pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */discard """
nimout: '''
Infix
Ident "=>"
Call
Ident "name"
Ident "a"
ExprColonExpr
Ident "b"
Ident "cint"
NilLit
macrocache ok
'''
output: '''
x = 10
x + y = 30
proc foo[T, N: static[int]]()
proc foo[T; N: static[int]]()
a[0]: 42
a[1]: 45
x: some string
([("key", "val"), ("keyB", "2")], [("val", "key"), ("2", "keyB")])
([("key", "val"), ("keyB", "2")], [("val", "key"), ("2", "keyB")])
0
0
0
'''
"""
import macros, sugar, macrocache
block tdump:
let
x = 10
y = 20
dump x
dump(x + y)
block texprcolonexpr:
macro def(x): untyped =
echo treeRepr(x)
def name(a, b:cint) => nil
block tgenericparams:
macro test():string =
let expr0 = "proc foo[T, N: static[int]]()"
let expr1 = "proc foo[T; N: static[int]]()"
newLit($toStrLit(parseExpr(expr0)) & "\n" & $toStrLit(parseExpr(expr1)))
echo test()
block tidgen:
# Test compile-time state in same module
var gid {.compileTime.} = 3
macro genId(): int =
result = newIntLitNode(gid)
inc gid
proc Id1(): int {.compileTime.} = return genId()
proc Id2(): int {.compileTime.} = return genId()
doAssert Id1() == 3
doAssert Id2() == 4
block tlexerex:
macro match(s: cstring|string; pos: int; sections: varargs[untyped]): untyped =
for sec in sections:
expectKind sec, nnkOfBranch
expectLen sec, 2
result = newStmtList()
var input = "the input"
var pos = 0
match input, pos:
of r"[a-zA-Z_]\w+": echo "an identifier"
of r"\d+": echo "an integer"
of r".": echo "something else"
block tcopylineinfo:
# issue #5617, feature request
type Test = object
macro mixer(n: typed): untyped =
let x = newIdentNode("echo")
x.copyLineInfo(n)
result = newLit(x.lineInfo == n.lineInfo)
var z = mixer(Test)
doAssert z
block tsetgetlineinfo:
# issue #21098, feature request
type Test = object
macro mixer1(n: typed): untyped =
let x = newIdentNode("echo")
var lineInfo = n.lineInfoObj
x.setLineInfo lineInfo
result = newLit(x.lineInfo == n.lineInfo)
macro mixer2(n: typed): untyped =
let x = newIdentNode("echo")
var lineInfo = n.lineInfoObj
lineInfo.line += 1
x.setLineInfo lineInfo
result = newLit(x.lineInfo != n.lineInfo)
doAssert mixer1(Test)
doAssert mixer2(Test)
block tdebugstmt:
macro debug(n: varargs[untyped]): untyped =
result = newNimNode(nnkStmtList, n)
for i in 0..n.len-1:
add(result, newCall("write", newIdentNode("stdout"), toStrLit(n[i])))
add(result, newCall("write", newIdentNode("stdout"), newStrLitNode(": ")))
add(result, newCall("writeLine", newIdentNode("stdout"), n[i]))
var
a: array[0..10, int]
x = "some string"
a[0] = 42
a[1] = 45
debug(a[0], a[1], x)
const
pairs = {"key": "val", "keyB": "2"}
macro bilookups(arg: static[openArray[(string, string)]]): untyped =
var a = newTree(nnkBracket)
var b = newTree(nnkBracket)
for (k, v) in items(arg):
a.add(newTree(nnkTupleConstr, newLit k, newLit v))
b.add(newTree(nnkTupleConstr, newLit v, newLit k))
result = newTree(nnkTupleConstr, a, b)
macro bilookups2(arg: untyped): untyped =
var a = newTree(nnkBracket)
var b = newTree(nnkBracket)
arg.expectKind(nnkTableConstr)
for x in items(arg):
x.expectKind(nnkExprColonExpr)
a.add(newTree(nnkTupleConstr, x[0], x[1]))
b.add(newTree(nnkTupleConstr, x[1], x[0]))
result = newTree(nnkTupleConstr, a, b)
const cnst1 = bilookups(pairs)
echo cnst1
const cnst2 = bilookups2({"key": "val", "keyB": "2"})
echo cnst2
# macrocache #11404
const
mcTable = CacheTable"nimTest"
mcSeq = CacheSeq"nimTest"
mcCounter = CacheCounter"nimTest"
static:
doAssert(mcCounter.value == 0) # CacheCounter.value
mcCounter.inc # CacheCounter.inc
doAssert(mcCounter.value == 1) # CacheCounter.value
let a = newLit(1)
let b = newLit(2)
let c = newLit(3)
let d = newLit(4)
mcSeq.add a # CacheSeq.add
mcSeq.add b # CacheSeq.add
mcSeq.add c # CacheSeq.add
doAssert(mcSeq.len == 3) # CacheSeq.len
#doAssert(c in mcSeq) # CacheSeq.contains
#doAssert(d notin mcSeq) # CacheSeq.contains
mcSeq.incl d # CacheSeq.incl
doAssert(mcSeq.len == 4) # CacheSeq.len
mcSeq.incl c # CacheSeq.incl
doAssert(mcSeq.len == 4) # CacheSeq.len
doAssert(mcSeq[3] == d) # CacheSeq.[]
#doAssert(mcSeq.pop() == d)# CacheSeq.pop
#doAssert(mcSeq.len == 3) # CacheSeq.len
doAssert(mcTable.len == 0) # CacheTable.len
mcTable["a"] = a # CacheTable.[]=
doAssert(mcTable.len == 1) # CacheTable.len
doAssert(mcTable["a"] == a) # CacheTable.[]
#doAssert("a" in mcTable) # CacheTable.contains
#doAssert(mcTable.hasKey("a"))# CacheTable.hasKey
for k, v in mcTable: # CacheTable.items
doAssert(k == "a")
doAssert(v == a)
echo "macrocache ok"
block tupleNewLitTests:
macro t(): untyped =
result = newLit (1, "foo", (), (1,), (a1: 'x', a2: @["ba"]))
doAssert $t() == """(1, "foo", (), (1,), (a1: 'x', a2: @["ba"]))"""
# this `$` test is needed because tuple equality doesn't distinguish
# between named vs unnamed tuples
doAssert t() == (1, "foo", (), (1, ), (a1: 'x', a2: @["ba"]))
from strutils import contains
block getImplTransformed:
macro bar(a: typed): string =
# newLit a.getImpl.repr # this would be before code transformation
let b = a.getImplTransformed
newLit b.repr
template toExpand() =
for ai in 0..2: echo ai
proc baz(a=1): int =
defer: discard
toExpand()
12
const code = bar(baz)
# sanity check:
doAssert "finally" in code # `defer` is lowered to try/finally
doAssert "while" in code # `for` is lowered to `while`
doAssert "toExpand" notin code
# template is expanded (but that would already be the case with
# `a.getImpl.repr`, unlike the other transformations mentioned above
# test macro resemming
macro makeVar(): untyped =
quote:
var tensorY {.inject.}: int
macro noop(a: typed): untyped =
a
noop:
makeVar
echo tensorY
macro xbenchmark(body: typed): untyped =
result = body
xbenchmark:
proc fastSHA(inputtest: string) =
discard inputtest
fastSHA("hey")
block: # bug #13511
type
Builder = ref object
components: seq[Component]
Component = object
proc add(builder: var Builder, component: Component) {.compileTime.} =
builder.components.add(component)
macro debugAst(arg: typed): untyped =
## just for debugging purpose.
discard arg.treeRepr
return arg
static:
var component = Component()
var builder = Builder()
template foo(): untyped =
## WAS: this doc comment causes compilation failure.
builder
debugAst:
add(foo(), component)
block: # bug #15118
macro flop(name: static string) =
let id = genSym(nskType, "env")
let r =
nnkStmtList.newTree(
nnkTypeSection.newTree(
nnkTypeDef.newTree(
id,
pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */#
#
# Nimrod's Runtime Library
# (c) Copyright 2011 Alex Mitchell
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## :Author: Alex Mitchell
##
## This module implements operations for the built-in `seq`:idx: type which
## were inspired by functional programming languages. If you are looking for
## the typical `map` function which applies a function to every element in a
## sequence, it already exists in the `system <system.html>`_ module in both
## mutable and immutable styles.
##
## Also, for functional style programming you may want to pass `anonymous procs
## <manual.html#anonymous-procs>`_ to procs like ``filter`` to reduce typing.
## Anonymous procs can use `the special do notation <manual.html#do-notation>`_
## which is more convenient in certain situations.
##
## **Note**: This interface will change as soon as the compiler supports
## closures and proper coroutines.
when not defined(nimhygiene):
{.pragma: dirty.}
proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
## Takes several sequences' items and returns them inside a new sequence.
##
## Example:
##
## .. code-block:: nimrod
## let
## s1 = @[1, 2, 3]
## s2 = @[4, 5]
## s3 = @[6, 7]
## total = concat(s1, s2, s3)
## assert total == @[1, 2, 3, 4, 5, 6, 7]
var L = 0
for seqitm in items(seqs): inc(L, len(seqitm))
newSeq(result, L)
var i = 0
for s in items(seqs):
for itm in items(s):
result[i] = itm
inc(i)
proc distnct*[T](seq1: seq[T]): seq[T] =
## Returns a new sequence without duplicates.
##
## This proc is `misspelled` on purpose to avoid a clash with the keyword
## ``distinct`` used to `define a derived type incompatible with its base
## type <manual.html#distinct-type>`_. Example:
##
## .. code-block:: nimrod
## let
## dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
## dup2 = @["a", "a", "c", "d", "d"]
## unique1 = distnct(dup1)
## unique2 = distnct(dup2)
## assert unique1 == @[1, 3, 4, 2, 8]
## assert unique2 == @["a", "c", "d"]
result = @[]
for itm in items(seq1):
if not result.contains(itm): result.add(itm)
proc zip*[S, T](seq1: seq[S], seq2: seq[T]): seq[tuple[a: S, b: T]] =
## Returns a new sequence with a combination of the two input sequences.
##
## For convenience you can access the returned tuples through the named
## fields `a` and `b`. If one sequence is shorter, the remaining items in the
## longer sequence are discarded. Example:
##
## .. code-block:: nimrod
## let
## short = @[1, 2, 3]
## long = @[6, 5, 4, 3, 2, 1]
## words = @["one", "two", "three"]
## zip1 = zip(short, long)
## zip2 = zip(short, words)
## assert zip1 == @[(1, 6), (2, 5), (3, 4)]
## assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
## assert zip1[2].b == 4
## assert zip2[2].b == "three"
var m = min(seq1.len, seq2.len)
newSeq(result, m)
for i in 0 .. m-1: result[i] = (seq1[i], seq2[i])
proc distribute*[T](s: seq[T], num: int, spread = true): seq[seq[T]] =
## Splits and distributes a sequence `s` into `num` sub sequences.
##
## Returns a sequence of `num` sequences. For some input values this is the
## inverse of the `concat <#concat>`_ proc. The proc will assert in debug
## builds if `s` is nil or `num` is less than one, and will likely crash on
## release builds. The input sequence `s` can be empty, which will produce
## `num` empty sequences.
##
## If `spread` is false and the length of `s` is not a multiple of `num`, the
## proc will max out the first sub sequences with ``1 + len(s) div num``
## entries, leaving the remainder of elements to the last sequence.
##
## On the other hand, if `spread` is true, the proc will distribute evenly
## the remainder of the division across all sequences, which makes the result
## more suited to multithreading where you are passing equal sized work units
## to a thread pool and want to maximize core usage.
##
## Example:
##
## .. code-block:: nimrod
## let numbers = @[1, 2, 3, 4, 5, 6, 7]
## assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
## assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
## assert numbers.distribute(6)[0] == @[1, 2]
## assert numbers.distribute(6)[5] == @[7]
assert(not s.isNil, "`s` can't be nil")
assert(num > 0, "`num` has to be greater than zero")
if num < 2:
result = @[s]
return
# Create the result and calculate the stride size and the remainder if any.
result = newSeq[seq[T]](num)
var
stride = s.len div num
first = 0
last = 0
extra = s.len mod num
if extra == 0 or spread == false:
# Use an algorithm which overcounts the stride and minimizes reading limits.
if extra > 0: inc(stride)
for i in 0 .. <num:
result[i] = newSeq[T]()
for g in first .. <min(s.len, first + stride):
result[i].add(s[g])
first += stride
else:
# Use an undercounting algorithm which *adds* the remainder each iteration.
for i in 0 .. <num:
last = first + stride
if extra > 0:
extra -= 1
inc(last)
result[i] = newSeq[T]()
for g in first .. <last:
result[i].add(s[g])
first = last
iterator filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): T =
## Iterates through a sequence and yields every item that fulfills the
## predicate.
##
## Example:
##
## .. code-block:: nimrod
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
## for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
## echo($n)
## # echoes 4, 8, 4 in separate lines
for i in countup(0, len(seq1) -1):
var item = seq1[i]
if pred(item): yield seq1[i]
proc filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): seq[T] =
## Returns a new sequence with all the items that fulfilled the predicate.
##
## Example:
##
## .. code-block:: nimrod
## let
## colors = @["red", "yellow", "black"]
## f1 = filter(colors, proc(x: string): bool = x.len < 6)
## f2 = filter(colors) do (x: string) -> bool : x.len > 5
## assert f1 == @["red", "black"]
## assert f2 == @["yellow"]
accumulateResult(filter(seq1, pred))
proc delete*[T](s: var seq[T], first=0, last=0) =
## Deletes in `s` the items at position `first` .. `last`. This modifies
## `s` itself, it does not return a copy.
##
## Example:
##
##.. code-block:: nimrod
## let outcome = @[1,1,1,1,1,1,1,1]
## var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
## dest.delete(3, 8)
## assert outcome == dest
var i = first
var j = last+1
var newLen = len(s)-j+i
while i < newLen:
s[i].shallowCopy(s[j])
inc(i)
inc(j)
setLen(s, newLen)
proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
## Inserts items from `src` into `dest` at position `pos`. This modifies
## `dest` itself, it does not return a copy.
##
## Example:
##
##.. code-block:: nimrod
## var dest = @[1,1,1,1,1,1,1,1]
## let
## src = @[2,2,2,2,2,2]
## outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
## dest.insert(src, 3)
## assert dest == outcome
var j = len(dest) - 1
var i = len(dest) + len(src) - 1
dest.setLen(i + 1)
# Move items after `pos` to the end of the sequence.
while j >= pos:
dest[i].shallowCopy(dest[j])
dec(i)
dec(j)
# Insert items from `dest` into `dest` at `pos`
inc(j)
for item in src:
dest[j] = item
inc(j)
template filterIt*(seq1, pred: expr): expr {.immediate.} =
## Returns a new sequence with all the items that fulfilled the predicate.
##
## Unlike the `proc` version, the predicate needs to be an expression using
## the ``it`` variable for testing, like: ``filterIt("abcxyz", it == 'x')``.
## Example:
##
## .. code-block:: nimrod
## let
## temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
## acceptable = filterIt(temperatures, it < 50 and it > -10)
## notAcceptable = filterIt(temperatures, it > 50 or it < -10)
## assert acceptable == @[-2.0, 24.5, 44.31]
## assert notAcceptable == @[-272.15, 99.9, -113.44]
var result {.gensym.}: type(seq1) = @[]
for it {.inject.} in items(seq1):
if pred: result.add(it)
result
template toSeq*(iter: expr): expr {.immediate.} =
## Transforms any iterator into a sequence.
##
## Example:
##
## .. code-block:: nimrod
## let
## numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
## odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
## if x mod 2 == 1:
## result = true)
## assert odd_numbers == @[1, 3, 5, 7, 9]
##
var result {.gensym.}: seq[type(iter)] = @[]
for x in iter: add(result, x)
result
template foldl*(sequence, operation: expr): expr =
## Template to fold a sequence from left to right, returning the accumulation.
##
## The sequence is required to have at least a single element. Debug versions
## of your program will assert in this situation but release versions will
## happily go ahead. If the sequence has a single element it will be returned
## without applying ``operation``.
##
## The ``operation`` parameter should be an expression which uses the
## variables ``a`` and ``b`` for each step of the fold. Since this is a left
## fold, for non associative binary operations like substraction think that
## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
## 3). Example:
##
## .. code-block:: nimrod
## let
## numbers = @[5, 9, 11]
## addition = foldl(numbers, a + b)
## substraction = foldl(numbers, a - b)
## multiplication = foldl(numbers, a * b)
## words = @["nim", "rod", "is", "cool"]
## concatenation = foldl(words, a & b)
## assert addition == 25, "Addition is (((5)+9)+11)"
## assert substraction == -15, "Substraction is (((5)-9)-11)"
## assert multiplication == 495, "Multiplication is (((5)*9)*11)"
## assert concatenation == "nimrodiscool"
assert sequence.len > 0, "Can't fold empty sequences"
var result {.gensym.}: type(sequence[0])
result = sequence[0]
for i in countup(1, sequence.len - 1):
let
a {.inject.} = result
b {.inject.} = sequence[i]
result = operation
result
template foldr*(sequence, operation: expr): expr =
## Template to fold a sequence from right to left, returning the accumulation.
##
## The sequence is required to have at least a single element. Debug versions
## of your program will assert in this situation but release versions will
## happily go ahead. If the sequence has a single element it will be returned
## without applying ``operation``.
##
## The ``operation`` parameter should be an expression which uses the
## variables ``a`` and ``b`` for each step of the fold. Since this is a right
## fold, for non associative binary operations like substraction think that
## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
## (3))). Example:
##
## .. code-block:: nimrod
## let
## numbers = @[5, 9, 11]
## addition = foldr(numbers, a + b)
## substraction = foldr(numbers, a - b)
## multiplication = foldr(numbers, a * b)
## words = @["nim", "rod", "is", "cool"]
## concatenation = foldr(words, a & b)
## assert addition == 25, "Addition is (5+(9+(11)))"
## assert substraction == 7, "Substraction is (5-(9-(11)))"
## assert multiplication == 495, "Multiplication is (5*(9*(11)))"
## assert concatenation == "nimrodiscool"
assert sequence.len > 0, "Can't fold empty sequences"
var result {.gensym.}: type(sequence[0])
result = sequence[sequence.len - 1]
for i in countdown(sequence.len - 2, 0):
let
a {.inject.} = sequence[i]
b {.inject.} = result
result = operation
result
template mapIt*(seq1, typ, pred: expr): expr =
## Convenience template around the ``map`` proc to reduce typing.
##
## The template injects the ``it`` variable which you can use directly in an
## expression. You also need to pass as `typ` the type of the expression,
## since the new returned sequence can have a different type than the
## original. Example:
##
## .. code-block:: nimrod
## let
## nums = @[1, 2, 3, 4]
## strings = nums.mapIt(string, $(4 * it))
var result {.gensym.}: seq[typ] = @[]
for it {.inject.} in items(seq1):
result.add(pred)
result
template mapIt*(varSeq, pred: expr) =
## Convenience template around the mutable ``map`` proc to reduce typing.
##
## The template injects the ``it`` variable which you can use directly in an
## expression. The expression has to return the same type as the sequence you
## are mutating. Example:
##
## .. code-block:: nimrod
## var nums = @[1, 2, 3, 4]
## nums.mapIt(it * 3)
## assert nums[0] + nums[3] == 15
for i in 0 .. <len(varSeq):
let it {.inject.} = varSeq[i]
varSeq[i] = pred
when isMainModule:
import strutils
block: # concat test
let
s1 = @[1, 2, 3]
s2 = @[4, 5]
s3 = @[6, 7]
total = concat(s1, s2, s3)
assert total == @[1, 2, 3, 4, 5, 6, 7]
block: # duplicates test
let
dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
dup2 = @["a", "a", "c", "d", "d"]
unique1 = distnct(dup1)
unique2 = distnct(dup2)
assert unique1 == @[1, 3, 4, 2, 8]
assert unique2 == @["a", "c", "d"]
block: # zip test
let
short = @[1, 2, 3]
long = @[6, 5, 4, 3, 2, 1]
words = @["one", "two", "three"]
zip1 = zip(short, long)
zip2 = zip(short, words)
assert zip1 == @[(1, 6), (2, 5), (3, 4)]
assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
assert zip1[2].b == 4
assert zip2[2].b == "three"
block: # filter proc test
let
colors = @["red", "yellow", "black"]
f1 = filter(colors, proc(x: string): bool = x.len < 6)
f2 = filter(colors) do (x: string) -> bool : x.len > 5
assert f1 == @["red", "black"]
assert f2 == @["yellow"]
block: # filter iterator test
let numbers = @[1, 4, 5, 8, 9, 7, 4]
for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
echo($n)
# echoes 4, 8, 4 in separate lines
block: # filterIt test
let
temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
acceptable = filterIt(temperatures, it < 50 and it > -10)
notAcceptable = filterIt(temperatures, it > 50 or it < -10)
assert acceptable == @[-2.0, 24.5, 44.31]
assert notAcceptable == @[-272.15, 99.9, -113.44]
block: # toSeq test
let
numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
if x mod 2 == 1:
result = true)
assert odd_numbers == @[1, 3, 5, 7, 9]
block: # foldl tests
let
numbers = @[5, 9, 11]
addition = foldl(numbers, a + b)
substraction = foldl(numbers, a - b)
multiplication = foldl(numbers, a * b)
words = @["nim", "rod", "is", "cool"]
concatenation = foldl(words, a & b)
assert addition == 25, "Addition is (((5)+9)+11)"
assert substraction == -15, "Substraction is (((5)-9)-11)"
assert multiplication == 495, "Multiplication is (((5)*9)*11)"
assert concatenation == "nimrodiscool"
block: # foldr tests
let
numbers = @[5, 9, 11]
addition = foldr(numbers, a + b)
substraction = foldr(numbers, a - b)
multiplication = foldr(numbers, a * b)
words = @["nim", "rod", "is", "cool"]
concatenation = foldr(words, a & b)
assert addition == 25, "Addition is (5+(9+(11)))"
assert substraction == 7, "Substraction is (5-(9-(11)))"
assert multiplication == 495, "Multiplication is (5*(9*(11)))"
assert concatenation == "nimrodiscool"
block: # delete tests
let outcome = @[1,1,1,1,1,1,1,1]
var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
dest.delete(3, 8)
assert outcome == dest, """\
Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1]
is [1,1,1,1,1,1,1,1]"""
block: # insert tests
var dest = @[1,1,1,1,1,1,1,1]
let
src = @[2,2,2,2,2,2]
outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
dest.insert(src, 3)
assert dest == outcome, """\
Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1]
at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]"""
block: # mapIt tests
var
nums = @[1, 2, 3, 4]
strings = nums.mapIt(string, $(4 * it))
nums.mapIt(it * 3)
assert nums[0] + nums[3] == 15
block: # distribute tests
let numbers = @[1, 2, 3, 4, 5, 6, 7]
doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
doAssert numbers.distribute(6)[0] == @[1, 2]
doAssert numbers.distribute(6)[5] == @[7]
let a = @[1, 2, 3, 4, 5, 6, 7]
doAssert a.distribute(1, true) == @[@[1, 2, 3, 4, 5, 6, 7]]
doAssert a.distribute(1, false) == @[@[1, 2, 3, 4, 5, 6, 7]]
doAssert a.distribute(2, true) == @[@[1, 2, 3, 4], @[5, 6, 7]]
doAssert a.distribute(2, false) == @[@[1, 2, 3, 4], @[5, 6, 7]]
doAssert a.distribute(3, true) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
doAssert a.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
doAssert a.distribute(4, true) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
doAssert a.distribute(4, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
doAssert a.distribute(5, true) == @[@[1, 2], @[3, 4], @[5], @[6], @[7]]
doAssert a.distribute(5, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]]
doAssert a.distribute(6, true) == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]]
doAssert a.distribute(6, false) == @[
@[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]]
doAssert a.distribute(8, false) == a.distribute(8, true)
doAssert a.distribute(90, false) == a.distribute(90, true)
var b = @[0]
for f in 1 .. 25: b.add(f)
doAssert b.distribute(5, true)[4].len == 5
doAssert b.distribute(5, false)[4].len == 2
echo "Finished doc tests"