#
#
# Nim's Runtime Library
# (c) Copyright 2011 Alexander Mitchell-Robinson
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Although this module has ``seq`` in its name, it implements operations
## not only for `seq`:idx: type, but for three built-in container types under
## the ``openArray`` umbrella:
## * sequences
## * strings
## * array
##
## The system module defines several common functions, such as:
## * ``newSeq[T]`` for creating new sequences of type ``T``
## * ``@`` for converting arrays and strings to sequences
## * ``add`` for adding new elements to strings and sequences
## * ``&`` for string and seq concatenation
## * ``in`` (alias for ``contains``) and ``notin`` for checking if an item is
## in a container
##
## This module builds upon that, providing additional functionality in form of
## procs, iterators and templates inspired by functional programming
## languages.
##
## For functional style programming you have different options at your disposal:
## * pass `anonymous proc<manual.html#procedures-anonymous-procs>`_
## * import `sugar module<sugar.html>`_ and use
## `=> macro<sugar.html#%3D>.m,untyped,untyped>`_
## * use `...It templates<#18>`_
## (`mapIt<#mapIt.t,typed,untyped>`_,
## `filterIt<#filterIt.t,untyped,untyped>`_, etc.)
##
## The chaining of functions is possible thanks to the
## `method call syntax<manual.html#procedures-method-call-syntax>`_.
##
## .. code-block::
## import sequtils, sugar
##
## # Creating a sequence from 1 to 10, multiplying each member by 2,
## # keeping only the members which are not divisible by 6.
## let
## foo = toSeq(1..10).map(x => x*2).filter(x => x mod 6 != 0)
## bar = toSeq(1..10).mapIt(it*2).filterIt(it mod 6 != 0)
##
## doAssert foo == bar
## echo foo # @[2, 4, 8, 10, 14, 16, 20]
##
## echo foo.any(x => x > 17) # true
## echo bar.allIt(it < 20) # false
## echo foo.foldl(a + b) # 74; sum of all members
##
## .. code-block::
## import sequtils
## from strutils import join
##
## let
## vowels = @"aeiou" # creates a sequence @['a', 'e', 'i', 'o', 'u']
## foo = "sequtils is an awesome module"
##
## echo foo.filterIt(it notin vowels).join # "sqtls s n wsm mdl"
##
## ----
##
## **See also**:
## * `strutils module<strutils.html>`_ for common string functions
## * `sugar module<sugar.html>`_ for syntactic sugar macros
## * `algorithm module<algorithm.html>`_ for common generic algorithms
## * `json module<json.html>`_ for a structure which allows
## heterogeneous members
import std/private/since
import macros
when not defined(nimhygiene):
{.pragma: dirty.}
macro evalOnceAs(expAlias, exp: untyped,
letAssigneable: static[bool]): untyped =
## Injects ``expAlias`` in caller scope, to avoid bugs involving multiple
## substitution in macro arguments such as
## https://github.com/nim-lang/Nim/issues/7187
## ``evalOnceAs(myAlias, myExp)`` will behave as ``let myAlias = myExp``
## except when ``letAssigneable`` is false (e.g. to handle openArray) where
## it just forwards ``exp`` unchanged
expectKind(expAlias, nnkIdent)
var val = exp
result = newStmtList()
# If `exp` is not a symbol we evaluate it once here and then use the temporary
# symbol as alias
if exp.kind != nnkSym and letAssigneable:
val = genSym()
result.add(newLetStmt(val, exp))
result.add(
newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)],
body = val, procType = nnkTemplateDef))
proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
## Takes several sequences' items and returns them inside a new sequence.
## All sequences must be of the same type.
##
## See also:
## * `distribute proc<#distribute,seq[T],Positive>`_ for a reverse
## operation
##
runnableExamples:
let
s1 = @[1, 2, 3]
s2 = @[4, 5]
s3 = @[6, 7]
total = concat(s1, s2, s3)
assert total == @[1, 2, 3, 4, 5, 6, 7]
var L = 0
for seqitm in items(seqs): inc(L, len(seqitm))
newSeq(result, L)
var i = 0
for s in items(seqs):
for itm in items(s):
result[i] = itm
inc(i)
proc count*[T](s: openArray[T], x: T): int =
## Returns the number of occurrences of the item `x` in the container `s`.
##
runnableExamples:
let
a = @[1, 2, 2, 3, 2, 4, 2]
b = "abracadabra"
assert count(a, 2) == 4
assert count(a, 99) == 0
assert count(b, 'r') == 2
for itm in items(s):
if itm == x:
inc result
proc cycle*[T](s: openArray[T], n: Natural): seq[T] =
## Returns a new sequence with the items of the container `s` repeated
## `n` times.
## `n` must be a non-negative number (zero or more).
##
runnableExamples:
let
s = @[1, 2, 3]
total = s.cycle(3)
assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
result = newSeq[T](n * s.len)
var o = 0
for x in 0 ..< n:
for e in s:
result[o] = e
inc o
proc repeat*[T](x: T, n: Natural): seq[T] =
## Returns a new sequence with the item `x` repeated `n` times.
## `n` must be a non-negative number (zero or more).
##
runnableExamples:
let
total = repeat(5, 3)
assert total == @[5, 5, 5]
result = newSeq[T](n)
for i in 0 ..< n:
result[i] = x
proc deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
## Returns a new sequence without duplicates.
##
## Setting the optional argument ``isSorted`` to ``true`` (default: false)
## uses a faster algorithm for deduplication.
##
runnableExamples:
let
dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
dup2 = @["a", "a", "c", "d", "d"]
unique1 = deduplicate(dup1)
unique2 = deduplicate(dup2, isSorted = true)
assert unique1 == @[1, 3, 4, 2, 8]
assert unique2 == @["a", "c", "d"]
result = @[]
if s.len > 0:
if isSorted:
var prev = s[0]
result.add(prev)
for i in 1..s.high:
if s[i] != prev:
prev = s[i]
result.add(prev)
else:
for itm in items(s):
if not result.contains(itm): result.add(itm)
proc minIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
## Returns the index of the minimum value of `s`.
## ``T`` needs to have a ``<`` operator.
runnableExamples:
let
a = @[1, 2, 3, 4]
b = @[6, 5, 4, 3]
c = [2, -7, 8, -5]
d = "ziggy"
assert minIndex(a) == 0
assert minIndex(b) == 3
assert minIndex(c) == 1
assert minIndex(d) == 2
for i in 1..high(s):
if s[i] < s[result]: result = i
proc maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
## Returns the index of the maximum value of `s`.
## ``T`` needs to have a ``<`` operator.
runnableExamples:
let
a = @[1, 2, 3, 4]
b = @[6, 5, 4, 3]
c = [2, -7, 8, -5]
d = "ziggy"
assert maxIndex(a) == 3
assert maxIndex(b) == 0
assert maxIndex(c) == 2
assert maxIndex(d) == 0
for i in 1..high(s):
if s[i] > s[result]: result = i
template zipImpl(s1, s2, retType: untyped): untyped =
proc zip*[S, T](s1: openArray[S], s2: openArray[T]): retType =
## Returns a new sequence with a combination of the two input containers.
##
## The input containers can be of different types.
## If one container is shorter, the remaining items in the longer container
## are discarded.
##
## **Note**: For Nim 1.0.x and older version, ``zip`` returned a seq of
## named tuple with fields ``a`` and ``b``. For Nim versions 1.1.x and newer,
## ``zip`` returns a seq of unnamed tuples.
runnableExamples:
let
short = @[1, 2, 3]
long = @[6, 5, 4, 3, 2, 1]
words = @["one", "two", "three"]
letters = "abcd"
zip1 = zip(short, long)
zip2 = zip(short, words)
assert zip1 == @[(1, 6), (2, 5), (3, 4)]
assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
assert zip1[2][0] == 3
assert zip2[1][1] == "two"
when (NimMajor, NimMinor) <= (1, 0):
let
zip3 = zip(long, letters)
assert zip3 == @[(a: 6, b: 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
assert zip3[0].b == 'a'
else:
let
zip3: seq[tuple[num: int, letter: char]] = zip(long, letters)
assert zip3 == @[(6, 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
assert zip3[0].letter == 'a'
var m = min(s1.len, s2.len)
newSeq(result, m)
for i in 0 ..< m:
result[i] = (s1[i], s2[i])
when (NimMajor, NimMinor) <= (1, 0):
zipImpl(s1, s2, seq[tuple[a: S, b: T]])
else:
zipImpl(s1, s2, seq[(S, T)])
proc unzip*[S, T](s: openArray[(S, T)]): (seq[S], seq[T]) {.since: (1, 1).} =
## Returns a tuple of two sequences split out from a sequence of 2-field tuples.
runnableExamples:
let
zipped = @[(1, 'a'), (2, 'b'), (3, 'c')]
unzipped1 = @[1, 2, 3]
unzipped2 = @['a', 'b', 'c']
assert zipped.unzip() == (unzipped1, unzipped2)
assert zip(unzipped1, unzipped2).unzip() == (unzipped1, unzipped2)
result[0] = newSeq[S](s.len)
result[1] = newSeq[T](s.len)
for i in 0..<s.len:
result[0][i] = s[i][0]
result[1][i] = s[i][1]
proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
## Splits and distributes a sequence `s` into `num` sub-sequences.
##
## Returns a sequence of `num` sequences. For *some* input values this is the
## inverse of the `concat <#concat,varargs[seq[T]]>`_ proc.
## The input sequence `s` can be empty, which will produce
## `num` empty sequences.
##
## If `spread` is false and the length of `s` is not a multiple of `num`, the
## proc will max out the first sub-sequence with ``1 + len(s) div num``
## entries, leaving the remainder of elements to the last sequence.
##
## On the other hand, if `spread` is true, the proc will distribute evenly
## the remainder of the division across all sequences, which makes the result
## more suited to multithreading where you are passing equal sized work units
## to a thread pool and want to maximize core usage.
##
runnableExamples:
let numbers = @[1, 2, 3, 4, 5, 6, 7]
assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
assert numbers.distribute(6)[0] == @[1, 2]
assert numbers.distribute(6)[1] == @[3]
if num < 2:
result = @[s]
return
let num = int(num) # XXX probably only needed because of .. bug
# Create the result and calculate the stride size and the remainder if any.
result = newSeq[seq[T]](num)
var
stride = s.len div num
first = 0
last = 0
extra = s.len mod num
if extra == 0 or spread == false:
# Use an algorithm which overcounts the stride and minimizes reading limits.
if extra > 0: inc(stride)
for i in 0 ..< num:
result[i] = newSeq[T]()
for g in first ..< min(s.len, first + stride):
result[i].add(s[g])
first += stride
else:
# Use an undercounting algorithm which *adds* the remainder each iteration.
for i in 0 ..< num:
last = first + stride
if extra > 0:
extra -= 1
inc(last)
result[i] = newSeq[T]()
for g in first ..< last:
result[i].add(s[g])
first = last
proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
seq[S]{.inline.} =
## Returns a new sequence with the results of `op` proc applied to every
## item in the container `s`.
##
## Since the input is not modified you can use it to
## transform the type of the elements in the input container.
##
## See also:
## * `mapIt template<#mapIt.t,typed,untyped>`_
## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version
##
runnableExamples:
let
a = @[1, 2, 3, 4]
b = map(a, proc(x: int): string = $x)
assert b == @["1", "2", "3", "4"]
newSeq(result, s.len)
for i in 0 ..< s.len:
result[i] = op(s[i])
proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
{.inline.} =
## Applies `op` to every item in `s` modifying it directly.
##
## Note that container `s` must be declared as a ``var``
## and it is required for your input and output types to
## be the same, since `s` is modified in-place.
## The parameter function takes a ``var T`` type parameter.
##
## See also:
## * `applyIt template<#applyIt.t,untyped,untyped>`_
## * `map proc<#map,openArray[T],proc(T)>`_
##
runnableExamples:
var a = @["1", "2", "3", "4"]
apply(a, proc(x: var string) = x &= "42")
assert a == @["142", "242", "342", "442"]
for i in 0 ..< s.len: op(s[i])
proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
{.inline.} =
## Applies `op` to every item in `s` modifying it directly.
##
## Note that container `s` must be declared as a ``var``
## and it is required for your input and output types to
## be the same, since `s` is modified in-place.
## The parameter function takes and returns a ``T`` type variable.
##
## See also:
## * `applyIt template<#applyIt.t,untyped,untyped>`_
## * `map proc<#map,openArray[T],proc(T)>`_
##
runnableExamples:
var a = @["1", "2", "3", "4"]
apply(a, proc(x: string): string = x & "42")
assert a == @["142", "242", "342", "442"]
for i in 0 ..< s.len: s[i] = op(s[i])
iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T =
## Iterates through a container `s` and yields every item that fulfills the
## predicate `pred` (function that returns a `bool`).
##
## See also:
## * `fliter proc<#filter,openArray[T],proc(T)>`_
## * `filterIt template<#filterIt.t,untyped,untyped>`_
##
runnableExamples:
let numbers = @[1, 4, 5, 8, 9, 7, 4]
var evens = newSeq[int]()
for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
evens.add(n)
assert evens == @[4, 8, 4]
for i in 0 ..< s.len:
if pred(s[i]):
yield s[i]
proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
{.inline.} =
## Returns a new sequence with all the items of `s` that fulfilled the
## predicate `pred` (function that returns a `bool`).
##
## See also:
## * `filterIt template<#filterIt.t,untyped,untyped>`_
## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version
##
runnableExamples:
let
colors = @["red", "yellow", "black"]
f1 = filter(colors, proc(x: string): bool = x.len < 6)
f2 = filter(colors, proc(x: string): bool = x.contains('y'))
assert f1 == @["red", "black"]
assert f2 == @["yellow"]
result = newSeq[T]()
for i in 0 ..< s.len:
if pred(s[i]):
result.add(s[i])
proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
{.inline.} =
## Keeps the items in the passed sequence `s` if they fulfilled the
## predicate `pred` (function that returns a `bool`).
##
## Note that `s` must be declared as a ``var``.
##
## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_,
## but modifies the sequence directly.
##
## See also:
## * `keepItIf template<#keepItIf.t,seq,untyped>`_
## * `filter proc<#filter,openArray[T],proc(T)>`_
##
runnableExamples:
var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
keepIf(floats, proc(x: float): bool = x > 10)
assert floats == @[13.0, 12.5, 10.1]
var pos = 0
for i in 0 ..< len(s):
if pred(s[i]):
if pos != i:
when defined(gcDestructors):
s[pos] = move(s[i])
else:
shallowCopy(s[pos], s[i])
inc(pos)
setLen(s, pos)
proc delete*[T](s: var seq[T]; first, last: Natural) =
## Deletes in the items of a sequence `s` at positions ``first..last``
## (including both ends of a range).
## This modifies `s` itself, it does not return a copy.
##
runnableExamples:
let outcome = @[1, 1, 1, 1, 1, 1, 1, 1]
var dest = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
dest.delete(3, 8)
assert outcome == dest
doAssert first <= last
if first >= s.len:
return
var i = first
var j = min(len(s), last+1)
var newLen = len(s)-j+i
while i < newLen:
when defined(gcDestructors):
s[i] = move(s[j])
else:
s[i].shallowCopy(s[j])
inc(i)
inc(j)
setLen(s, newLen)
proc insert*[T](dest: var seq[T], src: openArray[T], pos = 0) =
## Inserts items from `src` into `dest` at position `pos`. This modifies
## `dest` itself, it does not return a copy.
##
## Notice that `src` and `dest` must be of the same type.
##
runnableExamples:
var dest = @[1, 1, 1, 1, 1, 1, 1, 1]
let
src = @[2, 2, 2, 2, 2, 2]
outcome = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
dest.insert(src, 3)
assert dest == outcome
var j = len(dest) - 1
var i = j + len(src)
if i == j: return
dest.setLen(i + 1)
# Move items after `pos` to the end of the sequence.
while j >= pos:
when defined(gcDestructors):
dest[i] = move(dest[j])
else:
dest[i].shallowCopy(dest[j])
dec(i)
dec(j)
# Insert items from `dest` into `dest` at `pos`
inc(j)
for item in src:
dest[j] = item
inc(j)
template filterIt*(s, pred: untyped): untyped =
## Returns a new sequence with all the items of `s` that fulfilled the
## predicate `pred`.
##
## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and
## `filter iterator<#filter.i,openArray[T],proc(T)>`_,
## the predicate needs to be an expression using the ``it`` variable
## for testing, like: ``filterIt("abcxyz", it == 'x')``.
##
## See also:
## * `fliter proc<#filter,openArray[T],proc(T)>`_
## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
##
runnableExamples:
let
temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
acceptable = temperatures.filterIt(it < 50 and it > -10)
notAcceptable = temperatures.filterIt(it > 50 or it < -10)
assert acceptable == @[-2.0, 24.5, 44.31]
assert notAcceptable == @[-272.15, 99.9, -113.44]
var result = newSeq[typeof(s[0])]()
for it {.inject.} in items(s):
if pred: result.add(it)
result
template keepItIf*(varSeq: seq, pred: untyped) =
## Keeps the items in the passed sequence (must be declared as a ``var``)
## if they fulfilled the predicate.
##
## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_,
## the predicate needs to be an expression using
## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``.
##
## See also:
## * `keepIf proc<#keepIf,seq[T],proc(T)>`_
## * `filterIt template<#filterIt.t,untyped,untyped>`_
##
runnableExamples:
var candidates = @["foo", "bar", "baz", "foobar"]
candidates.keepItIf(it.len == 3 and it[0] == 'b')
assert candidates == @["bar", "baz"]
var pos = 0
for i in 0 ..< len(varSeq):
let it {.inject.} = varSeq[i]
if pred:
if pos != i:
when defined(gcDestructors):
varSeq[pos] = move(varSeq[i])
else:
shallowCopy(varSeq[pos], varSeq[i])
inc(pos)
setLen(varSeq, pos)
since (1, 1):
template countIt*(s, pred: untyped): int =
## Returns a count of all the items that fulfilled the predicate.
##
## The predicate needs to be an expression using
## the ``it`` variable for testing, like: ``countIt(@[1, 2, 3], it > 2)``.
##
runnableExamples:
let numbers = @[-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
iterator iota(n: int): int =
for i in 0..<n: yield i
assert numbers.countIt(it < 0) == 3
assert countIt(iota(10), it < 2) == 2
var result = 0
for it {.inject.} in s:
if pred: result += 1
result
proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
## Iterates through a container and checks if every item fulfills the
## predicate.
##
## See also:
## * `allIt template<#allIt.t,untyped,untyped>`_
## * `any proc<#any,openArray[T],proc(T)>`_
##
runnableExamples:
let numbers = @[1, 4, 5, 8, 9, 7, 4]
assert all(numbers, proc (x: int): bool = return x < 10) == true
assert all(numbers, proc (x: int): bool = return x < 9) == false
for i in s:
if not pred(i):
return false
return true
template allIt*(s, pred: untyped): bool =
## Iterates through a container and checks if every item fulfills the
## predicate.
##
## Unlike the `all proc<#all,openArray[T],proc(T)>`_,
## the predicate needs to be an expression using
## the ``it`` variable for testing, like: ``allIt("abba", it == 'a')``.
##
## See also:
## * `all proc<#all,openArray[T],proc(T)>`_
## * `anyIt template<#anyIt.t,untyped,untyped>`_
##
runnableExamples:
let numbers = @[1, 4, 5, 8, 9, 7, 4]
assert numbers.allIt(it < 10) == true
assert numbers.allIt(it < 9) == false
var result = true
for it {.inject.} in items(s):
if not pred:
result = false
break
result
proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
## Iterates through a container and checks if some item fulfills the
## predicate.
##
## See also:
## * `anyIt template<#anyIt.t,untyped,untyped>`_
## * `all proc<#all,openArray[T],proc(T)>`_
##
runnableExamples:
let numbers = @[1, 4, 5, 8, 9, 7, 4]
assert any(numbers, proc (x: int): bool = return x > 8) == true
assert any(numbers, proc (x: int): bool = return x > 9) == false
for i in s:
if pred(i):
return true
return false
template anyIt*(s, pred: untyped): bool =
## Iterates through a container and checks if some item fulfills the
## predicate.
##
## Unlike the `any proc<#any,openArray[T],proc(T)>`_,
## the predicate needs to be an expression using
## the ``it`` variable for testing, like: ``anyIt("abba", it == 'a')``.
##
## See also:
## * `any proc<#any,openArray[T],proc(T)>`_
## * `allIt template<#allIt.t,untyped,untyped>`_
##
runnableExamples:
let numbers = @[1, 4, 5, 8, 9, 7, 4]
assert numbers.anyIt(it > 8) == true
assert numbers.anyIt(it > 9) == false
var result = false
for it {.inject.} in items(s):
if pred:
result = true
break
result
template toSeq1(s: not iterator): untyped =
# overload for typed but not iterator
type OutType = typeof(items(s))
when compiles(s.len):
block:
evalOnceAs(s2, s, compiles((let _ = s)))
var i = 0
var result = newSeq[OutType](s2.len)
for it in s2:
result[i] = it
i += 1
result
else:
var result: seq[OutType] = @[]
for it in s:
result.add(it)
result
template toSeq2(iter: iterator): untyped =
# overload for iterator
evalOnceAs(iter2, iter(), false)
when compiles(iter2.len):
var i = 0
var result = newSeq[typeof(iter2)](iter2.len)
for x in iter2:
result[i] = x
inc i
result
else:
type OutType = typeof(iter2())
var result: seq[OutType] = @[]
when compiles(iter2()):
evalOnceAs(iter4, iter, false)
let iter3 = iter4()
for x in iter3():
result.add(x)
else:
for x in iter2():
result.add(x)
result
template toSeq*(iter: untyped): untyped =
## Transforms any iterable (anything that can be iterated over, e.g. with
## a for-loop) into a sequence.
##
runnableExamples:
let
myRange = 1..5
mySet: set[int8] = {5'i8, 3, 1}
assert typeof(myRange) is HSlice[system.int, system.int]
assert typeof(mySet) is set[int8]
let
mySeq1 = toSeq(myRange)
mySeq2 = toSeq(mySet)
assert mySeq1 == @[1, 2, 3, 4, 5]
assert mySeq2 == @[1'i8, 3, 5]
when compiles(toSeq1(iter)):
toSeq1(iter)
elif compiles(toSeq2(iter)):
toSeq2(iter)
else:
# overload for untyped, e.g.: `toSeq(myInlineIterator(3))`
when compiles(iter.len):
block:
evalOnceAs(iter2, iter, true)
var result = newSeq[typeof(iter)](iter2.len)
var i = 0
for x in iter2:
result[i] = x
inc i
result
else:
var result: seq[typeof(iter)] = @[]
for x in iter:
result.add(x)
result
template foldl*(sequence, operation: untyped): untyped =
## Template to fold a sequence from left to right, returning the accumulation.
##
## The sequence is required to have at least a single element. Debug versions
## of your program will assert in this situation but release versions will
## happily go ahead. If the sequence has a single element it will be returned
## without applying ``operation``.
##
## The ``operation`` parameter should be an expression which uses the
## variables ``a`` and ``b`` for each step of the fold. Since this is a left
## fold, for non associative binary operations like subtraction think that
## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
## 3).
##
## See also:
## * `foldl template<#foldl.t,,,>`_ with a starting parameter
## * `foldr template<#foldr.t,untyped,untyped>`_
##
runnableExamples:
let
numbers = @[5, 9, 11]
addition = foldl(numbers, a + b)
subtraction = foldl(numbers, a - b)
multiplication = foldl(numbers, a * b)
words = @["nim", "is", "cool"]
concatenation = foldl(words, a & b)
assert addition == 25, "Addition is (((5)+9)+11)"
assert subtraction == -15, "Subtraction is (((5)-9)-11)"
assert multiplication == 495, "Multiplication is (((5)*9)*11)"
assert concatenation == "nimiscool"
let s = sequence
assert s.len > 0, "Can't fold empty sequences"
var result: typeof(s[0])
result = s[0]
for i in 1..<s.len:
let
a {.inject.} = result
b {.inject.} = s[i]
result = operation
result
template foldl*(sequence, operation, first): untyped =
## Template to fold a sequence from left to right, returning the accumulation.
##
## This version of ``foldl`` gets a **starting parameter**. This makes it possible
## to accumulate the sequence into a different type than the sequence elements.
##
## The ``operation`` parameter should be an expression which uses the variables
## ``a`` and ``b`` for each step of the fold. The ``first`` parameter is the
## start value (the first ``a``) and therefor defines the type of the result.
##
## See also:
## * `foldr template<#foldr.t,untyped,untyped>`_
##
runnableExamples:
let
numbers = @[0, 8, 1, 5]
digits = foldl(numbers, a & (chr(b + ord('0'))), "")
assert digits == "0815"
var result: typeof(first) = first
for x in items(sequence):
let
a {.inject.} = result
b {.inject.} = x
result = operation
result
template foldr*(sequence, operation: untyped): untyped =
## Template to fold a sequence from right to left, returning the accumulation.
##
## The sequence is required to have at least a single element. Debug versions
## of your program will assert in this situation but release versions will
## happily go ahead. If the sequence has a single element it will be returned
## without applying ``operation``.
##
## The ``operation`` parameter should be an expression which uses the
## variables ``a`` and ``b`` for each step of the fold. Since this is a right
## fold, for non associative binary operations like subtraction think that
## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
## (3))).
##
## See also:
## * `foldl template<#foldl.t,untyped,untyped>`_
## * `foldl template<#foldl.t,,,>`_ with a starting parameter
##
runnableExamples:
let
numbers = @[5, 9, 11]
addition = foldr(numbers, a + b)
subtraction = foldr(numbers, a - b)
multiplication = foldr(numbers, a * b)
words = @["nim", "is", "cool"]
concatenation = foldr(words, a & b)
assert addition == 25, "Addition is (5+(9+(11)))"
assert subtraction == 7, "Subtraction is (5-(9-(11)))"
assert multiplication == 495, "Multiplication is (5*(9*(11)))"
assert concatenation == "nimiscool"
let s = sequence # xxx inefficient, use {.evalonce.} pending #13750
let n = s.len
assert n > 0, "Can't fold empty sequences"
var result = s[n - 1]
for i in countdown(n - 2, 0):
let
a {.inject.} = s[i]
b {.inject.} = result
result = operation
result
template mapIt*(s: typed, op: untyped): untyped =
## Returns a new sequence with the results of `op` proc applied to every
## item in the container `s`.
##
## Since the input is not modified you can use it to
## transform the type of the elements in the input container.
##
## The template injects the ``it`` variable which you can use directly in an
## expression.
##
## See also:
## * `map proc<#map,openArray[T],proc(T)>`_
## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version
##
runnableExamples:
let
nums = @[1, 2, 3, 4]
strings = nums.mapIt($(4 * it))
assert strings == @["4", "8", "12", "16"]
when defined(nimHasTypeof):
type OutType = typeof((
block:
var it{.inject.}: typeof(items(s), typeOfIter);
op), typeOfProc)
else:
type OutType = typeof((
block:
var it{.inject.}: typeof(items(s));
op))
when OutType is not (proc):
# Here, we avoid to create closures in loops.
# This avoids https://github.com/nim-lang/Nim/issues/12625
when compiles(s.len):
block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580
# BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors
# (`error: use of undeclared identifier`) instead of Nim compile errors
evalOnceAs(s2, s, compiles((let _ = s)))
var i = 0
var result = newSeq[OutType](s2.len)
for it {.inject.} in s2:
result[i] = op
i += 1
result
else:
var result: seq[OutType] = @[]
# use `items` to avoid https://github.com/nim-lang/Nim/issues/12639
for it {.inject.} in items(s):
result.add(op)
result
else:
# `op` is going to create closures in loops, let's fallback to `map`.
# NOTE: Without this fallback, developers have to define a helper function and
# call `map`:
# [1, 2].map((it) => ((x: int) => it + x))
# With this fallback, above code can be simplified to:
# [1, 2].mapIt((x: int) => it + x)
# In this case, `mapIt` is just syntax sugar for `map`.
when defined(nimHasTypeof):
type InType = typeof(items(s), typeOfIter)
else:
type InType = typeof(items(s))
# Use a help proc `f` to create closures for each element in `s`
let f = proc (x: InType): OutType =
let it {.inject.} = x
op
map(s, f)
template applyIt*(varSeq, op: untyped) =
## Convenience template around the mutable ``apply`` proc to reduce typing.
##
## The template injects the ``it`` variable which you can use directly in an
## expression. The expression has to return the same type as the sequence you
## are mutating.
##
## See also:
## * `apply proc<#apply,openArray[T],proc(T)_2>`_
## * `mapIt template<#mapIt.t,typed,untyped>`_
##
runnableExamples:
var nums = @[1, 2, 3, 4]
nums.applyIt(it * 3)
assert nums[0] + nums[3] == 15
for i in low(varSeq) .. high(varSeq):
let it {.inject.} = varSeq[i]
varSeq[i] = op
template newSeqWith*(len: int, init: untyped): untyped =
## Creates a new sequence of length `len`, calling `init` to initialize
## each value of the sequence.
##
## Useful for creating "2D" sequences - sequences containing other sequences
## or to populate fields of the created sequence.
##
runnableExamples:
## Creates a sequence containing 5 bool sequences, each of length of 3.
var seq2D = newSeqWith(5, newSeq[bool](3))
assert seq2D.len == 5
assert seq2D[0].len == 3
assert seq2D[4][2] == false
## Creates a sequence of 20 random numbers from 1 to 10
import random
var seqRand = newSeqWith(20, rand(10))
var result = newSeq[typeof(init)](len)
for i in 0 ..< len:
result[i] = init
result
proc mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
filter = nnkLiterals): NimNode =
if constructor.kind in filter:
result = newNimNode(nnkCall, lineInfoFrom = constructor)
result.add op
result.add constructor
else:
result = copyNimNode(constructor)
for v in constructor:
if nested or v.kind in filter:
result.add mapLitsImpl(v, op, nested, filter)
else:
result.add v
macro mapLiterals*(constructor, op: untyped;
nested = true): untyped =
## Applies ``op`` to each of the **atomic** literals like ``3``
## or ``"abc"`` in the specified ``constructor`` AST. This can
## be used to map every array element to some target type:
##
## Example:
##
## .. code-block::
## let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
## doAssert x is array[4, int]
##
## Short notation for:
##
## .. code-block::
## let x = [int(0.1), int(1.2), int(2.3), int(3.4)]
##
## If ``nested`` is true (which is the default), the literals are replaced
## everywhere in the ``constructor`` AST, otherwise only the first level
## is considered:
##
## .. code-block::
## let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int)
## let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false)
## assert a == (1, (2, 3), 4)
## assert b == (1, (2.3, 3.4), 4)
##
## let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`)
## let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false)
## assert c == ("1", ("2", "3"), "4", ("5", "6"))
## assert d == ("1", (2, 3), "4", (5, 6))
##
## There are no constraints for the ``constructor`` AST, it
## works for nested tuples of arrays of sets etc.
result = mapLitsImpl(constructor, op, nested.boolVal)
iterator items*[T](xs: iterator: T): T =
## iterates over each element yielded by a closure iterator. This may
## not seem particularly useful on its own, but this allows closure
## iterators to be used by the the mapIt, filterIt, allIt, anyIt, etc.
## templates.
for x in xs():
yield x