#
#
# Nim's Runtime Library
# (c) Copyright 2013 Robert Persson
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import math
import strutils
import times
## Basic 3d support with vectors, points, matrices and some basic utilities.
## Vectors are implemented as direction vectors, ie. when transformed with a matrix
## the translation part of matrix is ignored. The coordinate system used is
## right handed, because its compatible with 2d coordinate system (rotation around
## zaxis equals 2d rotation).
## Operators `+` , `-` , `*` , `/` , `+=` , `-=` , `*=` and `/=` are implemented
## for vectors and scalars.
##
##
## Quick start example:
##
## # Create a matrix which first rotates, then scales and at last translates
##
## var m:TMatrix3d=rotate(PI,vector3d(1,1,2.5)) & scale(2.0) & move(100.0,200.0,300.0)
##
## # Create a 3d point at (100,150,200) and a vector (5,2,3)
##
## var pt:TPoint3d=point3d(100.0,150.0,200.0)
##
## var vec:TVector3d=vector3d(5.0,2.0,3.0)
##
##
## pt &= m # transforms pt in place
##
## var pt2:TPoint3d=pt & m #concatenates pt with m and returns a new point
##
## var vec2:TVector3d=vec & m #concatenates vec with m and returns a new vector
type
TMatrix3d* =object
## Implements a row major 3d matrix, which means
## transformations are applied the order they are concatenated.
## This matrix is stored as an 4x4 matrix:
## [ ax ay az aw ]
## [ bx by bz bw ]
## [ cx cy cz cw ]
## [ tx ty tz tw ]
ax*,ay*,az*,aw*, bx*,by*,bz*,bw*, cx*,cy*,cz*,cw*, tx*,ty*,tz*,tw*:float
TPoint3d* = object
## Implements a non-homegeneous 2d point stored as
## an `x` , `y` and `z` coordinate.
x*,y*,z*:float
TVector3d* = object
## Implements a 3d **direction vector** stored as
## an `x` , `y` and `z` coordinate. Direction vector means,
## that when transforming a vector with a matrix, the translational
## part of the matrix is ignored.
x*,y*,z*:float
# Some forward declarations
proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):TMatrix3d {.noInit.}
## Creates a new 4x4 3d transformation matrix.
## `ax` , `ay` , `az` is the local x axis.
## `bx` , `by` , `bz` is the local y axis.
## `cx` , `cy` , `cz` is the local z axis.
## `tx` , `ty` , `tz` is the translation.
proc vector3d*(x,y,z:float):TVector3d {.noInit,inline.}
## Returns a new 3d vector (`x`,`y`,`z`)
proc point3d*(x,y,z:float):TPoint3d {.noInit,inline.}
## Returns a new 4d point (`x`,`y`,`z`)
proc tryNormalize*(v:var TVector3d):bool
## Modifies `v` to have a length of 1.0, keeping its angle.
## If `v` has zero length (and thus no angle), it is left unmodified and false is
## returned, otherwise true is returned.
let
IDMATRIX*:TMatrix3d=matrix3d(
1.0,0.0,0.0,0.0,
0.0,1.0,0.0,0.0,
0.0,0.0,1.0,0.0,
0.0,0.0,0.0,1.0)
## Quick access to a 3d identity matrix
ORIGO*:TPoint3d=point3d(0.0,0.0,0.0)
## Quick access to point (0,0)
XAXIS*:TVector3d=vector3d(1.0,0.0,0.0)
## Quick access to an 3d x-axis unit vector
YAXIS*:TVector3d=vector3d(0.0,1.0,0.0)
## Quick access to an 3d y-axis unit vector
ZAXIS*:TVector3d=vector3d(0.0,0.0,1.0)
## Quick access to an 3d z-axis unit vector
# ***************************************
# Private utils
# ***************************************
proc rtos(val:float):string=
return formatFloat(val,ffDefault,0)
proc safeArccos(v:float):float=
## assumes v is in range 0.0-1.0, but clamps
## the value to avoid out of domain errors
## due to rounding issues
return arccos(clamp(v,-1.0,1.0))
template makeBinOpVector(s:expr)=
## implements binary operators + , - , * and / for vectors
proc s*(a,b:TVector3d):TVector3d {.inline,noInit.} =
vector3d(s(a.x,b.x),s(a.y,b.y),s(a.z,b.z))
proc s*(a:TVector3d,b:float):TVector3d {.inline,noInit.} =
vector3d(s(a.x,b),s(a.y,b),s(a.z,b))
proc s*(a:float,b:TVector3d):TVector3d {.inline,noInit.} =
vector3d(s(a,b.x),s(a,b.y),s(a,b.z))
template makeBinOpAssignVector(s:expr)=
## implements inplace binary operators += , -= , /= and *= for vectors
proc s*(a:var TVector3d,b:TVector3d) {.inline.} =
s(a.x,b.x) ; s(a.y,b.y) ; s(a.z,b.z)
proc s*(a:var TVector3d,b:float) {.inline.} =
s(a.x,b) ; s(a.y,b) ; s(a.z,b)
# ***************************************
# TMatrix3d implementation
# ***************************************
proc setElements*(t:var TMatrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float) {.inline.}=
## Sets arbitrary elements in an exisitng matrix.
t.ax=ax
t.ay=ay
t.az=az
t.aw=aw
t.bx=bx
t.by=by
t.bz=bz
t.bw=bw
t.cx=cx
t.cy=cy
t.cz=cz
t.cw=cw
t.tx=tx
t.ty=ty
t.tz=tz
t.tw=tw
proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):TMatrix3d =
result.setElements(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw)
proc `&`*(a,b:TMatrix3d):TMatrix3d {.noinit.} =
## Concatenates matrices returning a new matrix.
result.setElements(
a.aw*b.tx+a.az*b.cx+a.ay*b.bx+a.ax*b.ax,
a.aw*b.ty+a.az*b.cy+a.ay*b.by+a.ax*b.ay,
a.aw*b.tz+a.az*b.cz+a.ay*b.bz+a.ax*b.az,
a.aw*b.tw+a.az*b.cw+a.ay*b.bw+a.ax*b.aw,
a.bw*b.tx+a.bz*b.cx+a.by*b.bx+a.bx*b.ax,
a.bw*b.ty+a.bz*b.cy+a.by*b.by+a.bx*b.ay,
a.bw*b.tz+a.bz*b.cz+a.by*b.bz+a.bx*b.az,
a.bw*b.tw+a.bz*b.cw+a.by*b.bw+a.bx*b.aw,
a.cw*b.tx+a.cz*b.cx+a.cy*b.bx+a.cx*b.ax,
a.cw*b.ty+a.cz*b.cy+a.cy*b.by+a.cx*b.ay,
a.cw*b.tz+a.cz*b.cz+a.cy*b.bz+a.cx*b.az,
a.cw*b.tw+a.cz*b.cw+a.cy*b.bw+a.cx*b.aw,
a.tw*b.tx+a.tz*b.cx+a.ty*b.bx+a.tx*b.ax,
a.tw*b.ty+a.tz*b.cy+a.ty*b.by+a.tx*b.ay,
a.tw*b.tz+a.tz*b.cz+a.ty*b.bz+a.tx*b.az,
a.tw*b.tw+a.tz*b.cw+a.ty*b.bw+a.tx*b.aw)
proc scale*(s:float):TMatrix3d {.noInit.} =
## Returns a new scaling matrix.
result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0, 0,0,0,1)
proc scale*(s:float,org:TPoint3d):TMatrix3d {.noInit.} =
## Returns a new scaling matrix using, `org` as scale origin.
result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0,
org.x-s*org.x,org.y-s*org.y,org.z-s*org.z,1.0)
proc stretch*(sx,sy,sz:float):TMatrix3d {.noInit.} =
## Returns new a stretch matrix, which is a
## scale matrix with non uniform scale in x,y and z.
result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, 0,0,0,1)
proc stretch*(sx,sy,sz:float,org:TPoint3d):TMatrix3d {.noInit.} =
## Returns a new stretch matrix, which is a
## scale matrix with non uniform scale in x,y and z.
## `org` is used as stretch origin.
result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, org.x-sx*org.x,org.y-sy*org.y,org.z-sz*org.z,1)
proc move*(dx,dy,dz:float):TMatrix3d {.noInit.} =
## Returns a new translation matrix.
result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, dx,dy,dz,1)
proc move*(v:TVector3d):TMatrix3d {.noInit.} =
## Returns a new translation matrix from a vector.
result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, v.x,v.y,v.z,1)
proc rotate*(angle:float,axis:TVector3d):TMatrix3d {.noInit.}=
## Creates a rotation matrix that rotates `angle` radians over
## `axis`, which passes through origo.
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
# for how this is computed
var normax=axis
if not normax.tryNormalize: #simplifies matrix computation below a lot
raise newException(DivByZeroError,"Cannot rotate around zero length axis")
let
cs=cos(angle)
si=sin(angle)
omc=1.0-cs
usi=normax.x*si
vsi=normax.y*si
wsi=normax.z*si
u2=normax.x*normax.x
v2=normax.y*normax.y
w2=normax.z*normax.z
uvomc=normax.x*normax.y*omc
uwomc=normax.x*normax.z*omc
vwomc=normax.y*normax.z*omc
result.setElements(
u2+(1.0-u2)*cs, uvomc+wsi, uwomc-vsi, 0.0,
uvomc-wsi, v2+(1.0-v2)*cs, vwomc+usi, 0.0,
uwomc+vsi, vwomc-usi, w2+(1.0-w2)*cs, 0.0,
0.0,0.0,0.0,1.0)
proc rotate*(angle:float,org:TPoint3d,axis:TVector3d):TMatrix3d {.noInit.}=
## Creates a rotation matrix that rotates `angle` radians over
## `axis`, which passes through `org`.
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
# for how this is computed
var normax=axis
if not normax.tryNormalize: #simplifies matrix computation below a lot
raise newException(DivByZeroError,"Cannot rotate around zero length axis")
let
u=normax.x
v=normax.y
w=normax.z
u2=u*u
v2=v*v
w2=w*w
cs=cos(angle)
omc=1.0-cs
si=sin(angle)
a=org.x
b=org.y
c=org.z
usi=u*si
vsi=v*si
wsi=w*si
uvomc=normax.x*normax.y*omc
uwomc=normax.x*normax.z*omc
vwomc=normax.y*normax.z*omc
result.setElements(
u2+(v2+w2)*cs, uvomc+wsi, uwomc-vsi, 0.0,
uvomc-wsi, v2+(u2+w2)*cs, vwomc+usi, 0.0,
uwomc+vsi, vwomc-usi, w2+(u2+v2)*cs, 0.0,
(a*(v2+w2)-u*(b*v+c*w))*omc+(b*w-c*v)*si,
(b*(u2+w2)-v*(a*u+c*w))*omc+(c*u-a*w)*si,
(c*(u2+v2)-w*(a*u+b*v))*omc+(a*v-b*u)*si,1.0)
proc rotateX*(angle:float):TMatrix3d {.noInit.}=
## Creates a matrix that rotates around the x-axis with `angle` radians,
## which is also called a 'roll' matrix.
let
c=cos(angle)
s=sin(angle)
result.setElements(
1,0,0,0,
0,c,s,0,
0,-s,c,0,
0,0,0,1)
proc rotateY*(angle:float):TMatrix3d {.noInit.}=
## Creates a matrix that rotates around the y-axis with `angle` radians,
## which is also called a 'pitch' matrix.
let
c=cos(angle)
s=sin(angle)
result.setElements(
c,0,-s,0,
0,1,0,0,
s,0,c,0,
0,0,0,1)
proc rotateZ*(angle:float):TMatrix3d {.noInit.}=
## Creates a matrix that rotates around the z-axis with `angle` radians,
## which is also called a 'yaw' matrix.
let
c=cos(angle)
s=sin(angle)
result.setElements(
c,s,0,0,
-s,c,0,0,
0,0,1,0,
0,0,0,1)
proc isUniform*(m:TMatrix3d,tol=1.0e-6):bool=
## Checks if the transform is uniform, that is
## perpendicular axes of equal length, which means (for example)
## it cannot transform a sphere into an ellipsoid.
## `tol` is used as tolerance for both equal length comparison
## and perpendicular comparison.
#dot product=0 means perpendicular coord. system, check xaxis vs yaxis and xaxis vs zaxis
if abs(m.ax*m.bx+m.ay*m.by+m.az*m.bz)<=tol and # x vs y
abs(m.ax*m.cx+m.ay*m.cy+m.az*m.cz)<=tol and #x vs z
abs(m.bx*m.cx+m.by*m.cy+m.bz*m.cz)<=tol: #y vs z
#subtract squared lengths of axes to check if uniform scaling:
let
sqxlen=(m.ax*m.ax+m.ay*m.ay+m.az*m.az)
sqylen=(m.bx*m.bx+m.by*m.by+m.bz*m.bz)
sqzlen=(m.cx*m.cx+m.cy*m.cy+m.cz*m.cz)
if abs(sqxlen-sqylen)<=tol and abs(sqxlen-sqzlen)<=tol:
return true
return false
proc mirror*(planeperp:TVector3d):TMatrix3d {.noInit.}=
## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
## and passes through origo. `planeperp` does not need to be normalized.
# https://en.wikipedia.org/wiki/Transformation_matrix
var n=planeperp
if not n.tryNormalize:
raise newException(DivByZeroError,"Cannot mirror over a plane with a zero length normal")
let
a=n.x
b=n.y
c=n.z
ab=a*b
ac=a*c
bc=b*c
result.setElements(
1-2*a*a , -2*ab,-2*ac,0,
-2*ab , 1-2*b*b, -2*bc, 0,
-2*ac, -2*bc, 1-2*c*c,0,
0,0,0,1)
proc mirror*(org:TPoint3d,planeperp:TVector3d):TMatrix3d {.noInit.}=
## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
## and passes through `org`. `planeperp` does not need to be normalized.
# constructs a mirror M like the simpler mirror matrix constructor
# above but premultiplies with the inverse traslation of org
# and postmultiplies with the translation of org.
# With some fiddling this becomes reasonably simple:
var n=planeperp
if not n.tryNormalize:
raise newException(DivByZeroError,"Cannot mirror over a plane with a zero length normal")
let
a=n.x
b=n.y
c=n.z
ab=a*b
ac=a*c
bc=b*c
aa=a*a
bb=b*b
cc=c*c
tx=org.x
ty=org.y
tz=org.z
result.setElements(
1-2*aa , -2*ab,-2*ac,0,
-2*ab , 1-2*bb, -2*bc, 0,
-2*ac, -2*bc, 1-2*cc,0,
2*(ac*tz+ab*ty+aa*tx),
2*(bc*tz+bb*ty+ab*tx),
2*(cc*tz+bc*ty+ac*tx) ,1)
proc determinant*(m:TMatrix3d):float=
## Computes the determinant of matrix `m`.
# This computation is gotten from ratsimp(optimize(determinant(m)))
# in maxima CAS
let
O1=m.cx*m.tw-m.cw*m.tx
O2=m.cy*m.tw-m.cw*m.ty
O3=m.cx*m.ty-m.cy*m.tx
O4=m.cz*m.tw-m.cw*m.tz
O5=m.cx*m.tz-m.cz*m.tx
O6=m.cy*m.tz-m.cz*m.ty
return (O1*m.ay-O2*m.ax-O3*m.aw)*m.bz+
(-O1*m.az+O4*m.ax+O5*m.aw)*m.by+
(O2*m.az-O4*m.ay-O6*m.aw)*m.bx+
(O3*m.az-O5*m.ay+O6*m.ax)*m.bw
proc inverse*(m:TMatrix3d):TMatrix3d {.noInit.}=
## Computes the inverse of matrix `m`. If the matrix
## determinant is zero, thus not invertible, a EDivByZero
## will be raised.
# this computation comes from optimize(invert(m)) in maxima CAS
let
det=m.determinant
O2=m.cy*m.tw-m.cw*m.ty
O3=m.cz*m.tw-m.cw*m.tz
O4=m.cy*m.tz-m.cz*m.ty
O5=m.by*m.tw-m.bw*m.ty
O6=m.bz*m.tw-m.bw*m.tz
O7=m.by*m.tz-m.bz*m.ty
O8=m.by*m.cw-m.bw*m.cy
O9=m.bz*m.cw-m.bw*m.cz
O10=m.by*m.cz-m.bz*m.cy
O11=m.cx*m.tw-m.cw*m.tx
O12=m.cx*m.tz-m.cz*m.tx
O13=m.bx*m.tw-m.bw*m.tx
O14=m.bx*m.tz-m.bz*m.tx
O15=m.bx*m.cw-m.bw*m.cx
O16=m.bx*m.cz-m.bz*m.cx
O17=m.cx*m.ty-m.cy*m.tx
O18=m.bx*m.ty-m.by*m.tx
O19=m.bx*m.cy-m.by*m.cx
if det==0.0:
raise newException(DivByZeroError,"Cannot normalize zero length vector")
result.setElements(
(m.bw*O4+m.by*O3-m.bz*O2)/det , (-m.aw*O4-m.ay*O3+m.az*O2)/det,
(m.aw*O7+m.ay*O6-m.az*O5)/det , (-m.aw*O10-m.ay*O9+m.az*O8)/det,
(-m.bw*O12-m.bx*O3+m.bz*O11)/det , (m.aw*O12+m.ax*O3-m.az*O11)/det,
(-m.aw*O14-m.ax*O6+m.az*O13)/det , (m.aw*O16+m.ax*O9-m.az*O15)/det,
(m.bw*O17+m.bx*O2-m.by*O11)/det , (-m.aw*O17-m.ax*O2+m.ay*O11)/det,
(m.aw*O18+m.ax*O5-m.ay*O13)/det , (-m.aw*O19-m.ax*O8+m.ay*O15)/det,
(-m.bx*O4+m.by*O12-m.bz*O17)/det , (m.ax*O4-m.ay*O12+m.az*O17)/det,
(-m.ax*O7+m.ay*O14-m.az*O18)/det , (m.ax*O10-m.ay*O16+m.az*O19)/det)
proc equals*(m1:TMatrix3d,m2:TMatrix3d,tol=1.0e-6):bool=
## Checks if all elements of `m1`and `m2` is equal within
## a given tolerance `tol`.
return
abs(m1.ax-m2.ax)<=tol and
abs(m1.ay-m2.ay)<=tol and
abs(m1.az-m2.az)<=tol and
abs(m1.aw-m2.aw)<=tol and
abs(m1.bx-m2.bx)<=tol and
abs(m1.by-m2.by)<=tol and
abs(m1.bz-m2.bz)<=tol and
abs(m1.bw-m2.bw)<=tol and
abs(m1.cx-m2.cx)<=tol and
abs(m1.cy-m2.cy)<=tol and
abs(m1.cz-m2.cz)<=tol and
abs(m1.cw-m2.cw)<=tol and
abs(m1.tx-m2.tx)<=tol and
abs(m1.ty-m2.ty)<=tol and
abs(m1.tz-m2.tz)<=tol and
abs(m1.tw-m2.tw)<=tol
proc `=~`*(m1,m2:TMatrix3d):bool=
## Checks if `m1` and `m2` is approximately equal, using a
## tolerance of 1e-6.
equals(m1,m2)
proc transpose*(m:TMatrix3d):TMatrix3d {.noInit.}=
## Returns the transpose of `m`
result.setElements(m.ax,m.bx,m.cx,m.tx,m.ay,m.by,m.cy,m.ty,m.az,m.bz,m.cz,m.tz,m.aw,m.bw,m.cw,m.tw)
proc getXAxis*(m:TMatrix3d):TVector3d {.noInit.}=
## Gets the local x axis of `m`
result.x=m.ax
result.y=m.ay
result.z=m.az
proc getYAxis*(m:TMatrix3d):TVector3d {.noInit.}=
## Gets the local y axis of `m`
result.x=m.bx
result.y=m.by
result.z=m.bz
proc getZAxis*(m:TMatrix3d):TVector3d {.noInit.}=
## Gets the local y axis of `m`
result.x=m.cx
result.y=m.cy
result.z=m.cz
proc `$`*(m:TMatrix3d):string=
## String representation of `m`
return rtos(m.ax) & "," & rtos(m.ay) & "," & rtos(m.az) & "," & rtos(m.aw) &
"\n" & rtos(m.bx) & "," & rtos(m.by) & "," & rtos(m.bz) & "," & rtos(m.bw) &
"\n" & rtos(m.cx) & "," & rtos(m.cy) & "," & rtos(m.cz) & "," & rtos(m.cw) &
"\n" & rtos(m.tx) & "," & rtos(m.ty) & "," & rtos(m.tz) & "," & rtos(m.tw)
proc apply*(m:TMatrix3d, x,y,z:var float, translate=false)=
## Applies transformation `m` onto `x` , `y` , `z` , optionally
## using the translation part of the matrix.
let
oldx=x
oldy=y
oldz=z
x=m.cx*oldz+m.bx*oldy+m.ax*oldx
y=m.cy*oldz+m.by*oldy+m.ay*oldx
z=m.cz*oldz+m.bz*oldy+m.az*oldx
if translate:
x+=m.tx
y+=m.ty
z+=m.tz
# ***************************************
# TVector3d implementation
# ***************************************
proc vector3d*(x,y,z:float):TVector3d=
result.x=x
result.y=y
result.z=z
proc len*(v:TVector3d):float=
## Returns the length of the vector `v`.
sqrt(v.x*v.x+v.y*v.y+v.z*v.z)
proc `len=`*(v:var TVector3d,newlen:float) {.noInit.} =
## Sets the length of the vector, keeping its direction.
## If the vector has zero length before changing it's length,
## an arbitrary vector of the requested length is returned.
let fac=newlen/v.len
if newlen==0.0:
v.x=0.0
v.y=0.0
v.z=0.0
return
if fac==Inf or fac==NegInf:
#to short for float accuracy
#do as good as possible:
v.x=newlen
v.y=0.0
v.z=0.0
else:
v.x*=fac
v.y*=fac
v.z*=fac
proc sqrLen*(v:TVector3d):float {.inline.}=
## Computes the squared length of the vector, which is
## faster than computing the absolute length.
return v.x*v.x+v.y*v.y+v.z*v.z
proc `$` *(v:TVector3d):string=
## String representation of `v`
result=rtos(v.x)
result.add(",")
result.add(rtos(v.y))
result.add(",")
result.add(rtos(v.z))
proc `&` *(v:TVector3d,m:TMatrix3d):TVector3d {.noInit.} =
## Concatenate vector `v` with a transformation matrix.
## Transforming a vector ignores the translational part
## of the matrix.
# | AX AY AZ AW |
# | X Y Z 1 | * | BX BY BZ BW |
# | CX CY CZ CW |
# | 0 0 0 1 |
let
newx=m.cx*v.z+m.bx*v.y+m.ax*v.x
newy=m.cy*v.z+m.by*v.y+m.ay*v.x
result.z=m.cz*v.z+m.bz*v.y+m.az*v.x
result.y=newy
result.x=newx
proc `&=` *(v:var TVector3d,m:TMatrix3d) {.noInit.} =
## Applies transformation `m` onto `v` in place.
## Transforming a vector ignores the translational part
## of the matrix.
# | AX AY AZ AW |
# | X Y Z 1 | * | BX BY BZ BW |
# | CX CY CZ CW |
# | 0 0 0 1 |
let
newx=m.cx*v.z+m.bx*v.y+m.ax*v.x
newy=m.cy*v.z+m.by*v.y+m.ay*v.x
v.z=m.cz*v.z+m.bz*v.y+m.az*v.x
v.y=newy
v.x=newx
proc transformNorm*(v:var TVector3d,m:TMatrix3d)=
## Applies a normal direction transformation `m` onto `v` in place.
## The resulting vector is *not* normalized. Transforming a vector ignores the
## translational part of the matrix. If the matrix is not invertible
## (determinant=0), an EDivByZero will be raised.
# transforming a normal is done by transforming
# by the transpose of the inverse of the original matrix
# Major reason this simple function is here is that this function can be optimized in the future,
# (possibly by hardware) as well as having a consistent API with the 2d version.
v&=transpose(inverse(m))
proc transformInv*(v:var TVector3d,m:TMatrix3d)=
## Applies the inverse of `m` on vector `v`. Transforming a vector ignores
## the translational part of the matrix. Transforming a vector ignores the
## translational part of the matrix.
## If the matrix is not invertible (determinant=0), an EDivByZero
## will be raised.
# Major reason this simple function is here is that this function can be optimized in the future,
# (possibly by hardware) as well as having a consistent API with the 2d version.
v&=m.inverse
proc transformNormInv*(vec:var TVector3d,m:TMatrix3d)=
## Applies an inverse normal direction transformation `m` onto `v` in place.
## This is faster than creating an inverse
## matrix and transformNorm(...) it. Transforming a vector ignores the
## translational part of the matrix.
# see vector2d:s equivalent for a deeper look how/why this works
vec&=m.transpose
proc tryNormalize*(v:var TVector3d):bool=
## Modifies `v` to have a length of 1.0, keeping its angle.
## If `v` has zero length (and thus no angle), it is left unmodified and false is
## returned, otherwise true is returned.
let mag=v.len
if mag==0.0:
return false
v.x/=mag
v.y/=mag
v.z/=mag
return true
proc normalize*(v:var TVector3d) {.inline.}=
## Modifies `v` to have a length of 1.0, keeping its angle.
## If `v` has zero length, an EDivByZero will be raised.
if not tryNormalize(v):
raise newException(DivByZeroError,"Cannot normalize zero length vector")
proc rotate*(vec:var TVector3d,angle:float,axis:TVector3d)=
## Rotates `vec` in place, with `angle` radians over `axis`, which passes
## through origo.
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
# for how this is computed
var normax=axis
if not normax.tryNormalize:
raise newException(DivByZeroError,"Cannot rotate around zero length axis")
let
cs=cos(angle)
si=sin(angle)
omc=1.0-cs
u=normax.x
v=normax.y
w=normax.z
x=vec.x
y=vec.y
z=vec.z
uxyzomc=(u*x+v*y+w*z)*omc
vec.x=u*uxyzomc+x*cs+(v*z-w*y)*si
vec.y=v*uxyzomc+y*cs+(w*x-u*z)*si
vec.z=w*uxyzomc+z*cs+(u*y-v*x)*si
proc scale*(v:var TVector3d,s:float)=
## Scales the vector in place with factor `s`
v.x*=s
v.y*=s
v.z*=s
proc stretch*(v:var TVector3d,sx,sy,sz:float)=
## Scales the vector non uniformly with factors `sx` , `sy` , `sz`
v.x*=sx
v.y*=sy
v.z*=sz
proc mirror*(v:var TVector3d,planeperp:TVector3d)=
## Computes the mirrored vector of `v` over the plane
## that has `planeperp` as normal direction.
## `planeperp` does not need to be normalized.
var n=planeperp
n.normalize
let
x=v.x
y=v.y
z=v.z
a=n.x
b=n.y
c=n.z
ac=a*c
ab=a*b
bc=b*c
v.x= -2*(ac*z+ab*y+a*a*x)+x
v.y= -2*(bc*z+b*b*y+ab*x)+y
v.z= -2*(c*c*z+bc*y+ac*x)+z
proc `-` *(v:TVector3d):TVector3d=
## Negates a vector
result.x= -v.x
result.y= -v.y
result.z= -v.z
# declare templated binary operators
makeBinOpVector(`+`)
makeBinOpVector(`-`)
makeBinOpVector(`*`)
makeBinOpVector(`/`)
makeBinOpAssignVector(`+=`)
makeBinOpAssignVector(`-=`)
makeBinOpAssignVector(`*=`)
makeBinOpAssignVector(`/=`)
proc dot*(v1,v2:TVector3d):float {.inline.}=
## Computes the dot product of two vectors.
## Returns 0.0 if the vectors are perpendicular.
return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z
proc cross*(v1,v2:TVector3d):TVector3d {.inline.}=
## Computes the cross product of two vectors.
## The result is a vector which is perpendicular
## to the plane of `v1` and `v2`, which means
## cross(xaxis,yaxis)=zaxis. The magnitude of the result is
## zero if the vectors are colinear.
result.x = (v1.y * v2.z) - (v2.y * v1.z)
result.y = (v1.z * v2.x) - (v2.z * v1.x)
result.z = (v1.x * v2.y) - (v2.x * v1.y)
proc equals*(v1,v2:TVector3d,tol=1.0e-6):bool=
## Checks if two vectors approximately equals with a tolerance.
return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol and abs(v2.z-v1.z)<=tol
proc `=~` *(v1,v2:TVector3d):bool=
## Checks if two vectors approximately equals with a
## hardcoded tolerance 1e-6
equals(v1,v2)
proc angleTo*(v1,v2:TVector3d):float=
## Returns the smallest angle between v1 and v2,
## which is in range 0-PI
var
nv1=v1
nv2=v2
if not nv1.tryNormalize or not nv2.tryNormalize:
return 0.0 # zero length vector has zero angle to any other vector
return safeArccos(dot(nv1,nv2))
proc arbitraryAxis*(norm:TVector3d):TMatrix3d {.noInit.}=
## Computes the rotation matrix that would transform
## world z vector into `norm`. The inverse of this matrix
## is useful to transform a planar 3d object to 2d space.
## This is the same algorithm used to interpret DXF and DWG files.
const lim=1.0/64.0
var ax,ay,az:TVector3d
if abs(norm.x)<lim and abs(norm.y)<lim:
ax=cross(YAXIS,norm)
else:
ax=cross(ZAXIS,norm)
ax.normalize()
ay=cross(norm,ax)
ay.normalize()
az=cross(ax,ay)
result.setElements(
ax.x,ax.y,ax.z,0.0,
ay.x,ay.y,ay.z,0.0,
az.x,az.y,az.z,0.0,
0.0,0.0,0.0,1.0)
proc bisect*(v1,v2:TVector3d):TVector3d {.noInit.}=
## Computes the bisector between v1 and v2 as a normalized vector.
## If one of the input vectors has zero length, a normalized version
## of the other is returned. If both input vectors has zero length,
## an arbitrary normalized vector `v1` is returned.
var
vmag1=v1.len
vmag2=v2.len
# zero length vector equals arbitrary vector, just change
# magnitude to one to avoid zero division
if vmag1==0.0:
if vmag2==0: #both are zero length return any normalized vector
return XAXIS
vmag1=1.0
if vmag2==0.0: vmag2=1.0
let
x1=v1.x/vmag1
y1=v1.y/vmag1
z1=v1.z/vmag1
x2=v2.x/vmag2
y2=v2.y/vmag2
z2=v2.z/vmag2
result.x=(x1 + x2) * 0.5
result.y=(y1 + y2) * 0.5
result.z=(z1 + z2) * 0.5
if not result.tryNormalize():
# This can happen if vectors are colinear. In this special case
# there are actually inifinitely many bisectors, we select just
# one of them.
result=v1.cross(XAXIS)
if result.sqrLen<1.0e-9:
result=v1.cross(YAXIS)
if result.sqrLen<1.0e-9:
result=v1.cross(ZAXIS) # now we should be guaranteed to have succeeded
result.normalize
# ***************************************
# TPoint3d implementation
# ***************************************
proc point3d*(x,y,z:float):TPoint3d=
result.x=x
result.y=y
result.z=z
proc sqrDist*(a,b:TPoint3d):float=
## Computes the squared distance between `a`and `b`
let dx=b.x-a.x
let dy=b.y-a.y
let dz=b.z-a.z
result=dx*dx+dy*dy+dz*dz
proc dist*(a,b:TPoint3d):float {.inline.}=
## Computes the absolute distance between `a`and `b`
result=sqrt(sqrDist(a,b))
proc `$` *(p:TPoint3d):string=
## String representation of `p`
result=rtos(p.x)
result.add(",")
result.add(rtos(p.y))
result.add(",")
result.add(rtos(p.z))
proc `&`*(p:TPoint3d,m:TMatrix3d):TPoint3d=
## Concatenates a point `p` with a transform `m`,
## resulting in a new, transformed point.
result.z=m.cz*p.z+m.bz*p.y+m.az*p.x+m.tz
result.y=m.cy*p.z+m.by*p.y+m.ay*p.x+m.ty
result.x=m.cx*p.z+m.bx*p.y+m.ax*p.x+m.tx
proc `&=` *(p:var TPoint3d,m:TMatrix3d)=
## Applies transformation `m` onto `p` in place.
let
x=p.x
y=p.y
z=p.z
p.x=m.cx*z+m.bx*y+m.ax*x+m.tx
p.y=m.cy*z+m.by*y+m.ay*x+m.ty
p.z=m.cz*z+m.bz*y+m.az*x+m.tz
proc transformInv*(p:var TPoint3d,m:TMatrix3d)=
## Applies the inverse of transformation `m` onto `p` in place.
## If the matrix is not invertable (determinant=0) , EDivByZero will
## be raised.
# can possibly be more optimized in the future so use this function when possible
p&=inverse(m)
proc `+`*(p:TPoint3d,v:TVector3d):TPoint3d {.noInit,inline.} =
## Adds a vector `v` to a point `p`, resulting
## in a new point.
result.x=p.x+v.x
result.y=p.y+v.y
result.z=p.z+v.z
proc `+=`*(p:var TPoint3d,v:TVector3d) {.noInit,inline.} =
## Adds a vector `v` to a point `p` in place.
p.x+=v.x
p.y+=v.y
p.z+=v.z
proc `-`*(p:TPoint3d,v:TVector3d):TPoint3d {.noInit,inline.} =
## Subtracts a vector `v` from a point `p`, resulting
## in a new point.
result.x=p.x-v.x
result.y=p.y-v.y
result.z=p.z-v.z
proc `-`*(p1,p2:TPoint3d):TVector3d {.noInit,inline.} =
## Subtracts `p2`from `p1` resulting in a difference vector.
result.x=p1.x-p2.x
result.y=p1.y-p2.y
result.z=p1.z-p2.z
proc `-=`*(p:var TPoint3d,v:TVector3d) {.noInit,inline.} =
## Subtracts a vector `v` from a point `p` in place.
p.x-=v.x
p.y-=v.y
p.z-=v.z
proc equals(p1,p2:TPoint3d,tol=1.0e-6):bool {.inline.}=
## Checks if two points approximately equals with a tolerance.
return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol and abs(p2.z-p1.z)<=tol
proc `=~`*(p1,p2:TPoint3d):bool {.inline.}=
## Checks if two vectors approximately equals with a
## hardcoded tolerance 1e-6
equals(p1,p2)
proc rotate*(p:var TPoint3d,rad:float,axis:TVector3d)=
## Rotates point `p` in place `rad` radians about an axis
## passing through origo.
var v=vector3d(p.x,p.y,p.z)
v.rotate(rad,axis) # reuse this code here since doing the same thing and quite complicated
p.x=v.x
p.y=v.y
p.z=v.z
proc rotate*(p:var TPoint3d,angle:float,org:TPoint3d,axis:TVector3d)=
## Rotates point `p` in place `rad` radians about an axis
## passing through `org`
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
# for how this is computed
var normax=axis
normax.normalize
let
cs=cos(angle)
omc=1.0-cs
si=sin(angle)
u=normax.x
v=normax.y
w=normax.z
a=org.x
b=org.y
c=org.z
x=p.x
y=p.y
z=p.z
uu=u*u
vv=v*v
ww=w*w
ux=u*p.x
vy=v*p.y
wz=w*p.z
au=a*u
bv=b*v
cw=c*w
uxmvymwz=ux-vy-wz
p.x=(a*(vv+ww)-u*(bv+cw-uxmvymwz))*omc + x*cs + (b*w+v*z-c*v-w*y)*si
p.y=(b*(uu+ww)-v*(au+cw-uxmvymwz))*omc + y*cs + (c*u-a*w+w*x-u*z)*si
p.z=(c*(uu+vv)-w*(au+bv-uxmvymwz))*omc + z*cs + (a*v+u*y-b*u-v*x)*si
proc scale*(p:var TPoint3d,fac:float) {.inline.}=
## Scales a point in place `fac` times with world origo as origin.
p.x*=fac
p.y*=fac
p.z*=fac
proc scale*(p:var TPoint3d,fac:float,org:TPoint3d){.inline.}=
## Scales the point in place `fac` times with `org` as origin.
p.x=(p.x - org.x) * fac + org.x
p.y=(p.y - org.y) * fac + org.y
p.z=(p.z - org.z) * fac + org.z
proc stretch*(p:var TPoint3d,facx,facy,facz:float){.inline.}=
## Scales a point in place non uniformly `facx` , `facy` , `facz` times
## with world origo as origin.
p.x*=facx
p.y*=facy
p.z*=facz
proc stretch*(p:var TPoint3d,facx,facy,facz:float,org:TPoint3d){.inline.}=
## Scales the point in place non uniformly `facx` , `facy` , `facz` times
## with `org` as origin.
p.x=(p.x - org.x) * facx + org.x
p.y=(p.y - org.y) * facy + org.y
p.z=(p.z - org.z) * facz + org.z
proc move*(p:var TPoint3d,dx,dy,dz:float){.inline.}=
## Translates a point `dx` , `dy` , `dz` in place.
p.x+=dx
p.y+=dy
p.z+=dz
proc move*(p:var TPoint3d,v:TVector3d){.inline.}=
## Translates a point with vector `v` in place.
p.x+=v.x
p.y+=v.y
p.z+=v.z
proc area*(a,b,c:TPoint3d):float {.inline.}=
## Computes the area of the triangle thru points `a` , `b` and `c`
# The area of a planar 3d quadliteral is the magnitude of the cross
# product of two edge vectors. Taking this time 0.5 gives the triangle area.
return cross(b-a,c-a).len*0.5