#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements some common generic algorithms on `openArray`s.
##
## Basic usage
## ===========
##
runnableExamples:
type People = tuple
year: int
name: string
var a: seq[People]
a.add((2000, "John"))
a.add((2005, "Marie"))
a.add((2010, "Jane"))
# Sorting with default system.cmp
a.sort()
assert a == @[(year: 2000, name: "John"), (year: 2005, name: "Marie"),
(year: 2010, name: "Jane")]
proc myCmp(x, y: People): int =
cmp(x.name, y.name)
# Sorting with custom proc
a.sort(myCmp)
assert a == @[(year: 2010, name: "Jane"), (year: 2000, name: "John"),
(year: 2005, name: "Marie")]
## See also
## ========
## * `sequtils module<sequtils.html>`_ for working with the built-in seq type
## * `tables module<tables.html>`_ for sorting tables
import std/private/since
when defined(nimPreviewSlimSystem):
import std/assertions
type
SortOrder* = enum
Descending, Ascending
proc `*`*(x: int, order: SortOrder): int {.inline.} =
## Flips the sign of `x` if `order == Descending`.
## If `order == Ascending` then `x` is returned.
##
## `x` is supposed to be the result of a comparator, i.e.
## | `< 0` for *less than*,
## | `== 0` for *equal*,
## | `> 0` for *greater than*.
runnableExamples:
assert -123 * Descending == 123
assert 123 * Descending == -123
assert -123 * Ascending == -123
assert 123 * Ascending == 123
var y = order.ord - 1
result = (x xor y) - y
template fillImpl[T](a: var openArray[T], first, last: int, value: T) =
var x = first
while x <= last:
a[x] = value
inc(x)
proc fill*[T](a: var openArray[T], first, last: Natural, value: T) =
## Assigns `value` to all elements of the slice `a[first..last]`.
##
## If an invalid range is passed, it raises `IndexDefect`.
runnableExamples:
var a: array[6, int]
a.fill(1, 3, 9)
assert a == [0, 9, 9, 9, 0, 0]
a.fill(3, 5, 7)
assert a == [0, 9, 9, 7, 7, 7]
doAssertRaises(IndexDefect, a.fill(1, 7, 9))
fillImpl(a, first, last, value)
proc fill*[T](a: var openArray[T], value: T) =
## Assigns `value` to all elements of the container `a`.
runnableExamples:
var a: array[6, int]
a.fill(9)
assert a == [9, 9, 9, 9, 9, 9]
a.fill(4)
assert a == [4, 4, 4, 4, 4, 4]
fillImpl(a, 0, a.high, value)
proc reverse*[T](a: var openArray[T], first, last: Natural) =
## Reverses the slice `a[first..last]`.
##
## If an invalid range is passed, it raises `IndexDefect`.
##
## **See also:**
## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]`
## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]`
runnableExamples:
var a = [1, 2, 3, 4, 5, 6]
a.reverse(1, 3)
assert a == [1, 4, 3, 2, 5, 6]
a.reverse(1, 3)
assert a == [1, 2, 3, 4, 5, 6]
doAssertRaises(IndexDefect, a.reverse(1, 7))
var x = first
var y = last
while x < y:
swap(a[x], a[y])
dec(y)
inc(x)
proc reverse*[T](a: var openArray[T]) =
## Reverses the contents of the container `a`.
##
## **See also:**
## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]`
## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]`
runnableExamples:
var a = [1, 2, 3, 4, 5, 6]
a.reverse()
assert a == [6, 5, 4, 3, 2, 1]
a.reverse()
assert a == [1, 2, 3, 4, 5, 6]
# the max is needed, since a.high is -1 if a is empty
reverse(a, 0, max(0, a.high))
proc reversed*[T](a: openArray[T]): seq[T] {.inline.} =
## Returns the elements of `a` in reverse order.
##
## **See also:**
## * `reverse proc<#reverse,openArray[T]>`_
runnableExamples:
assert [10, 11, 12].reversed == @[12, 11, 10]
assert seq[string].default.reversed == @[]
let n = a.len
result.setLen(n)
for i in 0..<n: result[i] = a[n - (i + 1)]
proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T]
{.inline, deprecated: "use: `reversed(toOpenArray(a, first, last))`".} =
reversed(toOpenArray(a, first, last))
when defined(nimHasEffectsOf):
{.experimental: "strictEffects".}
else:
{.pragma: effectsOf.}
proc binarySearch*[T, K](a: openArray[T], key: K,
cmp: proc (x: T, y: K): int {.closure.}): int {.effectsOf: cmp.} =
## Binary search for `key` in `a`. Return the index of `key` or -1 if not found.
## Assumes that `a` is sorted according to `cmp`.
##
## `cmp` is the comparator function to use, the expected return values are
## the same as those of system.cmp.
runnableExamples:
assert binarySearch(["a", "b", "c", "d"], "d", system.cmp[string]) == 3
assert binarySearch(["a", "b", "c", "d"], "c", system.cmp[string]) == 2
let len = a.len
if len == 0:
return -1
if len == 1:
if cmp(a[0], key) == 0:
return 0
else:
return -1
result = 0
if (len and (len - 1)) == 0:
# when `len` is a power of 2, a faster shr can be used.
var step = len shr 1
var cmpRes: int
while step > 0:
let i = result or step
cmpRes = cmp(a[i], key)
if cmpRes == 0:
return i
if cmpRes < 0:
result = i
step = step shr 1
if cmp(a[result], key) != 0: result = -1
else:
var b = len
var cmpRes: int
while result < b:
var mid = (result + b) shr 1
cmpRes = cmp(a[mid], key)
if cmpRes == 0:
return mid
if cmpRes < 0:
result = mid + 1
else:
b = mid
if result >= len or cmp(a[result], key) != 0: result = -1
proc binarySearch*[T](a: openArray[T], key: T): int =
## Binary search for `key` in `a`. Return the index of `key` or -1 if not found.
## Assumes that `a` is sorted.
runnableExamples:
assert binarySearch([0, 1, 2, 3, 4], 4) == 4
assert binarySearch([0, 1, 2, 3, 4], 2) == 2
binarySearch(a, key, cmp[T])
const
onlySafeCode = true
proc lowerBound*[T, K](a: openArray[T], key: K,
cmp: proc(x: T, k: K): int {.closure.}): int {.effectsOf: cmp.} =
## Returns the index of the first element in `a` that is not less than
## (i.e. greater or equal to) `key`, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## `insert(thing, elm, lowerBound(thing, elm))`
## the sequence will still be sorted.
## Assumes that `a` is sorted according to `cmp`.
##
## If an invalid range is passed, it raises `IndexDefect`.
##
## This version uses `cmp` to compare the elements.
## The expected return values are the same as those of `system.cmp`.
##
## **See also:**
## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
## * `upperBound proc<#upperBound,openArray[T],T>`_
runnableExamples:
var arr = @[1, 2, 3, 5, 6, 7, 8, 9]
assert arr.lowerBound(3, system.cmp[int]) == 2
assert arr.lowerBound(4, system.cmp[int]) == 3
assert arr.lowerBound(5, system.cmp[int]) == 3
arr.insert(4, arr.lowerBound(4, system.cmp[int]))
assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9]
result = a.low
var count = a.high - a.low + 1
var step, pos: int
while count != 0:
step = count shr 1
pos = result + step
if cmp(a[pos], key) < 0:
result = pos + 1
count -= step + 1
else:
count = step
proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])
## Returns the index of the first element in `a` that is not less than
## (i.e. greater or equal to) `key`, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## `insert(thing, elm, lowerBound(thing, elm))`
## the sequence will still be sorted.
## Assumes that `a` is sorted.
##
## This version uses the default comparison function `cmp`.
##
## **See also:**
## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
## * `upperBound proc<#upperBound,openArray[T],T>`_
proc upperBound*[T, K](a: openArray[T], key: K,
cmp: proc(x: T, k: K): int {.closure.}): int {.effectsOf: cmp.} =
## Returns the index of the first element in `a` that is greater than
## `key`, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## `insert(thing, elm, upperBound(thing, elm))`
## the sequence will still be sorted.
## Assumes that `a` is sorted according to `cmp`.
##
## If an invalid range is passed, it raises `IndexDefect`.
##
## This version uses `cmp` to compare the elements. The expected
## return values are the same as those of `system.cmp`.
##
## **See also:**
## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
## * `lowerBound proc<#lowerBound,openArray[T],T>`_
runnableExamples:
var arr = @[1, 2, 3, 5, 6, 7, 8, 9]
assert arr.upperBound(2, system.cmp[int]) == 2
assert arr.upperBound(3, system.cmp[int]) == 3
assert arr.upperBound(4, system.cmp[int]) == 3
arr.insert(4, arr.upperBound(3, system.cmp[int]))
assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9]
result = a.low
var count = a.high - a.low + 1
var step, pos: int
while count != 0:
step = count shr 1
pos = result + step
if cmp(a[pos], key) <= 0:
result = pos + 1
count -= step + 1
else:
count = step
proc upperBound*[T](a: openArray[T], key: T): int = upperBound(a, key, cmp[T])
## Returns the index of the first element in `a` that is greater than
## `key`, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## `insert(thing, elm, upperBound(thing, elm))`
## the sequence will still be sorted.
## Assumes that `a` is sorted.
##
## This version uses the default comparison function `cmp`.
##
## **See also:**
## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
## * `lowerBound proc<#lowerBound,openArray[T],T>`_
template `<-`(a, b) =
when defined(gcDestructors):
a = move b
elif onlySafeCode:
shallowCopy(a, b)
else:
copyMem(addr(a), addr(b), sizeof(T))
proc mergeAlt[T](a, b: var openArray[T], lo, m, hi: int,
cmp: proc (x, y: T): int {.closure.}, order: SortOrder) {.effectsOf: cmp.} =
# Optimization: If max(left) <= min(right) there is nothing to do!
# 1 2 3 4 ## 5 6 7 8
# -> O(n) for sorted arrays.
# On random data this saves up to 40% of mergeAlt calls.
if cmp(a[m], a[m+1]) * order <= 0: return
var j = lo
# copy a[j..m] into b:
assert j <= m
when onlySafeCode:
var bb = 0
while j <= m:
b[bb] <- a[j]
inc(bb)
inc(j)
else:
copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
j = m+1
var i = 0
var k = lo
# copy proper element back:
while k < j and j <= hi:
if cmp(b[i], a[j]) * order <= 0:
a[k] <- b[i]
inc(i)
else:
a[k] <- a[j]
inc(j)
inc(k)
# copy rest of b:
when onlySafeCode:
while k < j:
a[k] <- b[i]
inc(k)
inc(i)
else:
if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k))
func sort*[T](a: var openArray[T],
cmp: proc (x, y: T): int {.closure.},
order = SortOrder.Ascending) {.effectsOf: cmp.} =
## Default Nim sort (an implementation of merge sort). The sorting
## is guaranteed to be stable (that is, equal elements stay in the same order)
## and the worst case is guaranteed to be O(n log n).
## Sorts by `cmp` in the specified `order`.
##
## The current implementation uses an iterative
## mergesort to achieve this. It uses a temporary sequence of
## length `a.len div 2`. If you do not wish to provide your own
## `cmp`, you may use `system.cmp` or instead call the overloaded
## version of `sort`, which uses `system.cmp`.
##
## ```nim
## sort(myIntArray, system.cmp[int])
## # do not use cmp[string] here as we want to use the specialized
## # overload:
## sort(myStrArray, system.cmp)
## ```
##
## You can inline adhoc comparison procs with the `do notation
## <manual_experimental.html#do-notation>`_. Example:
##
## ```nim
## people.sort do (x, y: Person) -> int:
## result = cmp(x.surname, y.surname)
## if result == 0:
## result = cmp(x.name, y.name)
## ```
##
## **See also:**
## * `sort proc<#sort,openArray[T]>`_
## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order
## * `sorted proc<#sorted,openArray[T]>`_
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
runnableExamples:
var d = ["boo", "fo", "barr", "qux"]
proc myCmp(x, y: string): int =
if x.len() > y.len() or x.len() == y.len(): 1
else: -1
sort(d, myCmp)
assert d == ["fo", "qux", "boo", "barr"]
var n = a.len
var b = newSeq[T](n div 2)
var s = 1
while s < n:
var m = n-1-s
while m >= 0:
mergeAlt(a, b, max(m-s+1, 0), m, m+s, cmp, order)
dec(m, s*2)
s = s*2
proc sort*[T](a: var openArray[T], order = SortOrder.Ascending) = sort[T](a,
system.cmp[T], order)
## Shortcut version of `sort` that uses `system.cmp[T]` as the comparison function.
##
## **See also:**
## * `sort func<#sort,openArray[T],proc(T,T)>`_
## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order
## * `sorted proc<#sorted,openArray[T]>`_
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
order = SortOrder.Ascending): seq[T] {.effectsOf: cmp.} =
## Returns `a` sorted by `cmp` in the specified `order`.
##
## **See also:**
## * `sort func<#sort,openArray[T],proc(T,T)>`_
## * `sort proc<#sort,openArray[T]>`_
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
runnableExamples:
let
a = [2, 3, 1, 5, 4]
b = sorted(a, system.cmp[int])
c = sorted(a, system.cmp[int], Descending)
d = sorted(["adam", "dande", "brian", "cat"], system.cmp[string])
assert b == @[1, 2, 3, 4, 5]
assert c == @[5, 4, 3, 2, 1]
assert d == @["adam", "brian", "cat", "dande"]
result = newSeq[T](a.len)
for i in 0 .. a.high:
result[i] = a[i]
sort(result, cmp, order)
proc sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] =
## Shortcut version of `sorted` that uses `system.cmp[T]` as the comparison function.
##
## **See also:**
## * `sort func<#sort,openArray[T],proc(T,T)>`_
## * `sort proc<#sort,openArray[T]>`_
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
runnableExamples:
let
a = [2, 3, 1, 5, 4]
b = sorted(a)
c = sorted(a, Descending)
d = sorted(["adam", "dande", "brian", "cat"])
assert b == @[1, 2, 3, 4, 5]
assert c == @[5, 4, 3, 2, 1]
assert d == @["adam", "brian", "cat", "dande"]
sorted[T](a, system.cmp[T], order)
template sortedByIt*(seq1, op: untyped): untyped =
## Convenience template around the `sorted` proc to reduce typing.
##
## The template injects the `it` variable which you can use directly in an
## expression.
##
## Because the underlying `cmp()` is defined for tuples you can also do
## a nested sort.
##
## **See also:**
## * `sort func<#sort,openArray[T],proc(T,T)>`_
## * `sort proc<#sort,openArray[T]>`_
## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order
## * `sorted proc<#sorted,openArray[T]>`_
runnableExamples:
type Person = tuple[name: string, age: int]
var
p1: Person = (name: "p1", age: 60)
p2: Person = (name: "p2", age: 20)
p3: Person = (name: "p3", age: 30)
p4: Person = (name: "p4", age: 30)
people = @[p1, p2, p4, p3]
assert people.sortedByIt(it.name) == @[(name: "p1", age: 60), (name: "p2",
age: 20), (name: "p3", age: 30), (name: "p4", age: 30)]
# Nested sort
assert people.sortedByIt((it.age, it.name)) == @[(name: "p2", age: 20),
(name: "p3", age: 30), (name: "p4", age: 30), (name: "p1", age: 60)]
var result = sorted(seq1, proc(x, y: typeof(items(seq1), typeOfIter)): int =
var it {.inject.} = x
let a = op
it = y
let b = op
result = cmp(a, b))
result
func isSorted*[T](a: openArray[T],
cmp: proc(x, y: T): int {.closure.},
order = SortOrder.Ascending): bool {.effectsOf: cmp.} =
## Checks to see whether `a` is already sorted in `order`
## using `cmp` for the comparison. The parameters are identical
## to `sort`. Requires O(n) time.
##
## **See also:**
## * `isSorted proc<#isSorted,openArray[T]>`_
runnableExamples:
let
a = [2, 3, 1, 5, 4]
b = [1, 2, 3, 4, 5]
c = [5, 4, 3, 2, 1]
d = ["adam", "brian", "cat", "dande"]
e = ["adam", "dande", "brian", "cat"]
assert isSorted(a) == false
assert isSorted(b) == true
assert isSorted(c) == false
assert isSorted(c, Descending) == true
assert isSorted(d) == true
assert isSorted(e) == false
result = true
for i in 0..<len(a)-1:
if cmp(a[i], a[i+1]) * order > 0:
return false
proc isSorted*[T](a: openArray[T], order = SortOrder.Ascending): bool =
## Shortcut version of `isSorted` that uses `system.cmp[T]` as the comparison function.
##
## **See also:**
## * `isSorted func<#isSorted,openArray[T],proc(T,T)>`_
runnableExamples:
let
a = [2, 3, 1, 5, 4]
b = [1, 2, 3, 4, 5]
c = [5, 4, 3, 2, 1]
d = ["adam", "brian", "cat", "dande"]
e = ["adam", "dande", "brian", "cat"]
assert isSorted(a) == false
assert isSorted(b) == true
assert isSorted(c) == false
assert isSorted(c, Descending) == true
assert isSorted(d) == true
assert isSorted(e) == false
isSorted(a, system.cmp[T], order)
proc merge*[T](
result: var seq[T],
x, y: openArray[T], cmp: proc(x, y: T): int {.closure.}
) {.since: (1, 5, 1), effectsOf: cmp.} =
## Merges two sorted `openArray`. `x` and `y` are assumed to be sorted.
## If you do not wish to provide your own `cmp`,
## you may use `system.cmp` or instead call the overloaded
## version of `merge`, which uses `system.cmp`.
##
## .. note:: The original data of `result` is not cleared,
## new data is appended to `result`.
##
## **See also:**
## * `merge proc<#merge,seq[T],openArray[T],openArray[T]>`_
runnableExamples:
let x = @[1, 3, 6]
let y = @[2, 3, 4]
block:
var merged = @[7] # new data is appended to merged sequence
merged.merge(x, y, system.cmp[int])
assert merged == @[7, 1, 2, 3, 3, 4, 6]
block:
var merged = @[7] # if you only want new data, clear merged sequence first
merged.setLen(0)
merged.merge(x, y, system.cmp[int])
assert merged.isSorted
assert merged == @[1, 2, 3, 3, 4, 6]
import std/sugar
var res: seq[(int, int)]
res.merge([(1, 1)], [(1, 2)], (a, b) => a[0] - b[0])
assert res == @[(1, 1), (1, 2)]
assert seq[int].default.dup(merge([1, 3], [2, 4])) == @[1, 2, 3, 4]
let
sizeX = x.len
sizeY = y.len
oldLen = result.len
result.setLen(oldLen + sizeX + sizeY)
var
ix = 0
iy = 0
i = oldLen
while true:
if ix == sizeX:
while iy < sizeY:
result[i] = y[iy]
inc i
inc iy
return
if iy == sizeY:
while ix < sizeX:
result[i] = x[ix]
inc i
inc ix
return
let itemX = x[ix]
let itemY = y[iy]
if cmp(itemX, itemY) > 0: # to have a stable sort
result[i] = itemY
inc iy
else:
result[i] = itemX
inc ix
inc i
proc merge*[T](result: var seq[T], x, y: openArray[T]) {.inline, since: (1, 5, 1).} =
## Shortcut version of `merge` that uses `system.cmp[T]` as the comparison function.
##
## **See also:**
## * `merge proc<#merge,seq[T],openArray[T],openArray[T],proc(T,T)>`_
runnableExamples:
let x = [5, 10, 15, 20, 25]
let y = [50, 40, 30, 20, 10].sorted
var merged: seq[int]
merged.merge(x, y)
assert merged.isSorted
assert merged == @[5, 10, 10, 15, 20, 20, 25, 30, 40, 50]
merge(result, x, y, system.cmp)
proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
## Produces the Cartesian product of the array.
## Every element of the result is a combination of one element from each seq in `x`,
## with the ith element coming from `x[i]`.
##
## .. warning:: complexity may explode.
runnableExamples:
assert product(@[@[1], @[2]]) == @[@[1, 2]]
assert product(@[@["A", "K"], @["Q"]]) == @[@["K", "Q"], @["A", "Q"]]
let xLen = x.len
result = newSeq[seq[T]]()
if xLen == 0:
return
if xLen == 1:
result = @x
return
var
indices = newSeq[int](xLen)
initial = newSeq[int](xLen)
index = 0
var next = newSeq[T](xLen)
for i in 0 ..< xLen:
if len(x[i]) == 0: return
initial[i] = len(x[i]) - 1
indices = initial
while true:
while indices[index] == -1:
indices[index] = initial[index]
index += 1
if index == xLen: return
indices[index] -= 1
for ni, i in indices:
next[ni] = x[ni][i]
result.add(next)
index = 0
indices[index] -= 1
proc nextPermutation*[T](x: var openArray[T]): bool {.discardable.} =
## Calculates the next lexicographic permutation, directly modifying `x`.
## The result is whether a permutation happened, otherwise we have reached
## the last-ordered permutation.
##
## If you start with an unsorted array/seq, the repeated permutations
## will **not** give you all permutations but stop with the last.
##
## **See also:**
## * `prevPermutation proc<#prevPermutation,openArray[T]>`_
runnableExamples:
var v = @[0, 1, 2, 3]
assert v.nextPermutation() == true
assert v == @[0, 1, 3, 2]
assert v.nextPermutation() == true
assert v == @[0, 2, 1, 3]
assert v.prevPermutation() == true
assert v == @[0, 1, 3, 2]
v = @[3, 2, 1, 0]
assert v.nextPermutation() == false
assert v == @[3, 2, 1, 0]
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i-1] >= x[i]:
dec i
if i == 0:
return false
var j = x.high
while j >= i and x[j] <= x[i-1]:
dec j
swap x[j], x[i-1]
x.reverse(i, x.high)
result = true
proc prevPermutation*[T](x: var openArray[T]): bool {.discardable.} =
## Calculates the previous lexicographic permutation, directly modifying
## `x`. The result is whether a permutation happened, otherwise we have
## reached the first-ordered permutation.
##
## **See also:**
## * `nextPermutation proc<#nextPermutation,openArray[T]>`_
runnableExamples:
var v = @[0, 1, 2, 3]
assert v.prevPermutation() == false
assert v == @[0, 1, 2, 3]
assert v.nextPermutation() == true
assert v == @[0, 1, 3, 2]
assert v.prevPermutation() == true
assert v == @[0, 1, 2, 3]
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i-1] <= x[i]:
dec i
if i == 0:
return false
x.reverse(i, x.high)
var j = x.high
while j >= i and x[j-1] < x[i-1]:
dec j
swap x[i-1], x[j]
result = true
proc rotateInternal[T](arg: var openArray[T]; first, middle, last: int): int =
## A port of std::rotate from C++.
## Ported from [this reference](http://www.cplusplus.com/reference/algorithm/rotate/).
result = first + last - middle
if first == middle or middle == last:
return
assert first < middle
assert middle < last
# m prefix for mutable
var
mFirst = first
mMiddle = middle
next = middle
swap(arg[mFirst], arg[next])
mFirst += 1
next += 1
if mFirst == mMiddle:
mMiddle = next
while next != last:
swap(arg[mFirst], arg[next])
mFirst += 1
next += 1
if mFirst == mMiddle:
mMiddle = next
next = mMiddle
while next != last:
swap(arg[mFirst], arg[next])
mFirst += 1
next += 1
if mFirst == mMiddle:
mMiddle = next
elif next == last:
next = mMiddle
proc rotatedInternal[T](arg: openArray[T]; first, middle, last: int): seq[T] =
let argLen = arg.len
result = newSeq[T](argLen)
for i in 0 ..< first:
result[i] = arg[i]
let n = last - middle
let m = middle - first
for i in 0 ..< n:
result[first+i] = arg[middle+i]
for i in 0 ..< m:
result[first+n+i] = arg[first+i]
for i in last ..< argLen:
result[i] = arg[i]
proc rotateLeft*[T](arg: var openArray[T]; slice: HSlice[int, int];
dist: int): int {.discardable.} =
## Performs a left rotation on a range of elements. If you want to rotate
## right, use a negative `dist`. Specifically, `rotateLeft` rotates
## the elements at `slice` by `dist` positions.
##
## | The element at index `slice.a + dist` will be at index `slice.a`.
## | The element at index `slice.b` will be at `slice.a + dist - 1`.
## | The element at index `slice.a` will be at `slice.b + 1 - dist`.
## | The element at index `slice.a + dist - 1` will be at `slice.b`.
##
## Elements outside of `slice` will be left unchanged.
## The time complexity is linear to `slice.b - slice.a + 1`.
## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`.
##
## `slice`
## : The indices of the element range that should be rotated.
##
## `dist`
## : The distance in amount of elements that the data should be rotated.
## Can be negative, can be any number.
##
## **See also:**
## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for a version which rotates the whole container
## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which returns a `seq[T]`
runnableExamples:
var a = [0, 1, 2, 3, 4, 5]
a.rotateLeft(1 .. 4, 3)
assert a == [0, 4, 1, 2, 3, 5]
a.rotateLeft(1 .. 4, 3)
assert a == [0, 3, 4, 1, 2, 5]
a.rotateLeft(1 .. 4, -3)
assert a == [0, 4, 1, 2, 3, 5]
doAssertRaises(IndexDefect, a.rotateLeft(1 .. 7, 2))
let sliceLen = slice.b + 1 - slice.a
let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
arg.rotateInternal(slice.a, slice.a + distLeft, slice.b + 1)
proc rotateLeft*[T](arg: var openArray[T]; dist: int): int {.discardable.} =
## Same as `rotateLeft`, but with default arguments for slice,
## so that this procedure operates on the entire
## `arg`, and not just on a part of it.
##
## **See also:**
## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range
## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which returns a `seq[T]`
runnableExamples:
var a = [1, 2, 3, 4, 5]
a.rotateLeft(2)
assert a == [3, 4, 5, 1, 2]
a.rotateLeft(4)
assert a == [2, 3, 4, 5, 1]
a.rotateLeft(-6)
assert a == [1, 2, 3, 4, 5]
let argLen = arg.len
let distLeft = ((dist mod argLen) + argLen) mod argLen
arg.rotateInternal(0, distLeft, argLen)
proc rotatedLeft*[T](arg: openArray[T]; slice: HSlice[int, int],
dist: int): seq[T] =
## Same as `rotateLeft`, just with the difference that it does
## not modify the argument. It creates a new `seq` instead.
##
## Elements outside of `slice` will be left unchanged.
## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`.
##
## `slice`
## : The indices of the element range that should be rotated.
##
## `dist`
## : The distance in amount of elements that the data should be rotated.
## Can be negative, can be any number.
##
## **See also:**
## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for the in-place version of this proc
## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which rotates the whole container
runnableExamples:
var a = @[1, 2, 3, 4, 5]
a = rotatedLeft(a, 1 .. 4, 3)
assert a == @[1, 5, 2, 3, 4]
a = rotatedLeft(a, 1 .. 3, 2)
assert a == @[1, 3, 5, 2, 4]
a = rotatedLeft(a, 1 .. 3, -2)
assert a == @[1, 5, 2, 3, 4]
let sliceLen = slice.b + 1 - slice.a
let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
arg.rotatedInternal(slice.a, slice.a + distLeft, slice.b + 1)
proc rotatedLeft*[T](arg: openArray[T]; dist: int): seq[T] =
## Same as `rotateLeft`, just with the difference that it does
## not modify the argument. It creates a new `seq` instead.
##
## **See also:**
## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for the in-place version of this proc
## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range
runnableExamples:
var a = @[1, 2, 3, 4, 5]
a = rotatedLeft(a, 2)
assert a == @[3, 4, 5, 1, 2]
a = rotatedLeft(a, 4)
assert a == @[2, 3, 4, 5, 1]
a = rotatedLeft(a, -6)
assert a == @[1, 2, 3, 4, 5]
let argLen = arg.len
let distLeft = ((dist mod argLen) + argLen) mod argLen
arg.rotatedInternal(0, distLeft, argLen)