summary refs log blame commit diff stats
path: root/lib/pure/collections/heapqueue.nim
blob: c2952cf1b3abcec5406a5b6aacd620d3561ce092 (plain) (tree)
1
2
3
4
5
6
7
8







                                                   










































                                                                               
   
                        
 


                                                      
 


                                        
 






                                                             



                                           
                                                            


                                                                               







                                                                          
                             


                     
                          






                                                     
                                                    





                                                                         
                                   



                                                                      
                          
                               
 
                                                

                                                           


                                         


                                                  

                    
                          



                    





                                                                


                                                                                
                           
                          

                      
 


                                                                     

                                                                         
                                                                      

                        


                                      
                     



                                                      


                                                  
                   
 





















                                                      
                  





                                                
                             
                                   



                                             
                                                                 

                   
                                   





                                             
                          

                                                           
                          

                                                        
                          

                                                     
                          

                                                  

                                
                        
                                   




                                         
 




                                      
#
#
#            Nim's Runtime Library
#        (c) Copyright 2016 Yuriy Glukhov
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.

##[
  The `heapqueue` module implements a
  `heap data structure<https://en.wikipedia.org/wiki/Heap_(data_structure)>`_
  that can be used as a
  `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
  Heaps are arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]` for
  all `k`, counting elements from 0. The interesting property of a heap is that
  `a[0]` is always its smallest element.

  Basic usage
  -----------
  .. code-block:: Nim
    import heapqueue

    var heap = initHeapQueue[int]()
    heap.push(8)
    heap.push(2)
    heap.push(5)
    # The first element is the lowest element
    assert heap[0] == 2
    # Remove and return the lowest element
    assert heap.pop() == 2
    # The lowest element remaining is 5
    assert heap[0] == 5

  Usage with custom object
  ------------------------
  To use a `HeapQueue` with a custom object, the `<` operator must be
  implemented.

  .. code-block:: Nim
    import heapqueue

    type Job = object
      priority: int

    proc `<`(a, b: Job): bool = a.priority < b.priority

    var jobs = initHeapQueue[Job]()
    jobs.push(Job(priority: 1))
    jobs.push(Job(priority: 2))

    assert jobs[0].priority == 1
]##
import std/private/since

type HeapQueue*[T] = object
  ## A heap queue, commonly known as a priority queue.
  data: seq[T]

proc initHeapQueue*[T](): HeapQueue[T] =
  ## Create a new empty heap.
  discard

proc len*[T](heap: HeapQueue[T]): int {.inline.} =
  ## Return the number of elements of `heap`.
  heap.data.len

proc `[]`*[T](heap: HeapQueue[T], i: Natural): T {.inline.} =
  ## Access the i-th element of `heap`.
  heap.data[i]

proc heapCmp[T](x, y: T): bool {.inline.} =
  return (x < y)

proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) =
  ## 'heap' is a heap at all indices >= startpos, except possibly for pos.  pos
  ## is the index of a leaf with a possibly out-of-order value.  Restore the
  ## heap invariant.
  var pos = p
  var newitem = heap[pos]
  # Follow the path to the root, moving parents down until finding a place
  # newitem fits.
  while pos > startpos:
    let parentpos = (pos - 1) shr 1
    let parent = heap[parentpos]
    if heapCmp(newitem, parent):
      heap.data[pos] = parent
      pos = parentpos
    else:
      break
  heap.data[pos] = newitem

proc siftup[T](heap: var HeapQueue[T], p: int) =
  let endpos = len(heap)
  var pos = p
  let startpos = pos
  let newitem = heap[pos]
  # Bubble up the smaller child until hitting a leaf.
  var childpos = 2*pos + 1 # leftmost child position
  while childpos < endpos:
    # Set childpos to index of smaller child.
    let rightpos = childpos + 1
    if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
      childpos = rightpos
    # Move the smaller child up.
    heap.data[pos] = heap[childpos]
    pos = childpos
    childpos = 2*pos + 1
  # The leaf at pos is empty now.  Put newitem there, and bubble it up
  # to its final resting place (by sifting its parents down).
  heap.data[pos] = newitem
  siftdown(heap, startpos, pos)

proc push*[T](heap: var HeapQueue[T], item: T) =
  ## Push `item` onto heap, maintaining the heap invariant.
  heap.data.add(item)
  siftdown(heap, 0, len(heap)-1)

proc pop*[T](heap: var HeapQueue[T]): T =
  ## Pop and return the smallest item from `heap`,
  ## maintaining the heap invariant.
  let lastelt = heap.data.pop()
  if heap.len > 0:
    result = heap[0]
    heap.data[0] = lastelt
    siftup(heap, 0)
  else:
    result = lastelt

proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} =
  ## Linear scan to find index of item ``x`` or -1 if not found.
  result = -1
  for i in 0 ..< heap.len:
    if heap[i] == x: return i

proc del*[T](heap: var HeapQueue[T], index: Natural) =
  ## Removes the element at `index` from `heap`, maintaining the heap invariant.
  swap(heap.data[^1], heap.data[index])
  let newLen = heap.len - 1
  heap.data.setLen(newLen)
  if index < newLen:
    heap.siftup(index)

proc replace*[T](heap: var HeapQueue[T], item: T): T =
  ## Pop and return the current smallest value, and add the new item.
  ## This is more efficient than pop() followed by push(), and can be
  ## more appropriate when using a fixed-size heap. Note that the value
  ## returned may be larger than item! That constrains reasonable uses of
  ## this routine unless written as part of a conditional replacement:
  ##
  ## .. code-block:: nim
  ##    if item > heap[0]:
  ##        item = replace(heap, item)
  result = heap[0]
  heap.data[0] = item
  siftup(heap, 0)

proc pushpop*[T](heap: var HeapQueue[T], item: T): T =
  ## Fast version of a push followed by a pop.
  result = item
  if heap.len > 0 and heapCmp(heap.data[0], item):
    swap(result, heap.data[0])
    siftup(heap, 0)

proc clear*[T](heap: var HeapQueue[T]) =
  ## Remove all elements from `heap`, making it empty.
  runnableExamples:
    var heap = initHeapQueue[int]()
    heap.push(1)
    heap.clear()
    assert heap.len == 0
  heap.data.setLen(0)

proc `$`*[T](heap: HeapQueue[T]): string =
  ## Turn a heap into its string representation.
  runnableExamples:
    var heap = initHeapQueue[int]()
    heap.push(1)
    heap.push(2)
    assert $heap == "[1, 2]"
  result = "["
  for x in heap.data:
    if result.len > 1: result.add(", ")
    result.addQuoted(x)
  result.add("]")

when isMainModule:
  proc toSortedSeq[T](h: HeapQueue[T]): seq[T] =
    var tmp = h
    result = @[]
    while tmp.len > 0:
      result.add(pop(tmp))

  block: # Simple sanity test
    var heap = initHeapQueue[int]()
    let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
    for item in data:
      push(heap, item)
    doAssert(heap[0] == 0)
    doAssert(heap.toSortedSeq == @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

  block: # Test del
    var heap = initHeapQueue[int]()
    let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
    for item in data: push(heap, item)

    heap.del(0)
    doAssert(heap[0] == 1)

    heap.del(heap.find(7))
    doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 5, 6, 8, 9])

    heap.del(heap.find(5))
    doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 6, 8, 9])

    heap.del(heap.find(6))
    doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 8, 9])

    heap.del(heap.find(2))
    doAssert(heap.toSortedSeq == @[1, 3, 4, 8, 9])

    doAssert(heap.find(2) == -1)

  block: # Test del last
    var heap = initHeapQueue[int]()
    let data = [1, 2, 3]
    for item in data: push(heap, item)

    heap.del(2)
    doAssert(heap.toSortedSeq == @[1, 2])

    heap.del(1)
    doAssert(heap.toSortedSeq == @[1])

    heap.del(0)
    doAssert(heap.toSortedSeq == @[])