#
#
# Nim's Runtime Library
# (c) Copyright 2017 Nim Authors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements a series of low level methods for bit manipulation.
##
## By default, compiler intrinsics are used where possible to improve performance
## on supported compilers: `GCC`, `LLVM_GCC`, `CLANG`, `VCC`, `ICC`.
##
## The module will fallback to pure nim procs in case the backend is not supported.
## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics.
##
## This module is also compatible with other backends: `JavaScript`, `NimScript`
## as well as the `compiletime VM`.
##
## As a result of using optimized functions/intrinsics, some functions can return
## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts`
## to force predictable behaviour for all input, causing a small performance hit.
##
## At this time only `fastLog2`, `firstSetBit`, `countLeadingZeroBits` and `countTrailingZeroBits`
## may return undefined and/or platform dependent values if given invalid input.
import std/macros
import std/private/since
from std/private/bitops_utils import forwardImpl, castToUnsigned
func bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI".}
## Computes the `bitwise complement` of the integer `x`.
func internalBitand[T: SomeInteger](x, y: T): T {.magic: "BitandI".}
func internalBitor[T: SomeInteger](x, y: T): T {.magic: "BitorI".}
func internalBitxor[T: SomeInteger](x, y: T): T {.magic: "BitxorI".}
macro bitand*[T: SomeInteger](x, y: T; z: varargs[T]): T =
## Computes the `bitwise and` of all arguments collectively.
let fn = bindSym("internalBitand")
result = newCall(fn, x, y)
for extra in z:
result = newCall(fn, result, extra)
macro bitor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
## Computes the `bitwise or` of all arguments collectively.
let fn = bindSym("internalBitor")
result = newCall(fn, x, y)
for extra in z:
result = newCall(fn, result, extra)
macro bitxor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
## Computes the `bitwise xor` of all arguments collectively.
let fn = bindSym("internalBitxor")
result = newCall(fn, x, y)
for extra in z:
result = newCall(fn, result, extra)
type BitsRange*[T] = range[0..sizeof(T)*8-1]
## A range with all bit positions for type `T`.
template typeMasked[T: SomeInteger](x: T): T =
when defined(js):
T(x and ((0xffffffff_ffffffff'u shr (64 - sizeof(T) * 8))))
else:
x
func bitsliced*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns an extracted (and shifted) slice of bits from `v`.
runnableExamples:
doAssert 0b10111.bitsliced(2 .. 4) == 0b101
doAssert 0b11100.bitsliced(0 .. 2) == 0b100
doAssert 0b11100.bitsliced(0 ..< 3) == 0b100
let
upmost = sizeof(T) * 8 - 1
uv = v.castToUnsigned
((uv shl (upmost - slice.b)).typeMasked shr (upmost - slice.b + slice.a)).T
proc bitslice*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v` into an extracted (and shifted) slice of bits from `v`.
runnableExamples:
var x = 0b101110
x.bitslice(2 .. 4)
doAssert x == 0b011
let
upmost = sizeof(T) * 8 - 1
uv = v.castToUnsigned
v = ((uv shl (upmost - slice.b)).typeMasked shr (upmost - slice.b + slice.a)).T
func toMask*[T: SomeInteger](slice: Slice[int]): T {.inline, since: (1, 3).} =
## Creates a bitmask based on a slice of bits.
runnableExamples:
doAssert toMask[int32](1 .. 3) == 0b1110'i32
doAssert toMask[int32](0 .. 3) == 0b1111'i32
let
upmost = sizeof(T) * 8 - 1
bitmask = bitnot(0.T).castToUnsigned
((bitmask shl (upmost - slice.b + slice.a)).typeMasked shr (upmost - slice.b)).T
proc masked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
## Returns `v`, with only the `1` bits from `mask` matching those of
## `v` set to 1.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.masked(0b0000_1010'u8) == 0b0000_0010'u8
bitand(v, mask)
func masked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns `v`, with only the `1` bits in the range of `slice`
## matching those of `v` set to 1.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_1011'u8
doAssert v.masked(1 .. 3) == 0b0000_1010'u8
bitand(v, toMask[T](slice))
proc mask*[T: SomeInteger](v: var T; mask: T) {.inline, since: (1, 3).} =
## Mutates `v`, with only the `1` bits from `mask` matching those of
## `v` set to 1.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.mask(0b0000_1010'u8)
doAssert v == 0b0000_0010'u8
v = bitand(v, mask)
proc mask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v`, with only the `1` bits in the range of `slice`
## matching those of `v` set to 1.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_1011'u8
v.mask(1 .. 3)
doAssert v == 0b0000_1010'u8
v = bitand(v, toMask[T](slice))
func setMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits from `mask` set to 1.
##
## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.setMasked(0b0000_1010'u8) == 0b0000_1011'u8
bitor(v, mask)
func setMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits in the range of `slice` set to 1.
##
## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.setMasked(2 .. 3) == 0b0000_1111'u8
bitor(v, toMask[T](slice))
proc setMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
## Mutates `v`, with all the `1` bits from `mask` set to 1.
##
## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.setMask(0b0000_1010'u8)
doAssert v == 0b0000_1011'u8
v = bitor(v, mask)
proc setMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v`, with all the `1` bits in the range of `slice` set to 1.
##
## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.setMask(2 .. 3)
doAssert v == 0b0000_1111'u8
v = bitor(v, toMask[T](slice))
func clearMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits from `mask` set to 0.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
## with an *inverted mask*.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.clearMasked(0b0000_1010'u8) == 0b0000_0001'u8
bitand(v, bitnot(mask))
func clearMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits in the range of `slice` set to 0.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
## with an *inverted mask*.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.clearMasked(1 .. 3) == 0b0000_0001'u8
bitand(v, bitnot(toMask[T](slice)))
proc clearMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
## Mutates `v`, with all the `1` bits from `mask` set to 0.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
## with an *inverted mask*.
runnableExamples:
var v = 0b0000_0011'u8
v.clearMask(0b0000_1010'u8)
doAssert v == 0b0000_0001'u8
v = bitand(v, bitnot(mask))
proc clearMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v`, with all the `1` bits in the range of `slice` set to 0.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
## with an *inverted mask*.
runnableExamples:
var v = 0b0000_0011'u8
v.clearMask(1 .. 3)
doAssert v == 0b0000_0001'u8
v = bitand(v, bitnot(toMask[T](slice)))
func flipMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits from `mask` flipped.
##
## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.flipMasked(0b0000_1010'u8) == 0b0000_1001'u8
bitxor(v, mask)
func flipMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits in the range of `slice` flipped.
##
## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.flipMasked(1 .. 3) == 0b0000_1101'u8
bitxor(v, toMask[T](slice))
proc flipMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
## Mutates `v`, with all the `1` bits from `mask` flipped.
##
## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.flipMask(0b0000_1010'u8)
doAssert v == 0b0000_1001'u8
v = bitxor(v, mask)
proc flipMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v`, with all the `1` bits in the range of `slice` flipped.
##
## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.flipMask(1 .. 3)
doAssert v == 0b0000_1101'u8
v = bitxor(v, toMask[T](slice))
proc setBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
## Mutates `v`, with the bit at position `bit` set to 1.
runnableExamples:
var v = 0b0000_0011'u8
v.setBit(5'u8)
doAssert v == 0b0010_0011'u8
v.setMask(1.T shl bit)
proc clearBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
## Mutates `v`, with the bit at position `bit` set to 0.
runnableExamples:
var v = 0b0000_0011'u8
v.clearBit(1'u8)
doAssert v == 0b0000_0001'u8
v.clearMask(1.T shl bit)
proc flipBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
## Mutates `v`, with the bit at position `bit` flipped.
runnableExamples:
var v = 0b0000_0011'u8
v.flipBit(1'u8)
doAssert v == 0b0000_0001'u8
v = 0b0000_0011'u8
v.flipBit(2'u8)
doAssert v == 0b0000_0111'u8
v.flipMask(1.T shl bit)
macro setBits*(v: typed; bits: varargs[typed]): untyped =
## Mutates `v`, with the bits at positions `bits` set to 1.
runnableExamples:
var v = 0b0000_0011'u8
v.setBits(3, 5, 7)
doAssert v == 0b1010_1011'u8
bits.expectKind(nnkBracket)
result = newStmtList()
for bit in bits:
result.add newCall("setBit", v, bit)
macro clearBits*(v: typed; bits: varargs[typed]): untyped =
## Mutates `v`, with the bits at positions `bits` set to 0.
runnableExamples:
var v = 0b1111_1111'u8
v.clearBits(1, 3, 5, 7)
doAssert v == 0b0101_0101'u8
bits.expectKind(nnkBracket)
result = newStmtList()
for bit in bits:
result.add newCall("clearBit", v, bit)
macro flipBits*(v: typed; bits: varargs[typed]): untyped =
## Mutates `v`, with the bits at positions `bits` set to 0.
runnableExamples:
var v = 0b0000_1111'u8
v.flipBits(1, 3, 5, 7)
doAssert v == 0b1010_0101'u8
bits.expectKind(nnkBracket)
result = newStmtList()
for bit in bits:
result.add newCall("flipBit", v, bit)
proc testBit*[T: SomeInteger](v: T; bit: BitsRange[T]): bool {.inline.} =
## Returns true if the bit in `v` at positions `bit` is set to 1.
runnableExamples:
let v = 0b0000_1111'u8
doAssert v.testBit(0)
doAssert not v.testBit(7)
let mask = 1.T shl bit
return (v and mask) == mask
# #### Pure Nim version ####
func firstSetBitNim(x: uint32): int {.inline.} =
## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15,
25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
let v = x.uint32
let k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v))
result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int
func firstSetBitNim(x: uint64): int {.inline.} =
## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
let v = uint64(x)
var k = uint32(v and 0xFFFFFFFF'u32)
if k == 0:
k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32
result = 32
else:
result = 0
result += firstSetBitNim(k)
func fastlog2Nim(x: uint32): int {.inline.} =
## Quickly find the log base 2 of a 32-bit or less integer.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
# https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18,
22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31]
var v = x.uint32
v = v or v shr 1 # first round down to one less than a power of 2
v = v or v shr 2
v = v or v shr 4
v = v or v shr 8
v = v or v shr 16
result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int
func fastlog2Nim(x: uint64): int {.inline.} =
## Quickly find the log base 2 of a 64-bit integer.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
# https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54,
33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62,
57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63]
var v = x.uint64
v = v or v shr 1 # first round down to one less than a power of 2
v = v or v shr 2
v = v or v shr 4
v = v or v shr 8
v = v or v shr 16
v = v or v shr 32
result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int
import system/countbits_impl
const useBuiltinsRotate = (defined(amd64) or defined(i386)) and
(defined(gcc) or defined(clang) or defined(vcc) or
(defined(icl) and not defined(cpp))) and useBuiltins
template parityImpl[T](value: T): int =
# formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel
var v = value
when sizeof(T) == 8:
v = v xor (v shr 32)
when sizeof(T) >= 4:
v = v xor (v shr 16)
when sizeof(T) >= 2:
v = v xor (v shr 8)
v = v xor (v shr 4)
v = v and 0xf
((0x6996'u shr v) and 1).int
when useGCC_builtins:
# Returns the bit parity in value
proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.}
proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.}
# Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.}
proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.}
# Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.}
proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.}
# Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.}
proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.}
elif useVCC_builtins:
# Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1).
func bitScanReverse(index: ptr culong, mask: culong): uint8 {.
importc: "_BitScanReverse", header: "<intrin.h>".}
func bitScanReverse64(index: ptr culong, mask: uint64): uint8 {.
importc: "_BitScanReverse64", header: "<intrin.h>".}
# Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1).
func bitScanForward(index: ptr culong, mask: culong): uint8 {.
importc: "_BitScanForward", header: "<intrin.h>".}
func bitScanForward64(index: ptr culong, mask: uint64): uint8 {.
importc: "_BitScanForward64", header: "<intrin.h>".}
template vcc_scan_impl(fnc: untyped; v: untyped): int =
var index {.inject.}: culong = 0
discard fnc(index.addr, v)
index.int
elif useICC_builtins:
# Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
func bitScanForward(p: ptr uint32, b: uint32): uint8 {.
importc: "_BitScanForward", header: "<immintrin.h>".}
func bitScanForward64(p: ptr uint32, b: uint64): uint8 {.
importc: "_BitScanForward64", header: "<immintrin.h>".}
# Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
func bitScanReverse(p: ptr uint32, b: uint32): uint8 {.
importc: "_BitScanReverse", header: "<immintrin.h>".}
func bitScanReverse64(p: ptr uint32, b: uint64): uint8 {.
importc: "_BitScanReverse64", header: "<immintrin.h>".}
template icc_scan_impl(fnc: untyped; v: untyped): int =
var index: uint32
discard fnc(index.addr, v)
index.int
func countSetBits*(x: SomeInteger): int {.inline.} =
## Counts the set bits in an integer (also called `Hamming weight`:idx:).
runnableExamples:
doAssert countSetBits(0b0000_0011'u8) == 2
doAssert countSetBits(0b1010_1010'u8) == 4
result = countSetBitsImpl(x)
func popcount*(x: SomeInteger): int {.inline.} =
## Alias for `countSetBits <#countSetBits,SomeInteger>`_ (Hamming weight).
result = countSetBits(x)
func parityBits*(x: SomeInteger): int {.inline.} =
## Calculate the bit parity in an integer. If the number of 1-bits
## is odd, the parity is 1, otherwise 0.
runnableExamples:
doAssert parityBits(0b0000_0000'u8) == 0
doAssert parityBits(0b0101_0001'u8) == 1
doAssert parityBits(0b0110_1001'u8) == 0
doAssert parityBits(0b0111_1111'u8) == 1
# Can be used a base if creating ASM version.
# https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd
let x = x.castToUnsigned
when nimvm:
result = forwardImpl(parityImpl, x)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_parity(x.uint32).int
else: result = builtin_parityll(x.uint64).int
else:
when sizeof(x) <= 4: result = parityImpl(x.uint32)
else: result = parityImpl(x.uint64)
func firstSetBit*(x: SomeInteger): int {.inline.} =
## Returns the 1-based index of the least significant set bit of `x`.
## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
## otherwise the result is undefined.
runnableExamples:
doAssert firstSetBit(0b0000_0001'u8) == 1
doAssert firstSetBit(0b0000_0010'u8) == 2
doAssert firstSetBit(0b0000_0100'u8) == 3
doAssert firstSetBit(0b0000_1000'u8) == 4
doAssert firstSetBit(0b0000_1111'u8) == 1
# GCC builtin 'builtin_ffs' already handle zero input.
let x = x.castToUnsigned
when nimvm:
when noUndefined:
if x == 0:
return 0
result = forwardImpl(firstSetBitNim, x)
else:
when noUndefined and not useGCC_builtins:
if x == 0:
return 0
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int
else: result = builtin_ffsll(cast[clonglong](x.culonglong)).int
elif useVCC_builtins:
when sizeof(x) <= 4:
result = 1 + vcc_scan_impl(bitScanForward, x.culong)
elif arch64:
result = 1 + vcc_scan_impl(bitScanForward64, x.uint64)
else:
result = firstSetBitNim(x.uint64)
elif useICC_builtins:
when sizeof(x) <= 4:
result = 1 + icc_scan_impl(bitScanForward, x.uint32)
elif arch64:
result = 1 + icc_scan_impl(bitScanForward64, x.uint64)
else:
result = firstSetBitNim(x.uint64)
else:
when sizeof(x) <= 4: result = firstSetBitNim(x.uint32)
else: result = firstSetBitNim(x.uint64)
func fastLog2*(x: SomeInteger): int {.inline.} =
## Quickly find the log base 2 of an integer.
## If `x` is zero, when `noUndefinedBitOpts` is set, the result is -1,
## otherwise the result is undefined.
runnableExamples:
doAssert fastLog2(0b0000_0001'u8) == 0
doAssert fastLog2(0b0000_0010'u8) == 1
doAssert fastLog2(0b0000_0100'u8) == 2
doAssert fastLog2(0b0000_1000'u8) == 3
doAssert fastLog2(0b0000_1111'u8) == 3
let x = x.castToUnsigned
when noUndefined:
if x == 0:
return -1
when nimvm:
result = forwardImpl(fastlog2Nim, x)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int
else: result = 63 - builtin_clzll(x.uint64).int
elif useVCC_builtins:
when sizeof(x) <= 4:
result = vcc_scan_impl(bitScanReverse, x.culong)
elif arch64:
result = vcc_scan_impl(bitScanReverse64, x.uint64)
else:
result = fastlog2Nim(x.uint64)
elif useICC_builtins:
when sizeof(x) <= 4:
result = icc_scan_impl(bitScanReverse, x.uint32)
elif arch64:
result = icc_scan_impl(bitScanReverse64, x.uint64)
else:
result = fastlog2Nim(x.uint64)
else:
when sizeof(x) <= 4: result = fastlog2Nim(x.uint32)
else: result = fastlog2Nim(x.uint64)
func countLeadingZeroBits*(x: SomeInteger): int {.inline.} =
## Returns the number of leading zero bits in an integer.
## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
## otherwise the result is undefined.
##
## **See also:**
## * `countTrailingZeroBits proc <#countTrailingZeroBits,SomeInteger>`_
runnableExamples:
doAssert countLeadingZeroBits(0b0000_0001'u8) == 7
doAssert countLeadingZeroBits(0b0000_0010'u8) == 6
doAssert countLeadingZeroBits(0b0000_0100'u8) == 5
doAssert countLeadingZeroBits(0b0000_1000'u8) == 4
doAssert countLeadingZeroBits(0b0000_1111'u8) == 4
let x = x.castToUnsigned
when noUndefined:
if x == 0:
return 0
when nimvm:
result = sizeof(x)*8 - 1 - forwardImpl(fastlog2Nim, x)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8)
else: result = builtin_clzll(x.uint64).int
else:
when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32)
else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64)
func countTrailingZeroBits*(x: SomeInteger): int {.inline.} =
## Returns the number of trailing zeros in an integer.
## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
## otherwise the result is undefined.
##
## **See also:**
## * `countLeadingZeroBits proc <#countLeadingZeroBits,SomeInteger>`_
runnableExamples:
doAssert countTrailingZeroBits(0b0000_0001'u8) == 0
doAssert countTrailingZeroBits(0b0000_0010'u8) == 1
doAssert countTrailingZeroBits(0b0000_0100'u8) == 2
doAssert countTrailingZeroBits(0b0000_1000'u8) == 3
doAssert countTrailingZeroBits(0b0000_1111'u8) == 0
let x = x.castToUnsigned
when noUndefined:
if x == 0:
return 0
when nimvm:
result = firstSetBit(x) - 1
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int
else: result = builtin_ctzll(x.uint64).int
else:
result = firstSetBit(x) - 1
when useBuiltinsRotate:
when defined(gcc):
# GCC was tested until version 4.8.1 and intrinsics were present. Not tested
# in previous versions.
func builtin_rotl8(value: uint8, shift: cint): uint8
{.importc: "__rolb", header: "<x86intrin.h>".}
func builtin_rotl16(value: cushort, shift: cint): cushort
{.importc: "__rolw", header: "<x86intrin.h>".}
func builtin_rotl32(value: cuint, shift: cint): cuint
{.importc: "__rold", header: "<x86intrin.h>".}
when defined(amd64):
func builtin_rotl64(value: culonglong, shift: cint): culonglong
{.importc: "__rolq", header: "<x86intrin.h>".}
func builtin_rotr8(value: uint8, shift: cint): uint8
{.importc: "__rorb", header: "<x86intrin.h>".}
func builtin_rotr16(value: cushort, shift: cint): cushort
{.importc: "__rorw", header: "<x86intrin.h>".}
func builtin_rotr32(value: cuint, shift: cint): cuint
{.importc: "__rord", header: "<x86intrin.h>".}
when defined(amd64):
func builtin_rotr64(value: culonglong, shift: cint): culonglong
{.importc: "__rorq", header: "<x86intrin.h>".}
elif defined(clang):
# In CLANG, builtins have been present since version 8.0.0 and intrinsics
# since version 9.0.0. This implementation chose the builtins, as they have
# been around for longer.
# https://releases.llvm.org/8.0.0/tools/clang/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
# https://releases.llvm.org/8.0.0/tools/clang/docs/LanguageExtensions.html#builtin-rotateleft
# source for correct declarations: https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/Builtins.def
func builtin_rotl8(value: uint8, shift: uint8): uint8
{.importc: "__builtin_rotateleft8", nodecl.}
func builtin_rotl16(value: cushort, shift: cushort): cushort
{.importc: "__builtin_rotateleft16", nodecl.}
func builtin_rotl32(value: cuint, shift: cuint): cuint
{.importc: "__builtin_rotateleft32", nodecl.}
when defined(amd64):
func builtin_rotl64(value: culonglong, shift: culonglong): culonglong
{.importc: "__builtin_rotateleft64", nodecl.}
func builtin_rotr8(value: uint8, shift: uint8): uint8
{.importc: "__builtin_rotateright8", nodecl.}
func builtin_rotr16(value: cushort, shift: cushort): cushort
{.importc: "__builtin_rotateright16", nodecl.}
func builtin_rotr32(value: cuint, shift: cuint): cuint
{.importc: "__builtin_rotateright32", nodecl.}
when defined(amd64):
# shift is unsigned, refs https://github.com/llvm-mirror/clang/commit/892de415b7fde609dafc4e6c1643b7eaa0150a4d
func builtin_rotr64(value: culonglong, shift: culonglong): culonglong
{.importc: "__builtin_rotateright64", nodecl.}
elif defined(vcc):
# Tested on Microsoft (R) C/C++ Optimizing Compiler 19.28.29335 x64 and x86.
# Not tested in previous versions.
# https://docs.microsoft.com/en-us/cpp/intrinsics/rotl8-rotl16?view=msvc-160
# https://docs.microsoft.com/en-us/cpp/intrinsics/rotr8-rotr16?view=msvc-160
# https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rotl-rotl64-rotr-rotr64?view=msvc-160
func builtin_rotl8(value: uint8, shift: uint8): uint8
{.importc: "_rotl8", header: "<intrin.h>".}
func builtin_rotl16(value: cushort, shift: uint8): cushort
{.importc: "_rotl16", header: "<intrin.h>".}
func builtin_rotl32(value: cuint, shift: cint): cuint
{.importc: "_rotl", header: "<stdlib.h>".}
when defined(amd64):
func builtin_rotl64(value: culonglong, shift: cint): culonglong
{.importc: "_rotl64", header: "<stdlib.h>".}
func builtin_rotr8(value: uint8, shift: uint8): uint8
{.importc: "_rotr8", header: "<intrin.h>".}
func builtin_rotr16(value: cushort, shift: uint8): cushort
{.importc: "_rotr16", header: "<intrin.h>".}
func builtin_rotr32(value: cuint, shift: cint): cuint
{.importc: "_rotr", header: "<stdlib.h>".}
when defined(amd64):
func builtin_rotr64(value: culonglong, shift: cint): culonglong
{.importc: "_rotr64", header: "<stdlib.h>".}
elif defined(icl):
# Tested on Intel(R) C++ Intel(R) 64 Compiler Classic Version 2021.1.2 Build
# 20201208_000000 x64 and x86. Not tested in previous versions.
func builtin_rotl8(value: uint8, shift: cint): uint8
{.importc: "__rolb", header: "<immintrin.h>".}
func builtin_rotl16(value: cushort, shift: cint): cushort
{.importc: "__rolw", header: "<immintrin.h>".}
func builtin_rotl32(value: cuint, shift: cint): cuint
{.importc: "__rold", header: "<immintrin.h>".}
when defined(amd64):
func builtin_rotl64(value: culonglong, shift: cint): culonglong
{.importc: "__rolq", header: "<immintrin.h>".}
func builtin_rotr8(value: uint8, shift: cint): uint8
{.importc: "__rorb", header: "<immintrin.h>".}
func builtin_rotr16(value: cushort, shift: cint): cushort
{.importc: "__rorw", header: "<immintrin.h>".}
func builtin_rotr32(value: cuint, shift: cint): cuint
{.importc: "__rord", header: "<immintrin.h>".}
when defined(amd64):
func builtin_rotr64(value: culonglong, shift: cint): culonglong
{.importc: "__rorq", header: "<immintrin.h>".}
func rotl[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} =
## Left-rotate bits in a `value`.
# https://stackoverflow.com/a/776523
const mask = 8 * sizeof(value) - 1
let rot = rot and mask
(value shl rot) or (value shr ((-rot) and mask))
func rotr[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} =
## Right-rotate bits in a `value`.
const mask = 8 * sizeof(value) - 1
let rot = rot and mask
(value shr rot) or (value shl ((-rot) and mask))
func shiftTypeTo(size: static int, shift: int): auto {.inline.} =
## Returns the `shift` for the rotation according to the compiler and the
## `size`.
when (defined(vcc) and (size in [4, 8])) or defined(gcc) or defined(icl):
cint(shift)
elif (defined(vcc) and (size in [1, 2])) or (defined(clang) and size == 1):
uint8(shift)
elif defined(clang):
when size == 2:
cushort(shift)
elif size == 4:
cuint(shift)
elif size == 8:
culonglong(shift)
func rotateLeftBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} =
## Left-rotate bits in a `value`.
runnableExamples:
doAssert rotateLeftBits(0b0110_1001'u8, 4) == 0b1001_0110'u8
doAssert rotateLeftBits(0b00111100_11000011'u16, 8) ==
0b11000011_00111100'u16
doAssert rotateLeftBits(0b0000111111110000_1111000000001111'u32, 16) ==
0b1111000000001111_0000111111110000'u32
doAssert rotateLeftBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) ==
0b11111111000000000000000011111111_00000000111111111111111100000000'u64
when nimvm:
rotl(value, shift.int32)
else:
when useBuiltinsRotate:
const size = sizeof(T)
when size == 1:
builtin_rotl8(value.uint8, shiftTypeTo(size, shift)).T
elif size == 2:
builtin_rotl16(value.cushort, shiftTypeTo(size, shift)).T
elif size == 4:
builtin_rotl32(value.cuint, shiftTypeTo(size, shift)).T
elif size == 8 and arch64:
builtin_rotl64(value.culonglong, shiftTypeTo(size, shift)).T
else:
rotl(value, shift.int32)
else:
rotl(value, shift.int32)
func rotateRightBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} =
## Right-rotate bits in a `value`.
runnableExamples:
doAssert rotateRightBits(0b0110_1001'u8, 4) == 0b1001_0110'u8
doAssert rotateRightBits(0b00111100_11000011'u16, 8) ==
0b11000011_00111100'u16
doAssert rotateRightBits(0b0000111111110000_1111000000001111'u32, 16) ==
0b1111000000001111_0000111111110000'u32
doAssert rotateRightBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) ==
0b11111111000000000000000011111111_00000000111111111111111100000000'u64
when nimvm:
rotr(value, shift.int32)
else:
when useBuiltinsRotate:
const size = sizeof(T)
when size == 1:
builtin_rotr8(value.uint8, shiftTypeTo(size, shift)).T
elif size == 2:
builtin_rotr16(value.cushort, shiftTypeTo(size, shift)).T
elif size == 4:
builtin_rotr32(value.cuint, shiftTypeTo(size, shift)).T
elif size == 8 and arch64:
builtin_rotr64(value.culonglong, shiftTypeTo(size, shift)).T
else:
rotr(value, shift.int32)
else:
rotr(value, shift.int32)
func repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T =
result = x
var i = 1
while i != (sizeof(T) div sizeof(x)):
result = (result shl (sizeof(x)*8*i)) or result
i *= 2
func reverseBits*[T: SomeUnsignedInt](x: T): T =
## Return the bit reversal of x.
runnableExamples:
doAssert reverseBits(0b10100100'u8) == 0b00100101'u8
doAssert reverseBits(0xdd'u8) == 0xbb'u8
doAssert reverseBits(0xddbb'u16) == 0xddbb'u16
doAssert reverseBits(0xdeadbeef'u32) == 0xf77db57b'u32
template repeat(x: SomeUnsignedInt): T = repeatBits(x, T)
result = x
result =
((repeat(0x55u8) and result) shl 1) or
((repeat(0xaau8) and result) shr 1)
result =
((repeat(0x33u8) and result) shl 2) or
((repeat(0xccu8) and result) shr 2)
when sizeof(T) == 1:
result = (result shl 4) or (result shr 4)
when sizeof(T) >= 2:
result =
((repeat(0x0fu8) and result) shl 4) or
((repeat(0xf0u8) and result) shr 4)
when sizeof(T) == 2:
result = (result shl 8) or (result shr 8)
when sizeof(T) >= 4:
result =
((repeat(0x00ffu16) and result) shl 8) or
((repeat(0xff00u16) and result) shr 8)
when sizeof(T) == 4:
result = (result shl 16) or (result shr 16)
when sizeof(T) == 8:
result =
((repeat(0x0000ffffu32) and result) shl 16) or
((repeat(0xffff0000u32) and result) shr 16)
result = (result shl 32) or (result shr 32)