#
#
# Nimrod's Runtime Library
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module contains the interface to the compiler's abstract syntax
## tree (`AST`:idx:). Macros operate on this tree.
## .. include:: ../doc/astspec.txt
type
TNimrodNodeKind* = enum
nnkNone, nnkEmpty, nnkIdent, nnkSym,
nnkType, nnkCharLit, nnkIntLit, nnkInt8Lit,
nnkInt16Lit, nnkInt32Lit, nnkInt64Lit, nnkUIntLit, nnkUInt8Lit,
nnkUInt16Lit, nnkUInt32Lit, nnkUInt64Lit, nnkFloatLit,
nnkFloat32Lit, nnkFloat64Lit, nnkFloat128Lit, nnkStrLit, nnkRStrLit,
nnkTripleStrLit, nnkNilLit, nnkMetaNode, nnkDotCall,
nnkCommand, nnkCall, nnkCallStrLit, nnkInfix,
nnkPrefix, nnkPostfix, nnkHiddenCallConv,
nnkExprEqExpr,
nnkExprColonExpr, nnkIdentDefs, nnkVarTuple,
nnkPar, nnkObjConstr, nnkCurly, nnkCurlyExpr,
nnkBracket, nnkBracketExpr, nnkPragmaExpr, nnkRange,
nnkDotExpr, nnkCheckedFieldExpr, nnkDerefExpr, nnkIfExpr,
nnkElifExpr, nnkElseExpr, nnkLambda, nnkDo, nnkAccQuoted,
nnkTableConstr, nnkBind,
nnkClosedSymChoice,
nnkOpenSymChoice,
nnkHiddenStdConv,
nnkHiddenSubConv, nnkConv, nnkCast, nnkStaticExpr,
nnkAddr, nnkHiddenAddr, nnkHiddenDeref, nnkObjDownConv,
nnkObjUpConv, nnkChckRangeF, nnkChckRange64, nnkChckRange,
nnkStringToCString, nnkCStringToString, nnkAsgn,
nnkFastAsgn, nnkGenericParams, nnkFormalParams, nnkOfInherit,
nnkImportAs, nnkProcDef, nnkMethodDef, nnkConverterDef,
nnkMacroDef, nnkTemplateDef, nnkIteratorDef, nnkOfBranch,
nnkElifBranch, nnkExceptBranch, nnkElse,
nnkAsmStmt, nnkPragma, nnkPragmaBlock, nnkIfStmt, nnkWhenStmt,
nnkForStmt, nnkParForStmt, nnkWhileStmt, nnkCaseStmt,
nnkTypeSection, nnkVarSection, nnkLetSection, nnkConstSection,
nnkConstDef, nnkTypeDef,
nnkYieldStmt, nnkTryStmt, nnkFinally, nnkRaiseStmt,
nnkReturnStmt, nnkBreakStmt, nnkContinueStmt, nnkBlockStmt, nnkStaticStmt,
nnkDiscardStmt, nnkStmtList,
nnkImportStmt,
nnkImportExceptStmt,
nnkExportStmt,
nnkExportExceptStmt,
nnkFromStmt,
nnkIncludeStmt,
nnkBindStmt, nnkMixinStmt, nnkUsingStmt,
nnkCommentStmt, nnkStmtListExpr, nnkBlockExpr,
nnkStmtListType, nnkBlockType, nnkTypeOfExpr, nnkObjectTy,
nnkTupleTy, nnkTypeClassTy, nnkRecList, nnkRecCase, nnkRecWhen,
nnkRefTy, nnkPtrTy, nnkVarTy,
nnkConstTy, nnkMutableTy,
nnkDistinctTy,
nnkProcTy,
nnkIteratorTy, # iterator type
nnkSharedTy, # 'shared T'
nnkEnumTy,
nnkEnumFieldDef,
nnkArglist, nnkPattern
nnkReturnToken
TNimNodeKinds* = set[TNimrodNodeKind]
TNimrodTypeKind* = enum
ntyNone, ntyBool, ntyChar, ntyEmpty,
ntyArrayConstr, ntyNil, ntyExpr, ntyStmt,
ntyTypeDesc, ntyGenericInvokation, ntyGenericBody, ntyGenericInst,
ntyGenericParam, ntyDistinct, ntyEnum, ntyOrdinal,
ntyArray, ntyObject, ntyTuple, ntySet,
ntyRange, ntyPtr, ntyRef, ntyVar,
ntySequence, ntyProc, ntyPointer, ntyOpenArray,
ntyString, ntyCString, ntyForward, ntyInt,
ntyInt8, ntyInt16, ntyInt32, ntyInt64,
ntyFloat, ntyFloat32, ntyFloat64, ntyFloat128
TNimTypeKinds* = set[TNimrodTypeKind]
TNimrodSymKind* = enum
nskUnknown, nskConditional, nskDynLib, nskParam,
nskGenericParam, nskTemp, nskModule, nskType, nskVar, nskLet,
nskConst, nskResult,
nskProc, nskMethod, nskIterator,
nskConverter, nskMacro, nskTemplate, nskField,
nskEnumField, nskForVar, nskLabel,
nskStub
TNimSymKinds* = set[TNimrodSymKind]
type
TNimrodIdent* = object of TObject
## represents a Nimrod identifier in the AST
TNimrodSymbol {.final.} = object # hidden
PNimrodSymbol* {.compilerproc.} = ref TNimrodSymbol
## represents a Nimrod *symbol* in the compiler; a *symbol* is a looked-up
## *ident*.
const
nnkLiterals* = {nnkCharLit..nnkNilLit}
nnkCallKinds* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand,
nnkCallStrLit}
proc `[]`*(n: PNimrodNode, i: int): PNimrodNode {.magic: "NChild".}
## get `n`'s `i`'th child.
proc `[]=`*(n: PNimrodNode, i: int, child: PNimrodNode) {.magic: "NSetChild".}
## set `n`'s `i`'th child to `child`.
proc `!`*(s: string): TNimrodIdent {.magic: "StrToIdent".}
## constructs an identifier from the string `s`
proc `$`*(i: TNimrodIdent): string {.magic: "IdentToStr".}
## converts a Nimrod identifier to a string
proc `$`*(s: PNimrodSymbol): string {.magic: "IdentToStr".}
## converts a Nimrod symbol to a string
proc `==`*(a, b: TNimrodIdent): bool {.magic: "EqIdent", noSideEffect.}
## compares two Nimrod identifiers
proc `==`*(a, b: PNimrodNode): bool {.magic: "EqNimrodNode", noSideEffect.}
## compares two Nimrod nodes
proc len*(n: PNimrodNode): int {.magic: "NLen".}
## returns the number of children of `n`.
proc add*(father, child: PNimrodNode): PNimrodNode {.magic: "NAdd", discardable.}
## Adds the `child` to the `father` node. Returns the
## father node so that calls can be nested.
proc add*(father: PNimrodNode, children: varargs[PNimrodNode]): PNimrodNode {.
magic: "NAddMultiple", discardable.}
## Adds each child of `children` to the `father` node.
## Returns the `father` node so that calls can be nested.
proc del*(father: PNimrodNode, idx = 0, n = 1) {.magic: "NDel".}
## deletes `n` children of `father` starting at index `idx`.
proc kind*(n: PNimrodNode): TNimrodNodeKind {.magic: "NKind".}
## returns the `kind` of the node `n`.
proc intVal*(n: PNimrodNode): biggestInt {.magic: "NIntVal".}
proc floatVal*(n: PNimrodNode): biggestFloat {.magic: "NFloatVal".}
proc symbol*(n: PNimrodNode): PNimrodSymbol {.magic: "NSymbol".}
proc ident*(n: PNimrodNode): TNimrodIdent {.magic: "NIdent".}
proc typ*(n: PNimrodNode): typedesc {.magic: "NGetType".}
proc strVal*(n: PNimrodNode): string {.magic: "NStrVal".}
proc `intVal=`*(n: PNimrodNode, val: biggestInt) {.magic: "NSetIntVal".}
proc `floatVal=`*(n: PNimrodNode, val: biggestFloat) {.magic: "NSetFloatVal".}
proc `symbol=`*(n: PNimrodNode, val: PNimrodSymbol) {.magic: "NSetSymbol".}
proc `ident=`*(n: PNimrodNode, val: TNimrodIdent) {.magic: "NSetIdent".}
proc `typ=`*(n: PNimrodNode, typ: typedesc) {.magic: "NSetType".}
proc `strVal=`*(n: PNimrodNode, val: string) {.magic: "NSetStrVal".}
proc newNimNode*(kind: TNimrodNodeKind,
n: PNimrodNode=nil): PNimrodNode {.magic: "NNewNimNode".}
proc copyNimNode*(n: PNimrodNode): PNimrodNode {.magic: "NCopyNimNode".}
proc copyNimTree*(n: PNimrodNode): PNimrodNode {.magic: "NCopyNimTree".}
proc error*(msg: string) {.magic: "NError".}
## writes an error message at compile time
proc warning*(msg: string) {.magic: "NWarning".}
## writes a warning message at compile time
proc hint*(msg: string) {.magic: "NHint".}
## writes a hint message at compile time
proc newStrLitNode*(s: string): PNimrodNode {.compileTime.} =
## creates a string literal node from `s`
result = newNimNode(nnkStrLit)
result.strVal = s
proc newIntLitNode*(i: biggestInt): PNimrodNode {.compileTime.} =
## creates a int literal node from `i`
result = newNimNode(nnkIntLit)
result.intVal = i
proc newFloatLitNode*(f: biggestFloat): PNimrodNode {.compileTime.} =
## creates a float literal node from `f`
result = newNimNode(nnkFloatLit)
result.floatVal = f
proc newIdentNode*(i: TNimrodIdent): PNimrodNode {.compileTime.} =
## creates an identifier node from `i`
result = newNimNode(nnkIdent)
result.ident = i
proc newIdentNode*(i: string): PNimrodNode {.compileTime.} =
## creates an identifier node from `i`
result = newNimNode(nnkIdent)
result.ident = !i
type
TBindSymRule* = enum ## specifies how ``bindSym`` behaves
brClosed, ## only the symbols in current scope are bound
brOpen, ## open wrt overloaded symbols, but may be a single
## symbol if not ambiguous (the rules match that of
## binding in generics)
brForceOpen ## same as brOpen, but it will always be open even
## if not ambiguous (this cannot be achieved with
## any other means in the language currently)
proc bindSym*(ident: string, rule: TBindSymRule = brClosed): PNimrodNode {.
magic: "NBindSym".}
## creates a node that binds `ident` to a symbol node. The bound symbol
## may be an overloaded symbol.
## If ``rule == brClosed`` either an ``nkClosedSymChoice`` tree is
## returned or ``nkSym`` if the symbol is not ambiguous.
## If ``rule == brOpen`` either an ``nkOpenSymChoice`` tree is
## returned or ``nkSym`` if the symbol is not ambiguous.
## If ``rule == brForceOpen`` always an ``nkOpenSymChoice`` tree is
## returned even if the symbol is not ambiguous.
proc genSym*(kind: TNimrodSymKind = nskLet; ident = ""): PNimrodNode {.
magic: "NGenSym".}
## generates a fresh symbol that is guaranteed to be unique. The symbol
## needs to occur in a declaration context.
proc callsite*(): PNimrodNode {.magic: "NCallSite".}
## returns the AST if the invokation expression that invoked this macro.
proc toStrLit*(n: PNimrodNode): PNimrodNode {.compileTime.} =
## converts the AST `n` to the concrete Nimrod code and wraps that
## in a string literal node
return newStrLitNode(repr(n))
proc lineinfo*(n: PNimrodNode): string {.magic: "NLineInfo".}
## returns the position the node appears in the original source file
## in the form filename(line, col)
proc parseExpr*(s: string): PNimrodNode {.magic: "ParseExprToAst".}
## Compiles the passed string to its AST representation.
## Expects a single expression.
proc parseStmt*(s: string): PNimrodNode {.magic: "ParseStmtToAst".}
## Compiles the passed string to its AST representation.
## Expects one or more statements.
proc getAst*(macroOrTemplate: expr): PNimrodNode {.magic: "ExpandToAst".}
## Obtains the AST nodes returned from a macro or template invocation.
## Example:
##
## .. code-block:: nimrod
##
## macro FooMacro() =
## var ast = getAst(BarTemplate())
proc quote*(bl: stmt, op = "``"): PNimrodNode {.magic: "QuoteAst".}
## Quasi-quoting operator.
## Accepts an expression or a block and returns the AST that represents it.
## Within the quoted AST, you are able to interpolate PNimrodNode expressions
## from the surrounding scope. If no operator is given, quoting is done using
## backticks. Otherwise, the given operator must be used as a prefix operator
## for any interpolated expression. The original meaning of the interpolation
## operator may be obtained by escaping it (by prefixing it with itself):
## e.g. `@` is escaped as `@@`, `@@` is escaped as `@@@` and so on.
##
## Example:
##
## macro check(ex: expr): stmt =
## # this is a simplified version of the check macro from the
## # unittest module.
##
## # If there is a failed check, we want to make it easy for
## # the user to jump to the faulty line in the code, so we
## # get the line info here:
## var info = ex.lineinfo
##
## # We will also display the code string of the failed check:
## var expString = ex.toStrLit
##
## # Finally we compose the code to implement the check:
## result = quote do:
## if not `ex`:
## echo `info` & ": Check failed: " & `expString`
template emit*(e: expr[string]): stmt =
## accepts a single string argument and treats it as nimrod code
## that should be inserted verbatim in the program
## Example:
##
## emit("echo " & '"' & "hello world".toUpper & '"')
##
eval: result = e.parseStmt
proc expectKind*(n: PNimrodNode, k: TNimrodNodeKind) {.compileTime.} =
## checks that `n` is of kind `k`. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check the AST that is passed to them.
if n.kind != k: error("macro expects a node of kind: " & repr(k))
proc expectMinLen*(n: PNimrodNode, min: int) {.compileTime.} =
## checks that `n` has at least `min` children. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check its number of arguments.
if n.len < min: error("macro expects a node with " & $min & " children")
proc expectLen*(n: PNimrodNode, len: int) {.compileTime.} =
## checks that `n` has exactly `len` children. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check its number of arguments.
if n.len != len: error("macro expects a node with " & $len & " children")
proc newCall*(theProc: PNimrodNode,
args: varargs[PNimrodNode]): PNimrodNode {.compileTime.} =
## produces a new call node. `theProc` is the proc that is called with
## the arguments ``args[0..]``.
result = newNimNode(nnkCall)
result.add(theProc)
result.add(args)
proc newCall*(theProc: TNimrodIdent,
args: varargs[PNimrodNode]): PNimrodNode {.compileTime.} =
## produces a new call node. `theProc` is the proc that is called with
## the arguments ``args[0..]``.
result = newNimNode(nnkCall)
result.add(newIdentNode(theProc))
result.add(args)
proc newCall*(theProc: string,
args: varargs[PNimrodNode]): PNimrodNode {.compileTime.} =
## produces a new call node. `theProc` is the proc that is called with
## the arguments ``args[0..]``.
result = newNimNode(nnkCall)
result.add(newIdentNode(theProc))
result.add(args)
proc newLit*(c: char): PNimrodNode {.compileTime.} =
## produces a new character literal node.
result = newNimNode(nnkCharLit)
result.intVal = ord(c)
proc newLit*(i: biggestInt): PNimrodNode {.compileTime.} =
## produces a new integer literal node.
result = newNimNode(nnkIntLit)
result.intVal = i
proc newLit*(f: biggestFloat): PNimrodNode {.compileTime.} =
## produces a new float literal node.
result = newNimNode(nnkFloatLit)
result.floatVal = f
proc newLit*(s: string): PNimrodNode {.compileTime.} =
## produces a new string literal node.
result = newNimNode(nnkStrLit)
result.strVal = s
proc nestList*(theProc: TNimrodIdent,
x: PNimrodNode): PNimrodNode {.compileTime.} =
## nests the list `x` into a tree of call expressions:
## ``[a, b, c]`` is transformed into ``theProc(a, theProc(c, d))``.
var L = x.len
result = newCall(theProc, x[L-2], x[L-1])
for i in countdown(L-3, 0):
# XXX the 'copyNimTree' here is necessary due to a bug in the evaluation
# engine that would otherwise create an endless loop here. :-(
# This could easily user code and so should be fixed in evals.nim somehow.
result = newCall(theProc, x[i], copyNimTree(result))
proc treeRepr*(n: PNimrodNode): string {.compileTime.} =
## Convert the AST `n` to a human-readable tree-like string.
##
## See also `repr` and `lispRepr`.
proc traverse(res: var string, level: int, n: PNimrodNode) =
for i in 0..level-1: res.add " "
res.add(($n.kind).substr(3))
case n.kind
of nnkEmpty: nil # same as nil node in this representation
of nnkNilLit: res.add(" nil")
of nnkCharLit..nnkInt64Lit: res.add(" " & $n.intVal)
of nnkFloatLit..nnkFloat64Lit: res.add(" " & $n.floatVal)
of nnkStrLit..nnkTripleStrLit: res.add(" " & $n.strVal)
of nnkIdent: res.add(" !\"" & $n.ident & '"')
of nnkSym: res.add(" \"" & $n.symbol & '"')
of nnkNone: assert false
else:
for j in 0..n.len-1:
res.add "\n"
traverse(res, level + 1, n[j])
result = ""
traverse(result, 0, n)
proc lispRepr*(n: PNimrodNode): string {.compileTime.} =
## Convert the AST `n` to a human-readable lisp-like string,
##
## See also `repr` and `treeRepr`.
result = ($n.kind).substr(3)
add(result, "(")
case n.kind
of nnkEmpty: nil # same as nil node in this representation
of nnkNilLit: add(result, "nil")
of nnkCharLit..nnkInt64Lit: add(result, $n.intVal)
of nnkFloatLit..nnkFloat64Lit: add(result, $n.floatVal)
of nnkStrLit..nnkTripleStrLit: add(result, $n.strVal)
of nnkIdent: add(result, "!\"" & $n.ident & '"')
of nnkSym, nnkNone: assert false
else:
add(result, lispRepr(n[0]))
for j in 1..n.len-1:
add(result, ", ")
add(result, lispRepr(n[j]))
add(result, ")")
macro dumpTree*(s: stmt): stmt {.immediate.} = echo s.treeRepr
## Accepts a block of nimrod code and prints the parsed abstract syntax
## tree using the `toTree` function. Printing is done *at compile time*.
##
## You can use this as a tool to explore the Nimrod's abstract syntax
## tree and to discover what kind of nodes must be created to represent
## a certain expression/statement.
macro dumpLisp*(s: stmt): stmt {.immediate.} = echo s.lispRepr
## Accepts a block of nimrod code and prints the parsed abstract syntax
## tree using the `toLisp` function. Printing is done *at compile time*.
##
## See `dumpTree`.
macro dumpTreeImm*(s: stmt): stmt {.immediate, deprecated.} = echo s.treeRepr
## The ``immediate`` version of `dumpTree`.
macro dumpLispImm*(s: stmt): stmt {.immediate, deprecated.} = echo s.lispRepr
## The ``immediate`` version of `dumpLisp`.
proc newEmptyNode*(): PNimrodNode {.compileTime, noSideEffect.} =
## Create a new empty node
result = newNimNode(nnkEmpty)
proc newStmtList*(stmts: varargs[PNimrodNode]): PNimrodNode {.compileTime.}=
## Create a new statement list
result = newNimNode(nnkStmtList).add(stmts)
proc newBlockStmt*(label, body: PNimrodNode): PNimrodNode {.compileTime.} =
## Create a new block statement with label
return newNimNode(nnkBlockStmt).add(label, body)
proc newBlockStmt*(body: PNimrodNode): PNimrodNode {.compiletime.} =
## Create a new block: stmt
return newNimNode(nnkBlockStmt).add(newEmptyNode(), body)
proc newVarStmt*(name, value: PNimrodNode): PNimrodNode {.compiletime.} =
## Create a new var stmt
return newNimNode(nnkVarSection).add(
newNimNode(nnkIdentDefs).add(name, newNimNode(nnkEmpty), value))
proc newLetStmt*(name, value: PNimrodNode): PNimrodNode {.compiletime.} =
## Create a new let stmt
return newNimNode(nnkLetSection).add(
newNimNode(nnkIdentDefs).add(name, newNimNode(nnkEmpty), value))
proc newAssignment*(lhs, rhs: PNimrodNode): PNimrodNode {.compileTime.} =
return newNimNode(nnkAsgn).add(lhs, rhs)
proc newDotExpr*(a, b: PNimrodNode): PNimrodNode {.compileTime.} =
## Create new dot expression
## a.dot(b) -> `a.b`
return newNimNode(nnkDotExpr).add(a, b)
proc newIdentDefs*(name, kind: PNimrodNode;
default = newEmptyNode()): PNimrodNode {.compileTime.} =
newNimNode(nnkIdentDefs).add(name, kind, default)
proc newNilLit*(): PNimrodNode {.compileTime.} =
## New nil literal shortcut
result = newNimNode(nnkNilLit)
proc high*(node: PNimrodNode): int {.compileTime.} = len(node) - 1
## Return the highest index available for a node
proc last*(node: PNimrodNode): PNimrodNode {.compileTime.} = node[node.high]
## Return the last item in nodes children. Same as `node[node.high()]`
const
RoutineNodes* = {nnkProcDef, nnkMethodDef, nnkDo, nnkLambda}
AtomicNodes* = {nnkNone..nnkNilLit}
CallNodes* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand,
nnkCallStrLit, nnkHiddenCallConv}
from strutils import cmpIgnoreStyle, format
proc ExpectKind*(n: PNimrodNode; k: set[TNimrodNodeKind]) {.compileTime.} =
assert n.kind in k, "Expected one of $1, got $2".format(k, n.kind)
proc newProc*(name = newEmptyNode(); params: openarray[PNimrodNode] = [];
body: PNimrodNode = newStmtList(), procType = nnkProcDef): PNimrodNode {.compileTime.} =
## shortcut for creating a new proc
##
## The ``params`` array should start with the return type of the proc,
## followed by a list of IdentDefs which specify the params.
assert procType in RoutineNodes
result = newNimNode(procType).add(
name,
newEmptyNode(),
newEmptyNode(),
newNimNode(nnkFormalParams).add(params), ##params
newEmptyNode(), ## pragmas
newEmptyNode(),
body)
proc newIfStmt*(branches: varargs[tuple[cond, body: PNimrodNode]]):
PNimrodNode {.compiletime.} =
## Constructor for ``if`` statements.
##
## .. code-block:: nimrod
##
## newIfStmt(
## (Ident, StmtList),
## ...
## )
##
result = newNimNode(nnkIfStmt)
for i in branches:
result.add(newNimNode(nnkElifBranch).add(i.cond, i.body))
proc copyChildrenTo*(src, dest: PNimrodNode) {.compileTime.}=
## Copy all children from `src` to `dest`
for i in 0 .. < src.len:
dest.add src[i].copyNimTree
template expectRoutine(node: PNimrodNode): stmt =
expectKind(node, routineNodes)
proc name*(someProc: PNimrodNode): PNimrodNode {.compileTime.} =
someProc.expectRoutine
result = someProc[0]
proc `name=`*(someProc: PNimrodNode; val: PNimrodNode) {.compileTime.} =
someProc.expectRoutine
someProc[0] = val
proc params*(someProc: PNimrodNode): PNimrodNode {.compileTime.} =
someProc.expectRoutine
result = someProc[3]
proc `params=`* (someProc: PNimrodNode; params: PNimrodNode) {.compileTime.}=
someProc.expectRoutine
assert params.kind == nnkFormalParams
someProc[3] = params
proc pragma*(someProc: PNimrodNode): PNimrodNode {.compileTime.} =
## Get the pragma of a proc type
## These will be expanded
someProc.expectRoutine
result = someProc[4]
proc `pragma=`*(someProc: PNimrodNode; val: PNimrodNode){.compileTime.}=
## Set the pragma of a proc type
someProc.expectRoutine
assert val.kind in {nnkEmpty, nnkPragma}
someProc[4] = val
template badnodekind(k; f): stmt{.immediate.} =
assert false, "Invalid node kind $# for macros.`$2`".format(k, f)
proc body*(someProc: PNimrodNode): PNimrodNode {.compileTime.} =
case someProc.kind:
of routineNodes:
return someProc[6]
of nnkBlockStmt, nnkWhileStmt:
return someproc[1]
of nnkForStmt:
return someProc.last
else:
badNodeKind someproc.kind, "body"
proc `body=`*(someProc: PNimrodNode, val: PNimrodNode) {.compileTime.} =
case someProc.kind
of routineNodes:
someProc[6] = val
of nnkBlockStmt, nnkWhileStmt:
someProc[1] = val
of nnkForStmt:
someProc[high(someProc)] = val
else:
badNodeKind someProc.kind, "body="
proc `$`*(node: PNimrodNode): string {.compileTime.} =
## Get the string of an identifier node
case node.kind
of nnkIdent:
result = $node.ident
of nnkStrLit:
result = node.strval
else:
badNodeKind node.kind, "$"
proc ident*(name: string): PNimrodNode {.compileTime,inline.} = newIdentNode(name)
## Create a new ident node from a string
iterator children*(n: PNimrodNode): PNimrodNode {.inline.}=
for i in 0 .. high(n):
yield n[i]
template findChild*(n: PNimrodNode; cond: expr): PNimrodNode {.immediate, dirty.} =
## Find the first child node matching condition (or nil)
## var res = findChild(n, it.kind == nnkPostfix and it.basename.ident == !"foo")
block:
var result: PNimrodNode
for it in n.children:
if cond:
result = it
break
result
proc insert*(a: PNimrodNOde; pos: int; b: PNimrodNode) {.compileTime.} =
## Insert node B into A at pos
if high(a) < pos:
## add some empty nodes first
for i in high(a)..pos-2:
a.add newEmptyNode()
a.add b
else:
## push the last item onto the list again
## and shift each item down to pos up one
a.add(a[a.high])
for i in countdown(high(a) - 2, pos):
a[i + 1] = a[i]
a[pos] = b
proc basename*(a: PNimrodNode): PNimrodNode {.compiletime.} =
## Pull an identifier from prefix/postfix expressions
case a.kind
of nnkIdent: return a
of nnkPostfix, nnkPrefix: return a[1]
else:
quit "Do not know how to get basename of ("& treerepr(a) &")\n"& repr(a)
proc `basename=`*(a: PNimrodNode; val: string) {.compileTime.}=
case a.kind
of nnkIdent: macros.`ident=`(a, !val)
of nnkPostfix, nnkPrefix: a[1] = ident(val)
else:
quit "Do not know how to get basename of ("& treerepr(a)& ")\n"& repr(a)
proc postfix*(node: PNimrodNode; op: string): PNimrodNode {.compileTime.} =
newNimNode(nnkPostfix).add(ident(op), node)
proc prefix*(node: PNimrodNode; op: string): PNimrodNode {.compileTime.} =
newNimNode(nnkPrefix).add(ident(op), node)
proc infix*(a: PNimrodNode; op: string;
b: PNimrodNode): PNimrodNode {.compileTime.} =
newNimNode(nnkInfix).add(ident(op), a, b)
proc unpackPostfix*(node: PNimrodNode): tuple[node: PNimrodNode; op: string] {.
compileTime.} =
node.expectKind nnkPostfix
result = (node[0], $node[1])
proc unpackPrefix*(node: PNimrodNode): tuple[node: PNimrodNode; op: string] {.
compileTime.} =
node.expectKind nnkPrefix
result = (node[0], $node[1])
proc unpackInfix*(node: PNimrodNode): tuple[left: PNimrodNode; op: string;
right: PNimrodNode] {.compileTime.} =
assert node.kind == nnkInfix
result = (node[0], $node[1], node[2])
proc copy*(node: PNimrodNode): PNimrodNode {.compileTime.} =
## An alias for copyNimTree().
return node.copyNimTree()
proc eqIdent* (a, b: string): bool = cmpIgnoreStyle(a, b) == 0
## Check if two idents are identical.
proc hasArgOfName* (params: PNimrodNode; name: string): bool {.compiletime.}=
## Search nnkFormalParams for an argument.
assert params.kind == nnkFormalParams
for i in 1 .. <params.len:
template node: expr = params[i]
if name.eqIdent( $ node[0]):
return true
proc addIdentIfAbsent*(dest: PNimrodNode, ident: string) {.compiletime.} =
## Add ident to dest if it is not present. This is intended for use
## with pragmas.
for node in dest.children:
case node.kind
of nnkIdent:
if ident.eqIdent($node): return
of nnkExprColonExpr:
if ident.eqIdent($node[0]): return
else: nil
dest.add(ident(ident))