFile(f, fn, mode: expr, actions: stmt): stmt {.immediate.} =
block:
var f: TFile # since 'f' is a template param, it's injected implicitly
...
withFile(txt, "ttempl3.txt", fmWrite):
txt.writeln("line 1")
txt.writeln("line 2")
The ``inject`` and ``gensym`` pragmas are second class annotations; they have
no semantics outside of a template definition and cannot be abstracted over:
.. code-block:: nimrod
{.pragma myInject: inject.}
template t() =
var x {.myInject.}: int # does NOT work
To get rid of hygiene in templates, one can use the `dirty`:idx: pragma for
a template. ``inject`` and ``gensym`` have no effect in ``dirty`` templates.
Macros
======
A macro is a special kind of low level template. Macros can be used
to implement `domain specific languages`:idx:. Like templates, macros come in
the 2 flavors *immediate* and *ordinary*.
While macros enable advanced compile-time code transformations, they
cannot change Nimrod's syntax. However, this is no real restriction because
Nimrod's syntax is flexible enough anyway.
To write macros, one needs to know how the Nimrod concrete syntax is converted
to an abstract syntax tree.
There are two ways to invoke a macro:
(1) invoking a macro like a procedure call (`expression macros`)
(2) invoking a macro with the special ``macrostmt`` syntax (`statement macros`)
Expression Macros
-----------------
The following example implements a powerful ``debug`` command that accepts a
variable number of arguments:
.. code-block:: nimrod
# to work with Nimrod syntax trees, we need an API that is defined in the
# ``macros`` module:
import macros
macro debug(n: varargs[expr]): stmt =
# `n` is a Nimrod AST that contains the whole macro invocation
# this macro returns a list of statements:
result = newNimNode(nnkStmtList, n)
# iterate over any argument that is passed to this macro:
for i in 0..n.len-1:
# add a call to the statement list that writes the expression;
# `toStrLit` converts an AST to its string representation:
add(result, newCall("write", newIdentNode("stdout"), toStrLit(n[i])))
# add a call to the statement list that writes ": "
add(result, newCall("write", newIdentNode("stdout"), newStrLitNode(": ")))
# add a call to the statement list that writes the expressions value:
add(result, newCall("writeln", newIdentNode("stdout"), n[i]))
var
a: array [0..10, int]
x = "some string"
a[0] = 42
a[1] = 45
debug(a[0], a[1], x)
The macro call expands to:
.. code-block:: nimrod
write(stdout, "a[0]")
write(stdout, ": ")
writeln(stdout, a[0])
write(stdout, "a[1]")
write(stdout, ": ")
writeln(stdout, a[1])
write(stdout, "x")
write(stdout, ": ")
writeln(stdout, x)
Arguments that are passed to a ``varargs`` parameter are wrapped in an array
constructor expression. This is why ``debug`` iterates over all of ``n``'s
children.
BindSym
-------
The above ``debug`` macro relies on the fact that ``write``, ``writeln`` and
``stdout`` are declared in the system module and thus visible in the
instantiating context. There is a way to use bound identifiers
(aka `symbols`:idx:) instead of using unbound identifiers. The ``bindSym``
builtin can be used for that:
.. code-block:: nimrod
import macros
macro debug(n: varargs[expr]): stmt =
result = newNimNode(nnkStmtList, n)
for i in 0..n.len-1:
# we can bind symbols in scope via 'bindSym':
add(result, newCall(bindSym"write", bindSym"stdout", toStrLit(n[i])))
add(result, newCall(bindSym"write", bindSym"stdout", newStrLitNode(": ")))
add(result, newCall(bindSym"writeln", bindSym"stdout", n[i]))
var
a: array [0..10, int]
x = "some string"
a[0] = 42
a[1] = 45
debug(a[0], a[1], x)
The macro call expands to:
.. code-block:: nimrod
write(stdout, "a[0]")
write(stdout, ": ")
writeln(stdout, a[0])
write(stdout, "a[1]")
write(stdout, ": ")
writeln(stdout, a[1])
write(stdout, "x")
write(stdout, ": ")
writeln(stdout, x)
However, the symbols ``write``, ``writeln`` and ``stdout`` are already bound
and are not looked up again. As the example shows, ``bindSym`` does work with
overloaded symbols implicitly.
Statement Macros
----------------
Statement macros are defined just as expression macros. However, they are
invoked by an expression following a colon.
The following example outlines a macro that generates a lexical analyzer from
regular expressions:
.. code-block:: nimrod
import macros
macro case_token(n: stmt): stmt =
# creates a lexical analyzer from regular expressions
# ... (implementation is an exercise for the reader :-)
discard
case_token: # this colon tells the parser it is a macro statement
of r"[A-Za-z_]+[A-Za-z_0-9]*":
return tkIdentifier
of r"0-9+":
return tkInteger
of r"[\+\-\*\?]+":
return tkOperator
else:
return tkUnknown
**Style note**: For code readability, it is the best idea to use the least
powerful programming construct that still suffices. So the "check list" is:
(1) Use an ordinary proc/iterator, if possible.
(2) Else: Use a generic proc/iterator, if possible.
(3) Else: Use a template, if possible.
(4) Else: Use a macro.
Macros as pragmas
-----------------
Whole routines (procs, iterators etc.) can also be passed to a template or
a macro via the pragma notation:
.. code-block:: nimrod
template m(s: stmt) = discard
proc p() {.m.} = discard
This is a simple syntactic transformation into:
.. code-block:: nimrod
template m(s: stmt) = discard
m:
proc p() = discard
Special Types
=============
static[T]
---------
**Note**: static[T] is still in development.
As their name suggests, static params must be known at compile-time:
.. code-block:: nimrod
proc precompiledRegex(pattern: static[string]): TRegEx =
var res {.global.} = re(pattern)
return res
precompiledRegex("/d+") # Replaces the call with a precompiled
# regex, stored in a global variable
precompiledRegex(paramStr(1)) # Error, command-line options
# are not known at compile-time
For the purposes of code generation, all static params are treated as
generic params - the proc will be compiled separately for each unique
supplied value (or combination of values).
Furthermore, the system module defines a `semistatic[T]` type than can be
used to declare procs accepting both static and run-time values, which can
optimize their body according to the supplied param using the `isStatic(p)`
predicate:
.. code-block:: nimrod
# The following proc will be compiled once for each unique static
# value and also once for the case handling all run-time values:
proc re(pattern: semistatic[string]): TRegEx =
when isStatic(pattern):
result = precompiledRegex(pattern)
else:
result = compile(pattern)
Static params can also appear in the signatures of generic types:
.. code-block:: nimrod
type
Matrix[M,N: static[int]; T: Number] = array[0..(M*N - 1), T]
# Note how `Number` is just a type constraint here, while
# `static[int]` requires us to supply a compile-time int value
AffineTransform2D[T] = Matrix[3, 3, T]
AffineTransform3D[T] = Matrix[4, 4, T]
var m1: AffineTransform3D[float] # OK
var m2: AffineTransform2D[string] # Error, `string` is not a `Number`
typedesc
--------
`typedesc` is a special type allowing one to treat types as compile-time values
(i.e. if types are compile-time values and all values have a type, then
typedesc must be their type).
When used as a regular proc param, typedesc acts as a type class. The proc
will be instantiated for each unique type parameter and one can refer to the
instantiation type using the param name:
.. code-block:: nimrod
proc new(T: typedesc): ref T =
echo "allocating ", T.name
new(result)
var n = TNode.new
var tree = new(TBinaryTree[int])
When multiple typedesc params are present, they act like a distinct type class
(i.e. they will bind freely to different types). To force a bind-once behavior
one can use a named alias or an explicit `typedesc` generic param:
.. code-block:: nimrod
# `type1` and `type2` are aliases for typedesc available from system.nim
proc acceptOnlyTypePairs(A, B: type1; C, D: type2)
proc acceptOnlyTypePairs[T: typedesc, U: typedesc](A, B: T; C, D: U)
Once bound, typedesc params can appear in the rest of the proc signature:
.. code-block:: nimrod
template declareVariableWithType(T: typedesc, value: T) =
var x: T = value
declareVariableWithType int, 42
When used with macros and .compileTime. procs on the other hand, the compiler
does not need to instantiate the code multiple times, because types then can be
manipulated using the unified internal symbol representation. In such context
typedesc acts as any other type. One can create variables, store typedesc
values inside containers and so on. For example, here is how one can create
a type-safe wrapper for the unsafe `printf` function from C:
.. code-block:: nimrod
macro safePrintF(formatString: string{lit}, args: varargs[expr]): expr =
var i = 0
for c in formatChars(formatString):
var expectedType = case c
of 'c': char
of 'd', 'i', 'x', 'X': int
of 'f', 'e', 'E', 'g', 'G': float
of 's': string
of 'p': pointer
else: EOutOfRange
var actualType = args[i].getType
inc i
if expectedType == EOutOfRange:
error c & " is not a valid format character"
elif expectedType != actualType:
error "type mismatch for argument ", i, ". expected type: ",
expectedType.name, ", actual type: ", actualType.name
# keep the original callsite, but use cprintf instead
result = callsite()
result[0] = newIdentNode(!"cprintf")
Overload resolution can be further influenced by constraining the set of
types that will match the typedesc param:
.. code-block:: nimrod
template maxval(T: typedesc[int]): int = high(int)
template maxval(T: typedesc[float]): float = Inf
var i = int.maxval
var f = float.maxval
var s = string.maxval # error, maxval is not implemented for string
The constraint can be a concrete type or a type class.
Special Operators
=================
dot operators
-------------
Nimrod offers a special family of dot operators that can be used to
intercept and rewrite proc call and field access attempts, referring
to previously undeclared symbol names. They can be used to provide a
fluent interface to objects lying outside the static confines of the
Nimrod's type system such as values from dynamic scripting languages
or dynamic file formats such as JSON or XML.
When Nimrod encounters an expression that cannot be resolved by the
standard overload resolution rules, the current scope will be searched
for a dot operator that can be matched against a re-written form of
the expression, where the unknown field or proc name is converted to
an additional static string parameter:
.. code-block:: nimrod
a.b # becomes `.`(a, "b")
a.b(c, d) # becomes `.`(a, "b", c, d)
The matched dot operators can be symbols of any callable kind (procs,
templates and macros), depending on the desired effect:
.. code-block:: nimrod
proc `.` (js: PJsonNode, field: string): JSON = js[field]
var js = parseJson("{ x: 1, y: 2}")
echo js.x # outputs 1
echo js.y # outputs 2
The following dot operators are available:
operator `.`
------------
This operator will be matched against both field accesses and method calls.
operator `.()`
---------------
This operator will be matched exclusively against method calls. It has higher
precedence than the `.` operator and this allows you to handle expressions like
`x.y` and `x.y()` differently if you are interfacing with a scripting language
for example.
operator `.=`
-------------
This operator will be matched against assignments to missing fields.
.. code-block:: nimrod
a.b = c # becomes `.=`(a, "b", c)
Term rewriting macros
=====================
Term rewriting macros are macros or templates that have not only
a *name* but also a *pattern* that is searched for after the semantic checking
phase of the compiler: This means they provide an easy way to enhance the
compilation pipeline with user defined optimizations:
.. code-block:: nimrod
template optMul{`*`(a, 2)}(a: int): int = a+a
let x = 3
echo x * 2
The compiler now rewrites ``x * 2`` as ``x + x``. The code inside the
curlies is the pattern to match against. The operators ``*``, ``**``,
``|``, ``~`` have a special meaning in patterns if they are written in infix
notation, so to match verbatim against ``*`` the ordinary function call syntax
needs to be used.
Unfortunately optimizations are hard to get right and even the tiny example
is **wrong**:
.. code-block:: nimrod
template optMul{`*`(a, 2)}(a: int): int = a+a
proc f(): int =
echo "side effect!"
result = 55
echo f() * 2
We cannot duplicate 'a' if it denotes an expression that has a side effect!
Fortunately Nimrod supports side effect analysis:
.. code-block:: nimrod
template optMul{`*`(a, 2)}(a: int{noSideEffect}): int = a+a
proc f(): int =
echo "side effect!"
result = 55
echo f() * 2 # not optimized ;-)
So what about ``2 * a``? We should tell the compiler ``*`` is commutative. We
cannot really do that however as the following code only swaps arguments
blindly:
.. code-block:: nimrod
template mulIsCommutative{`*`(a, b)}(a, b: int): int = b*a
What optimizers really need to do is a *canonicalization*:
.. code-block:: nimrod
template canonMul{`*`(a, b)}(a: int{lit}, b: int): int = b*a
The ``int{lit}`` parameter pattern matches against an expression of
type ``int``, but only if it's a literal.
Parameter constraints
---------------------
The `parameter constraint`:idx: expression can use the operators ``|`` (or),
``&`` (and) and ``~`` (not) and the following predicates:
=================== =====================================================
Predicate Meaning
=================== =====================================================
``atom`` The matching node has no children.
``lit`` The matching node is a literal like "abc", 12.
``sym`` The matching node must be a symbol (a bound
identifier).
``ident`` The matching node must be an identifier (an unbound
identifier).
``call`` The matching AST must be a call/apply expression.
``lvalue`` The matching AST must be an lvalue.
``sideeffect`` The matching AST must have a side effect.
``nosideeffect`` The matching AST must have no side effect.
``param`` A symbol which is a parameter.
``genericparam`` A symbol which is a generic parameter.
``module`` A symbol which is a module.
``type`` A symbol which is a type.
``var`` A symbol which is a variable.
``let`` A symbol which is a ``let`` variable.
``const`` A symbol which is a constant.
``result`` The special ``result`` variable.
``proc`` A symbol which is a proc.
``method`` A symbol which is a method.
``iterator`` A symbol which is an iterator.
``converter`` A symbol which is a converter.
``macro`` A symbol which is a macro.
``template`` A symbol which is a template.
``field`` A symbol which is a field in a tuple or an object.
``enumfield`` A symbol which is a field in an enumeration.
``forvar`` A for loop variable.
``label`` A label (used in ``block`` statements).
``nk*`` The matching AST must have the specified kind.
(Example: ``nkIfStmt`` denotes an ``if`` statement.)
``alias`` States that the marked parameter needs to alias
with *some* other parameter.
``noalias`` States that *every* other parameter must not alias
with the marked parameter.
=================== =====================================================
The ``alias`` and ``noalias`` predicates refer not only to the matching AST,
but also to every other bound parameter; syntactially they need to occur after
the ordinary AST predicates:
.. code-block:: nimrod
template ex{a = b + c}(a: int{noalias}, b, c: int) =
# this transformation is only valid if 'b' and 'c' do not alias 'a':
a = b
inc a, c
Pattern operators
-----------------
The operators ``*``, ``**``, ``|``, ``~`` have a special meaning in patterns
if they are written in infix notation.
The ``|`` operator
~~~~~~~~~~~~~~~~~~
The ``|`` operator if used as infix operator creates an ordered choice:
.. code-block:: nimrod
template t{0|1}(): expr = 3
let a = 1
# outputs 3:
echo a
The matching is performed after the compiler performed some optimizations like
constant folding, so the following does not work:
.. code-block:: nimrod
template t{0|1}(): expr = 3
# outputs 1:
echo 1
The reason is that the compiler already transformed the 1 into "1" for
the ``echo`` statement. However, a term rewriting macro should not change the
semantics anyway. In fact they can be deactived with the ``--patterns:off``
command line option or temporarily with the ``patterns`` pragma.
The ``{}`` operator
~~~~~~~~~~~~~~~~~~~
A pattern expression can be bound to a pattern parameter via the ``expr{param}``
notation:
.. code-block:: nimrod
template t{(0|1|2){x}}(x: expr): expr = x+1
let a = 1
# outputs 2:
echo a
The ``~`` operator
~~~~~~~~~~~~~~~~~~
The ``~`` operator is the **not** operator in patterns:
.. code-block:: nimrod
template t{x = (~x){y} and (~x){z}}(x, y, z: bool): stmt =
x = y
if x: x = z
var
a = false
b = true
c = false
a = b and c
echo a
The ``*`` operator
~~~~~~~~~~~~~~~~~~
The ``*`` operator can *flatten* a nested binary expression like ``a & b & c``
to ``&(a, b, c)``:
.. code-block:: nimrod
var
calls = 0
proc `&&`(s: varargs[string]): string =
result = s[0]
for i in 1..len(s)-1: result.add s[i]
inc calls
template optConc{ `&&` * a }(a: string): expr = &&a
let space = " "
echo "my" && (space & "awe" && "some " ) && "concat"
# check that it's been optimized properly:
doAssert calls == 1
The second operator of `*` must be a parameter; it is used to gather all the
arguments. The expression ``"my" && (space & "awe" && "some " ) && "concat"``
is passed to ``optConc`` in ``a`` as a special list (of kind ``nkArgList``)
which is flattened into a call expression; thus the invocation of ``optConc``
produces:
.. code-block:: nimrod
`&&`("my", space & "awe", "some ", "concat")
The ``**`` operator
~~~~~~~~~~~~~~~~~~~
The ``**`` is much like the ``*`` operator, except that it gathers not only
all the arguments, but also the matched operators in reverse polish notation:
.. code-block:: nimrod
import macros
type
TMatrix = object
dummy: int
proc `*`(a, b: TMatrix): TMatrix = discard
proc `+`(a, b: TMatrix): TMatrix = discard
proc `-`(a, b: TMatrix): TMatrix = discard
proc `$`(a: TMatrix): string = result = $a.dummy
proc mat21(): TMatrix =
result.dummy = 21
macro optM{ (`+`|`-`|`*`) ** a }(a: TMatrix): expr =
echo treeRepr(a)
result = newCall(bindSym"mat21")
var x, y, z: TMatrix
echo x + y * z - x
This passes the expression ``x + y * z - x`` to the ``optM`` macro as
an ``nnkArgList`` node containing::
Arglist
Sym "x"
Sym "y"
Sym "z"
Sym "*"
Sym "+"
Sym "x"
Sym "-"
(Which is the reverse polish notation of ``x + y * z - x``.)
Parameters
----------
Parameters in a pattern are type checked in the matching process. If a
parameter is of the type ``varargs`` it is treated specially and it can match
0 or more arguments in the AST to be matched against:
.. code-block:: nimrod
template optWrite{
write(f, x)
((write|writeln){w})(f, y)
}(x, y: varargs[expr], f: TFile, w: expr) =
w(f, x, y)
Example: Partial evaluation
---------------------------
The following example shows how some simple partial evaluation can be
implemented with term rewriting:
.. code-block:: nimrod
proc p(x, y: int; cond: bool): int =
result = if cond: x + y else: x - y
template optP1{p(x, y, true)}(x, y: expr): expr = x + y
template optP2{p(x, y, false)}(x, y: expr): expr = x - y
Example: Hoisting
-----------------
The following example shows how some form of hoisting can be implemented:
.. code-block:: nimrod
import pegs
template optPeg{peg(pattern)}(pattern: string{lit}): TPeg =
var gl {.global, gensym.} = peg(pattern)
gl
for i in 0 .. 3:
echo match("(a b c)", peg"'(' @ ')'")
echo match("W_HI_Le", peg"\y 'while'")
The ``optPeg`` template optimizes the case of a peg constructor with a string
literal, so that the pattern will only be parsed once at program startup and
stored in a global ``gl`` which is then re-used. This optimization is called
hoisting because it is comparable to classical loop hoisting.
AST based overloading
=====================
Parameter constraints can also be used for ordinary routine parameters; these
constraints affect ordinary overloading resolution then:
.. code-block:: nimrod
proc optLit(a: string{lit|`const`}) =
echo "string literal"
proc optLit(a: string) =
echo "no string literal"
const
constant = "abc"
var
variable = "xyz"
optLit("literal")
optLit(constant)
optLit(variable)
However, the constraints ``alias`` and ``noalias`` are not available in
ordinary routines.
Move optimization
-----------------
The ``call`` constraint is particularly useful to implement a move
optimization for types that have copying semantics:
.. code-block:: nimrod
proc `[]=`*(t: var TTable, key: string, val: string) =
## puts a (key, value)-pair into `t`. The semantics of string require
## a copy here:
let idx = findInsertionPosition(key)
t[idx] = key
t[idx] = val
proc `[]=`*(t: var TTable, key: string{call}, val: string{call}) =
## puts a (key, value)-pair into `t`. Optimized version that knows that
## the strings are unique and thus don't need to be copied:
let idx = findInsertionPosition(key)
shallowCopy t[idx], key
shallowCopy t[idx], val
var t: TTable
# overloading resolution ensures that the optimized []= is called here:
t[f()] = g()
Modules
=======
Nimrod supports splitting a program into pieces by a module concept.
Each module needs to be in its own file and has its own `namespace`:idx:.
Modules enable `information hiding`:idx: and `separate compilation`:idx:.
A module may gain access to symbols of another module by the `import`:idx:
statement. `Recursive module dependencies`:idx: are allowed, but slightly
subtle. Only top-level symbols that are marked with an asterisk (``*``) are
exported.
The algorithm for compiling modules is:
- compile the whole module as usual, following import statements recursively
- if there is a cycle only import the already parsed symbols (that are
exported); if an unknown identifier occurs then abort
This is best illustrated by an example:
.. code-block:: nimrod
# Module A
type
T1* = int # Module A exports the type ``T1``
import B # the compiler starts parsing B
proc main() =
var i = p(3) # works because B has been parsed completely here
main()
.. code-block:: nimrod
# Module B
import A # A is not parsed here! Only the already known symbols
# of A are imported.
proc p*(x: A.T1): A.T1 =
# this works because the compiler has already
# added T1 to A's interface symbol table
result = x + 1
Import statement
~~~~~~~~~~~~~~~~
After the ``import`` statement a list of module names can follow or a single
module name followed by an ``except`` to prevent some symbols to be imported:
.. code-block:: nimrod
import strutils except `%`
# doesn't work then:
echo "$1" % "abc"
Module names in imports
~~~~~~~~~~~~~~~~~~~~~~~
A module alias can be introduced via the ``as`` keyword:
.. code-block:: nimrod
import strutils as su, sequtils as qu
echo su.format("$1", "lalelu")
The original module name is then not accessible. The
notations ``path/to/module`` or ``path.to.module`` or ``"path/to/module"``
can be used to refer to a module in subdirectories:
.. code-block:: nimrod
import lib.pure.strutils, lib/pure/os, "lib/pure/times"
Note that the module name is still ``strutils`` and not ``lib.pure.strutils``
and so one **cannot** do:
.. code-block:: nimrod
import lib.pure.strutils
echo lib.pure.strutils
Likewise the following does not make sense as the name is ``strutils`` already:
.. code-block:: nimrod
import lib.pure.strutils as strutils
From import statement
~~~~~~~~~~~~~~~~~~~~~
After the ``from`` statement a module name follows followed by
an ``import`` to list the symbols one likes to use without explict
full qualification:
.. code-block:: nimrod
from strutils import `%`
echo "$1" % "abc"
# always possible: full qualification:
echo strutils.replace("abc", "a", "z")
It's also possible to use ``from module import nil`` if one wants to import
the module but wants to enforce fully qualified access to every symbol
in ``module``.
Export statement
~~~~~~~~~~~~~~~~
An ``export`` statement can be used for symbol fowarding so that client
modules don't need to import a module's dependencies:
.. code-block:: nimrod
# module B
type TMyObject* = object
.. code-block:: nimrod
# module A
import B
export B.TMyObject
proc `$`*(x: TMyObject): string = "my object"
.. code-block:: nimrod
# module C
import A
# B.TMyObject has been imported implicitly here:
var x: TMyObject
echo($x)
Scope rules
-----------
Identifiers are valid from the point of their declaration until the end of
the block in which the declaration occurred. The range where the identifier
is known is the scope of the identifier. The exact scope of an
identifier depends on the way it was declared.
Block scope
~~~~~~~~~~~
The *scope* of a variable declared in the declaration part of a block
is valid from the point of declaration until the end of the block. If a
block contains a second block, in which the identifier is redeclared,
then inside this block, the second declaration will be valid. Upon
leaving the inner block, the first declaration is valid again. An
identifier cannot be redefined in the same block, except if valid for
procedure or iterator overloading purposes.
Tuple or object scope
~~~~~~~~~~~~~~~~~~~~~
The field identifiers inside a tuple or object definition are valid in the
following places:
* To the end of the tuple/object definition.
* Field designators of a variable of the given tuple/object type.
* In all descendant types of the object type.
Module scope
~~~~~~~~~~~~
All identifiers of a module are valid from the point of declaration until
the end of the module. Identifiers from indirectly dependent modules are *not*
available. The `system`:idx: module is automatically imported in every other
module.
If a module imports an identifier by two different modules, each occurrence of
the identifier has to be qualified, unless it is an overloaded procedure or
iterator in which case the overloading resolution takes place:
.. code-block:: nimrod
# Module A
var x*: string
.. code-block:: nimrod
# Module B
var x*: int
.. code-block:: nimrod
# Module C
import A, B
write(stdout, x) # error: x is ambiguous
write(stdout, A.x) # no error: qualifier used
var x = 4
write(stdout, x) # not ambiguous: uses the module C's x
Compiler Messages
=================
The Nimrod compiler emits different kinds of messages: `hint`:idx:,
`warning`:idx:, and `error`:idx: messages. An *error* message is emitted if
the compiler encounters any static error.
Pragmas
=======
Pragmas are Nimrod's method to give the compiler additional information /
commands without introducing a massive number of new keywords. Pragmas are
processed on the fly during semantic checking. Pragmas are enclosed in the
special ``{.`` and ``.}`` curly brackets. Pragmas are also often used as a
first implementation to play with a language feature before a nicer syntax
to access the feature becomes available.
noSideEffect pragma
-------------------
The ``noSideEffect`` pragma is used to mark a proc/iterator to have no side
effects. This means that the proc/iterator only changes locations that are
reachable from its parameters and the return value only depends on the
arguments. If none of its parameters have the type ``var T``
or ``ref T`` or ``ptr T`` this means no locations are modified. It is a static
error to mark a proc/iterator to have no side effect if the compiler cannot
verify this.
As a special semantic rule, the built-in `debugEcho <system.html#debugEcho>`_
pretends to be free of side effects, so that it can be used for debugging
routines marked as ``noSideEffect``.
**Future directions**: ``func`` may become a keyword and syntactic sugar for a
proc with no side effects:
.. code-block:: nimrod
func `+` (x, y: int): int
destructor pragma
-----------------
The ``destructor`` pragma is used to mark a proc to act as a type destructor.
The proc must have a single parameter with a concrete type (the name of a
generic type is allowed too).
Destructors will be automatically invoked when a local stack variable goes
out of scope.
If a record type features a field with destructable type and
the user have not provided explicit implementation, Nimrod will automatically
generate a destructor for the record type. Nimrod will automatically insert
calls to any base class destructors in both user-defined and generated
destructors.
A destructor is attached to the type it destructs; expressions of this type
can then only be used in *destructible contexts* and as parameters:
.. code-block:: nimrod
type
TMyObj = object
x, y: int
p: pointer
proc destruct(o: var TMyObj) {.destructor.} =
if o.p != nil: dealloc o.p
proc open: TMyObj =
result = TMyObj(x: 1, y: 2, p: alloc(3))
proc work(o: TMyObj) =
echo o.x
# No destructor invoked here for 'o' as 'o' is a parameter.
proc main() =
# destructor automatically invoked at the end of the scope:
var x = open()
# valid: pass 'x' to some other proc:
work(x)
# Error: usage of a type with a destructor in a non destructible context
echo open()
A destructible context is currently only the following:
1. The ``expr`` in ``var x = expr``.
2. The ``expr`` in ``let x = expr``.
3. The ``expr`` in ``return expr``.
4. The ``expr`` in ``result = expr`` where ``result`` is the special symbol
introduced by the compiler.
These rules ensure that the construction is tied to a variable and can easily
be destructed at its scope exit. Later versions of the language will improve
the support of destructors.
Be aware that destructors are not called for objects allocated with ``new``.
This may change in future versions of language, but for now use
the ``finalizer`` parameter to ``new``.
procvar pragma
--------------
The ``procvar`` pragma is used to mark a proc that it can be passed to a
procedural variable.
compileTime pragma
------------------
The ``compileTime`` pragma is used to mark a proc to be used at compile
time only. No code will be generated for it. Compile time procs are useful
as helpers for macros.
noReturn pragma
---------------
The ``noreturn`` pragma is used to mark a proc that never returns.
Acyclic pragma
--------------
The ``acyclic`` pragma can be used for object types to mark them as acyclic
even though they seem to be cyclic. This is an **optimization** for the garbage
collector to not consider objects of this type as part of a cycle:
.. code-block:: nimrod
type
PNode = ref TNode
TNode {.acyclic, final.} = object
left, right: PNode
data: string
In the example a tree structure is declared with the ``TNode`` type. Note that
the type definition is recursive and the GC has to assume that objects of
this type may form a cyclic graph. The ``acyclic`` pragma passes the
information that this cannot happen to the GC. If the programmer uses the
``acyclic`` pragma for data types that are in reality cyclic, the GC may leak
memory, but nothing worse happens.
**Future directions**: The ``acyclic`` pragma may become a property of a
``ref`` type:
.. code-block:: nimrod
type
PNode = acyclic ref TNode
TNode = object
left, right: PNode
data: string
Final pragma
------------
The ``final`` pragma can be used for an object type to specify that it
cannot be inherited from.
shallow pragma
--------------
The ``shallow`` pragma affects the semantics of a type: The compiler is
allowed to make a shallow copy. This can cause serious semantic issues and
break memory safety! However, it can speed up assignments considerably,
because the semantics of Nimrod require deep copying of sequences and strings.
This can be expensive, especially if sequences are used to build a tree
structure:
.. code-block:: nimrod
type
TNodeKind = enum nkLeaf, nkInner
TNode {.final, shallow.} = object
case kind: TNodeKind
of nkLeaf:
strVal: string
of nkInner:
children: seq[TNode]
Pure pragma
-----------
An object type can be marked with the ``pure`` pragma so that its type
field which is used for runtime type identification is omitted. This is
necessary for binary compatibility with other compiled languages.
AsmNoStackFrame pragma
----------------------
A proc can be marked with the ``AsmNoStackFrame`` pragma to tell the compiler
it should not generate a stack frame for the proc. There are also no exit
statements like ``return result;`` generated and the generated C function is
declared as ``__declspec(naked)`` or ``__attribute__((naked))`` (depending on
the used C compiler).
**Note**: This pragma should only be used by procs which consist solely of
assembler statements.
error pragma
------------
The ``error`` pragma is used to make the compiler output an error message
with the given content. Compilation does not necessarily abort after an error
though.
The ``error`` pragma can also be used to
annotate a symbol (like an iterator or proc). The *usage* of the symbol then
triggers a compile-time error. This is especially useful to rule out that some
operation is valid due to overloading and type conversions:
.. code-block:: nimrod
## check that underlying int values are compared and not the pointers:
proc `==`(x, y: ptr int): bool {.error.}
fatal pragma
------------
The ``fatal`` pragma is used to make the compiler output an error message
with the given content. In contrast to the ``error`` pragma, compilation
is guaranteed to be aborted by this pragma. Example:
.. code-block:: nimrod
when not defined(objc):
{.fatal: "Compile this program with the objc command!".}
warning pragma
--------------
The ``warning`` pragma is used to make the compiler output a warning message
with the given content. Compilation continues after the warning.
hint pragma
-----------
The ``hint`` pragma is used to make the compiler output a hint message with
the given content. Compilation continues after the hint.
line pragma
-----------
The ``line`` pragma can be used to affect line information of the annotated
statement as seen in stack backtraces:
.. code-block:: nimrod
template myassert*(cond: expr, msg = "") =
if not cond:
# change run-time line information of the 'raise' statement:
{.line: InstantiationInfo().}:
raise newException(EAssertionFailed, msg)
If the ``line`` pragma is used with a parameter, the parameter needs be a
``tuple[filename: string, line: int]``. If it is used without a parameter,
``system.InstantiationInfo()`` is used.
linearScanEnd pragma
--------------------
The ``linearScanEnd`` pragma can be used to tell the compiler how to
compile a Nimrod `case`:idx: statement. Syntactically it has to be used as a
statement:
.. code-block:: nimrod
case myInt
of 0:
echo "most common case"
of 1:
{.linearScanEnd.}
echo "second most common case"
of 2: echo "unlikely: use branch table"
else: echo "unlikely too: use branch table for ", myInt
In the example, the case branches ``0`` and ``1`` are much more common than
the other cases. Therefore the generated assembler code should test for these
values first, so that the CPU's branch predictor has a good chance to succeed
(avoiding an expensive CPU pipeline stall). The other cases might be put into a
jump table for O(1) overhead, but at the cost of a (very likely) pipeline
stall.
The ``linearScanEnd`` pragma should be put into the last branch that should be
tested against via linear scanning. If put into the last branch of the
whole ``case`` statement, the whole ``case`` statement uses linear scanning.
computedGoto pragma
-------------------
The ``computedGoto`` pragma can be used to tell the compiler how to
compile a Nimrod `case`:idx: in a ``while true`` statement.
Syntactically it has to be used as a statement inside the loop:
.. code-block:: nimrod
type
MyEnum = enum
enumA, enumB, enumC, enumD, enumE
proc vm() =
var instructions: array [0..100, MyEnum]
instructions[2] = enumC
instructions[3] = enumD
instructions[4] = enumA
instructions[5] = enumD
instructions[6] = enumC
instructions[7] = enumA
instructions[8] = enumB
instructions[12] = enumE
var pc = 0
while true:
{.computedGoto.}
let instr = instructions[pc]
case instr
of enumA:
echo "yeah A"
of enumC, enumD:
echo "yeah CD"
of enumB:
echo "yeah B"
of enumE:
break
inc(pc)
vm()
As the example shows ``computedGoto`` is mostly useful for interpreters. If
the underlying backend (C compiler) does not support the computed goto
extension the pragma is simply ignored.
unroll pragma
-------------
The ``unroll`` pragma can be used to tell the compiler that it should unroll
a `for`:idx: or `while`:idx: loop for runtime efficiency:
.. code-block:: nimrod
proc searchChar(s: string, c: char): int =
for i in 0 .. s.high:
{.unroll: 4.}
if s[i] == c: return i
result = -1
In the above example, the search loop is unrolled by a factor 4. The unroll
factor can be left out too; the compiler then chooses an appropriate unroll
factor.
**Note**: Currently the compiler recognizes but ignores this pragma.
immediate pragma
----------------
See `Ordinary vs immediate templates`_.
compilation option pragmas
--------------------------
The listed pragmas here can be used to override the code generation options
for a section of code.
The implementation currently provides the following possible options (various
others may be added later).
=============== =============== ============================================
pragma allowed values description
=============== =============== ============================================
checks on|off Turns the code generation for all runtime
checks on or off.
boundChecks on|off Turns the code generation for array bound
checks on or off.
overflowChecks on|off Turns the code generation for over- or
underflow checks on or off.
nilChecks on|off Turns the code generation for nil pointer
checks on or off.
assertions on|off Turns the code generation for assertions
on or off.
warnings on|off Turns the warning messages of the compiler
on or off.
hints on|off Turns the hint messages of the compiler
on or off.
optimization none|speed|size Optimize the code for speed or size, or
disable optimization.
patterns on|off Turns the term rewriting templates/macros
on or off.
callconv cdecl|... Specifies the default calling convention for
all procedures (and procedure types) that
follow.
=============== =============== ============================================
Example:
.. code-block:: nimrod
{.checks: off, optimization: speed.}
# compile without runtime checks and optimize for speed
push and pop pragmas
--------------------
The `push/pop`:idx: pragmas are very similar to the option directive,
but are used to override the settings temporarily. Example:
.. code-block:: nimrod
{.push checks: off.}
# compile this section without runtime checks as it is
# speed critical
# ... some code ...
{.pop.} # restore old settings
register pragma
---------------
The ``register`` pragma is for variables only. It declares the variable as
``register``, giving the compiler a hint that the variable should be placed
in a hardware register for faster access. C compilers usually ignore this
though and for good reasons: Often they do a better job without it anyway.
In highly specific cases (a dispatch loop of an bytecode interpreter for
example) it may provide benefits, though.
global pragma
-------------
The ``global`` pragma can be applied to a variable within a proc to instruct
the compiler to store it in a global location and initialize it once at program
startup.
.. code-block:: nimrod
proc isHexNumber(s: string): bool =
var pattern {.global.} = re"[0-9a-fA-F]+"
result = s.match(pattern)
When used within a generic proc, a separate unique global variable will be
created for each instantiation of the proc. The order of initialization of
the created global variables within a module is not defined, but all of them
will be initialized after any top-level variables in their originating module
and before any variable in a module that imports it.
DeadCodeElim pragma
-------------------
The ``deadCodeElim`` pragma only applies to whole modules: It tells the
compiler to activate (or deactivate) dead code elimination for the module the
pragma appears in.
The ``--deadCodeElim:on`` command line switch has the same effect as marking
every module with ``{.deadCodeElim:on}``. However, for some modules such as
the GTK wrapper it makes sense to *always* turn on dead code elimination -
no matter if it is globally active or not.
Example:
.. code-block:: nimrod
{.deadCodeElim: on.}
..
NoForward pragma
----------------
The ``noforward`` pragma can be used to turn on and off a special compilation
mode that to large extent eliminates the need for forward declarations. In this
mode, the proc definitions may appear out of order and the compiler will postpone
their semantic analysis and compilation until it actually needs to generate code
using the definitions. In this regard, this mode is similar to the modus operandi
of dynamic scripting languages, where the function calls are not resolved until
the code is executed. Here is the detailed algorithm taken by the compiler:
1. When a callable symbol is first encountered, the compiler will only note the
symbol callable name and it will add it to the appropriate overload set in the
current scope. At this step, it won't try to resolve any of the type expressions
used in the signature of the symbol (so they can refer to other not yet defined
symbols).
2. When a top level call is encountered (usually at the very end of the module),
the compiler will try to determine the actual types of all of the symbols in the
matching overload set. This is a potentially recursive process as the signatures
of the symbols may include other call expressions, whoose types will be resolved
at this point too.
3. Finally, after the best overload is picked, the compiler will start compiling
the body of the respective symbol. This in turn will lead the compiler to discover
more call expresions that need to be resolved and steps 2 and 3 will be repeated
as necessary.
Please note that if a callable symbol is never used in this scenario, its body
will never be compiled. This is the default behavior leading to best compilation
times, but if exhaustive compilation of all definitions is required, using
``nimrod check`` provides this option as well.
Example:
.. code-block:: nimrod
{.noforward: on.}
proc foo(x: int) =
bar x
proc bar(x: int) =
echo x
foo(10)
Pragma pragma
-------------
The ``pragma`` pragma can be used to declare user defined pragmas. This is
useful because Nimrod's templates and macros do not affect pragmas. User
defined pragmas are in a different module-wide scope than all other symbols.
They cannot be imported from a module.
Example:
.. code-block:: nimrod
when appType == "lib":
{.pragma: rtl, exportc, dynlib, cdecl.}
else:
{.pragma: rtl, importc, dynlib: "client.dll", cdecl.}
proc p*(a, b: int): int {.rtl.} =
result = a+b
In the example a new pragma named ``rtl`` is introduced that either imports
a symbol from a dynamic library or exports the symbol for dynamic library
generation.
Disabling certain messages
--------------------------
Nimrod generates some warnings and hints ("line too long") that may annoy the
user. A mechanism for disabling certain messages is provided: Each hint
and warning message contains a symbol in brackets. This is the message's
identifier that can be used to enable or disable it:
.. code-block:: Nimrod
{.hint[LineTooLong]: off.} # turn off the hint about too long lines
This is often better than disabling all warnings at once.
Foreign function interface
==========================
Nimrod's `FFI`:idx: (foreign function interface) is extensive and only the
parts that scale to other future backends (like the LLVM/JavaScript backends)
are documented here.
Importc pragma
--------------
The ``importc`` pragma provides a means to import a proc or a variable
from C. The optional argument is a string containing the C identifier. If
the argument is missing, the C name is the Nimrod identifier *exactly as
spelled*:
.. code-block::
proc printf(formatstr: cstring) {.header: "<stdio.h>", importc: "printf", varargs.}
Note that this pragma is somewhat of a misnomer: Other backends will provide
the same feature under the same name. Also, if you are interfacing with C++
you can use the `ImportCpp pragma <nimrodc.html#importcpp-pragma>`_ and
interfacing with Objective-C the `ImportObjC pragma
<nimrodc.html#importobjc-pragma>`_.
Exportc pragma
--------------
The ``exportc`` pragma provides a means to export a type, a variable, or a
procedure to C. Enums and constants can't be exported. The optional argument
is a string containing the C identifier. If the argument is missing, the C
name is the Nimrod identifier *exactly as spelled*:
.. code-block:: Nimrod
proc callme(formatstr: cstring) {.exportc: "callMe", varargs.}
Note that this pragma is somewhat of a misnomer: Other backends will provide
the same feature under the same name.
Extern pragma
-------------
Like ``exportc`` or ``importc``, the ``extern`` pragma affects name
mangling. The string literal passed to ``extern`` can be a format string:
.. code-block:: Nimrod
proc p(s: string) {.extern: "prefix$1".} =
echo s
In the example the external name of ``p`` is set to ``prefixp``.
Bycopy pragma
-------------
The ``bycopy`` pragma can be applied to an object or tuple type and
instructs the compiler to pass the type by value to procs:
.. code-block:: nimrod
type
TVector {.bycopy, pure.} = object
x, y, z: float
Byref pragma
------------
The ``byref`` pragma can be applied to an object or tuple type and instructs
the compiler to pass the type by reference (hidden pointer) to procs.
Varargs pragma
--------------
The ``varargs`` pragma can be applied to procedures only (and procedure
types). It tells Nimrod that the proc can take a variable number of parameters
after the last specified parameter. Nimrod string values will be converted to C
strings automatically:
.. code-block:: Nimrod
proc printf(formatstr: cstring) {.nodecl, varargs.}
printf("hallo %s", "world") # "world" will be passed as C string
Union pragma
------------
The ``union`` pragma can be applied to any ``object`` type. It means all
of the object's fields are overlaid in memory. This produces a ``union``
instead of a ``struct`` in the generated C/C++ code. The object declaration
then must not use inheritance or any GC'ed memory but this is currently not
checked.
**Future directions**: GC'ed memory should be allowed in unions and the GC
should scan unions conservatively.
Packed pragma
-------------
The ``packed`` pragma can be applied to any ``object`` type. It ensures
that the fields of an object are packed back-to-back in memory. It is useful
to store packets or messages from/to network or hardware drivers, and for
interoperability with C. Combining packed pragma with inheritance is not
defined, and it should not be used with GC'ed memory (ref's).
**Future directions**: Using GC'ed memory in packed pragma will result in
compile-time error. Usage with inheritance should be defined and documented.
Unchecked pragma
----------------
The ``unchecked`` pragma can be used to mark a named array as ``unchecked``
meaning its bounds are not checked. This is often useful when one wishes to
implement his own flexibly sized arrays. Additionally an unchecked array is
translated into a C array of undetermined size:
.. code-block:: nimrod
type
ArrayPart{.unchecked.} = array[0..0, int]
MySeq = object
len, cap: int
data: ArrayPart
Produces roughly this C code:
.. code-block:: C
typedef struct {
NI len;
NI cap;
NI data[];
} MySeq;
The bounds checking done at compile time is not disabled for now, so to access
``s.data[C]`` (where ``C`` is a constant) the array's index needs needs to
include ``C``.
The base type of the unchecked array may not contain any GC'ed memory but this
is currently not checked.
**Future directions**: GC'ed memory should be allowed in unchecked arrays and
there should be an explicit annotation of how the GC is to determine the
runtime size of the array.
Dynlib pragma for import
------------------------
With the ``dynlib`` pragma a procedure or a variable can be imported from
a dynamic library (``.dll`` files for Windows, ``lib*.so`` files for UNIX).
The non-optional argument has to be the name of the dynamic library:
.. code-block:: Nimrod
proc gtk_image_new(): PGtkWidget
{.cdecl, dynlib: "libgtk-x11-2.0.so", importc.}
In general, importing a dynamic library does not require any special linker
options or linking with import libraries. This also implies that no *devel*
packages need to be installed.
The ``dynlib`` import mechanism supports a versioning scheme:
.. code-block:: nimrod
proc Tcl_Eval(interp: pTcl_Interp, script: cstring): int {.cdecl,
importc, dynlib: "libtcl(|8.5|8.4|8.3).so.(1|0)".}
At runtime the dynamic library is searched for (in this order)::
libtcl.so.1
libtcl.so.0
libtcl8.5.so.1
libtcl8.5.so.0
libtcl8.4.so.1
libtcl8.4.so.0
libtcl8.3.so.1
libtcl8.3.so.0
The ``dynlib`` pragma supports not only constant strings as argument but also
string expressions in general:
.. code-block:: nimrod
import os
proc getDllName: string =
result = "mylib.dll"
if existsFile(result): return
result = "mylib2.dll"
if existsFile(result): return
quit("could not load dynamic library")
proc myImport(s: cstring) {.cdecl, importc, dynlib: getDllName().}
**Note**: Patterns like ``libtcl(|8.5|8.4).so`` are only supported in constant
strings, because they are precompiled.
**Note**: Passing variables to the ``dynlib`` pragma will fail at runtime
because of order of initialization problems.
**Note**: A ``dynlib`` import can be overriden with
the ``--dynlibOverride:name`` command line option. The Compiler User Guide
contains further information.
Dynlib pragma for export
------------------------
With the ``dynlib`` pragma a procedure can also be exported to
a dynamic library. The pragma then has no argument and has to be used in
conjunction with the ``exportc`` pragma:
.. code-block:: Nimrod
proc exportme(): int {.cdecl, exportc, dynlib.}
This is only useful if the program is compiled as a dynamic library via the
``--app:lib`` command line option.
Threads
=======
To enable thread support the ``--threads:on`` command line switch needs to
be used. The ``system`` module then contains several threading primitives.
See the `threads <threads.html>`_ and `channels <channels.html>`_ modules
for the thread API.
Nimrod's memory model for threads is quite different than that of other common
programming languages (C, Pascal, Java): Each thread has its own (garbage
collected) heap and sharing of memory is restricted to global variables. This
helps to prevent race conditions. GC efficiency is improved quite a lot,
because the GC never has to stop other threads and see what they reference.
Memory allocation requires no lock at all! This design easily scales to massive
multicore processors that will become the norm in the future.
Thread pragma
-------------
A proc that is executed as a new thread of execution should be marked by the
``thread`` pragma. The compiler checks procedures marked as ``thread`` for
violations of the `no heap sharing restriction`:idx:\: This restriction implies
that it is invalid to construct a data structure that consists of memory
allocated from different (thread local) heaps.
A thread proc is passed to ``createThread`` or ``spawn`` and invoked
indirectly; so the ``thread`` pragma implies ``procvar``.
GC safety
---------
We call a proc ``p`` `GC safe`:idx: when it doesn't access any global variable
that contains GC'ed memory (``string``, ``seq``, ``ref`` or a closure) either
directly or indirectly through a call to a GC unsafe proc.
The `gcsafe`:idx: annotation can be used to mark a proc to be gcsafe
otherwise this property is inferred by the compiler. Note that ``noSideEfect``
implies ``gcsafe``. The only way to create a thread is via ``spawn`` or
``createThead``. ``spawn`` is usually the preferable method. Either way
the invoked proc must not use ``var`` parameters nor must any of its parameters
contain a ``ref`` or ``closure`` type. This enforces
the *no heap sharing restriction*.
Routines that are imported from C are always assumed to be ``gcsafe``.
To enable the GC-safety checking the ``--threadAnalysis:on`` command line
switch must be used. This is a temporary workaround to ease the porting effort
from old code to the new threading model. In the future the thread analysis
will always be performed.
Future directions:
- For structured fork&join parallelism more efficient parameter passing can
be performed and much more can be proven safe.
- A shared GC'ed heap is planned.
Threadvar pragma
----------------
A global variable can be marked with the ``threadvar`` pragma; it is
a `thread-local`:idx: variable then:
.. code-block:: nimrod
var checkpoints* {.threadvar.}: seq[string]
Due to implementation restrictions thread local variables cannot be
initialized within the ``var`` section. (Every thread local variable needs to
be replicated at thread creation.)
Threads and exceptions
----------------------
The interaction between threads and exceptions is simple: A *handled* exception
in one thread cannot affect any other thread. However, an *unhandled*
exception in one thread terminates the whole *process*!
Spawn
-----
Nimrod has a builtin thread pool that can be used for CPU intensive tasks. For
IO intensive tasks the upcoming ``async`` and ``await`` features should be
used instead. `spawn`:idx: is used to pass a task to the thread pool:
.. code-block:: nimrod
proc processLine(line: string) =
# do some heavy lifting here:
discard
for x in lines("myinput.txt"):
spawn processLine(x)
sync()
Currently the expression that ``spawn`` takes is however quite restricted:
* It must be a call expresion ``f(a, ...)``.
* ``f`` must be ``gcsafe``.
* ``f`` must not have the calling convention ``closure``.
* ``f``'s parameters may not be of type ``var`` nor may they contain ``ref``.
This means you have to use raw ``ptr``'s for data passing reminding the
programmer to be careful.
* For *safe* data exchange between ``f`` and the caller a global ``TChannel``
needs to be used. Other means will be provided soon.
Taint mode
==========
The Nimrod compiler and most parts of the standard library support
a taint mode. Input strings are declared with the `TaintedString`:idx:
string type declared in the ``system`` module.
If the taint mode is turned on (via the ``--taintMode:on`` command line
option) it is a distinct string type which helps to detect input
validation errors:
.. code-block:: nimrod
echo "your name: "
var name: TaintedString = stdin.readline
# it is safe here to output the name without any input validation, so
# we simply convert `name` to string to make the compiler happy:
echo "hi, ", name.string
If the taint mode is turned off, ``TaintedString`` is simply an alias for
``string``.