#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements some common generic algorithms.
type
SortOrder* = enum ## sort order
Descending, Ascending
{.deprecated: [TSortOrder: SortOrder].}
proc `*`*(x: int, order: SortOrder): int {.inline.} =
## flips `x` if ``order == Descending``;
## if ``order == Ascending`` then `x` is returned.
## `x` is supposed to be the result of a comparator, ie ``< 0`` for
## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*.
var y = order.ord - 1
result = (x xor y) - y
proc reverse*[T](a: var openArray[T], first, last: int) =
## reverses the array ``a[first..last]``.
var x = first
var y = last
while x < y:
swap(a[x], a[y])
dec(y)
inc(x)
proc reverse*[T](a: var openArray[T]) =
## reverses the array `a`.
reverse(a, 0, a.high)
proc reversed*[T](a: openArray[T], first, last: int): seq[T] =
## returns the reverse of the array `a[first..last]`.
result = newSeq[T](last - first + 1)
var x = first
var y = last
while x <= last:
result[x] = a[y]
dec(y)
inc(x)
proc reversed*[T](a: openArray[T]): seq[T] =
## returns the reverse of the array `a`.
reversed(a, 0, a.high)
proc binarySearch*[T](a: openArray[T], key: T): int =
## binary search for `key` in `a`. Returns -1 if not found.
var b = len(a)
while result < b:
var mid = (result + b) div 2
if a[mid] < key: result = mid + 1
else: b = mid
if result >= len(a) or a[result] != key: result = -1
proc smartBinarySearch*[T](a: openArray[T], key: T): int =
## ``a.len`` must be a power of 2 for this to work.
var step = a.len div 2
while step > 0:
if a[result or step] <= key:
result = result or step
step = step shr 1
if a[result] != key: result = -1
const
onlySafeCode = true
proc lowerBound*[T](a: openArray[T], key: T, cmp: proc(x,y: T): int {.closure.}): int =
## same as binarySearch except that if key is not in `a` then this
## returns the location where `key` would be if it were. In other
## words if you have a sorted sequence and you call insert(thing, elm, lowerBound(thing, elm))
## the sequence will still be sorted
##
## `cmp` is the comparator function to use, the expected return values are the same as
## that of system.cmp
##
## example::
##
## var arr = @[1,2,3,5,6,7,8,9]
## arr.insert(4, arr.lowerBound(4))
## `after running the above arr is `[1,2,3,4,5,6,7,8,9]`
result = a.low
var pos = result
var count, step: int
count = a.high - a.low + 1
while count != 0:
pos = result
step = count div 2
pos += step
if cmp(a[pos], key) < 0:
pos.inc
result = pos
count -= step + 1
else:
count = step
proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])
proc merge[T](a, b: var openArray[T], lo, m, hi: int,
cmp: proc (x, y: T): int {.closure.}, order: SortOrder) =
template `<-` (a, b: expr) =
when false:
a = b
elif onlySafeCode:
shallowCopy(a, b)
else:
copyMem(addr(a), addr(b), sizeof(T))
# optimization: If max(left) <= min(right) there is nothing to do!
# 1 2 3 4 ## 5 6 7 8
# -> O(n) for sorted arrays.
# On random data this safes up to 40% of merge calls
if cmp(a[m], a[m+1]) * order <= 0: return
var j = lo
# copy a[j..m] into b:
assert j <= m
when onlySafeCode:
var bb = 0
while j <= m:
b[bb] <- a[j]
inc(bb)
inc(j)
else:
copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
j = m+1
var i = 0
var k = lo
# copy proper element back:
while k < j and j <= hi:
if cmp(b[i], a[j]) * order <= 0:
a[k] <- b[i]
inc(i)
else:
a[k] <- a[j]
inc(j)
inc(k)
# copy rest of b:
when onlySafeCode:
while k < j:
a[k] <- b[i]
inc(k)
inc(i)
else:
if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k))
proc sort*[T](a: var openArray[T],
cmp: proc (x, y: T): int {.closure.},
order = SortOrder.Ascending) =
## Default Nim sort. The sorting is guaranteed to be stable and
## the worst case is guaranteed to be O(n log n).
## The current implementation uses an iterative
## mergesort to achieve this. It uses a temporary sequence of
## length ``a.len div 2``. Currently Nim does not support a
## sensible default argument for ``cmp``, so you have to provide one
## of your own. However, the ``system.cmp`` procs can be used:
##
## .. code-block:: nim
##
## sort(myIntArray, system.cmp[int])
##
## # do not use cmp[string] here as we want to use the specialized
## # overload:
## sort(myStrArray, system.cmp)
##
## You can inline adhoc comparison procs with the `do notation
## <manual.html#do-notation>`_. Example:
##
## .. code-block:: nim
##
## people.sort do (x, y: Person) -> int:
## result = cmp(x.surname, y.surname)
## if result == 0:
## result = cmp(x.name, y.name)
var n = a.len
var b: seq[T]
newSeq(b, n div 2)
var s = 1
while s < n:
var m = n-1-s
while m >= 0:
merge(a, b, max(m-s+1, 0), m, m+s, cmp, order)
dec(m, s*2)
s = s*2
proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
## produces the Cartesian product of the array. Warning: complexity
## may explode.
result = @[]
if x.len == 0:
return
if x.len == 1:
result = @x
return
var
indexes = newSeq[int](x.len)
initial = newSeq[int](x.len)
index = 0
# replace with newSeq as soon as #853 is fixed
var next: seq[T] = @[]
next.setLen(x.len)
for i in 0..(x.len-1):
if len(x[i]) == 0: return
initial[i] = len(x[i])-1
indexes = initial
while true:
while indexes[index] == -1:
indexes[index] = initial[index]
index +=1
if index == x.len: return
indexes[index] -=1
for ni, i in indexes:
next[ni] = x[ni][i]
var res: seq[T]
shallowCopy(res, next)
result.add(res)
index = 0
indexes[index] -=1
proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} =
## Calculates the next lexicographic permutation, directly modifying ``x``.
## The result is whether a permutation happened, otherwise we have reached
## the last-ordered permutation.
##
## .. code-block:: nim
##
## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
## v.nextPermutation()
## echo v
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i-1] >= x[i]:
dec i
if i == 0:
return false
var j = x.high
while j >= i and x[j] <= x[i-1]:
dec j
swap x[j], x[i-1]
x.reverse(i, x.high)
result = true
proc prevPermutation*[T](x: var openarray[T]): bool {.discardable.} =
## Calculates the previous lexicographic permutation, directly modifying
## ``x``. The result is whether a permutation happened, otherwise we have
## reached the first-ordered permutation.
##
## .. code-block:: nim
##
## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
## v.prevPermutation()
## echo v
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i-1] <= x[i]:
dec i
if i == 0:
return false
x.reverse(i, x.high)
var j = x.high
while j >= i and x[j-1] < x[i-1]:
dec j
swap x[i-1], x[j]
result = true