#
#
# Nim's Runtime Library
# (c) Copyright 2011 Alexander Mitchell-Robinson
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## :Author: Alexander Mitchell-Robinson (Amrykid)
##
## This module implements operations for the built-in `seq`:idx: type which
## were inspired by functional programming languages.
##
## For functional style programming you may want to pass `anonymous procs
## <manual.html#procedures-anonymous-procs>`_ to procs like ``filter`` to reduce typing.
## Anonymous procs can use `the special do notation <manual.html#procedures-do-notation>`_
## which is more convenient in certain situations.
include "system/inclrtl"
when not defined(nimhygiene):
{.pragma: dirty.}
proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
## Takes several sequences' items and returns them inside a new sequence.
##
## Example:
##
## .. code-block::
## let
## s1 = @[1, 2, 3]
## s2 = @[4, 5]
## s3 = @[6, 7]
## total = concat(s1, s2, s3)
## assert total == @[1, 2, 3, 4, 5, 6, 7]
var L = 0
for seqitm in items(seqs): inc(L, len(seqitm))
newSeq(result, L)
var i = 0
for s in items(seqs):
for itm in items(s):
result[i] = itm
inc(i)
proc count*[T](list: seq[T], item: T): int =
## Count the occurrences of the item `item` in the sequence `list`.
##
## Example:
##
## .. code-block::
## let
## s = @[1, 2, 2, 3, 2, 4, 2]
## c = count(s, 2)
## assert c == 4
for x in items(list):
if x == item:
inc result
proc cycle*[T](list: seq[T], n: Natural): seq[T] =
## Returns a new sequence with the items of `list` repeated `n` times.
##
## Example:
##
## .. code-block:
##
## let
## s = @[1, 2, 3]
## total = s.cycle(3)
## assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
result = newSeq[T](n * list.len)
var o = 0
for x in 0 .. <n:
for e in list:
result[o] = e
inc o
proc repeat*[T](item: T, n: Natural): seq[T] =
## Returns a new sequence with the item `item` repeated `n` times.
##
## Example:
##
## .. code-block:
##
## let
## total = repeat(5, 3)
## assert total == @[5, 5, 5]
result = newSeq[T](n)
for i in 0 .. <n:
result[i] = item
proc deduplicate*[T](list: seq[T]): seq[T] =
## Returns a new sequence without duplicates.
##
## .. code-block::
## let
## dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
## dup2 = @["a", "a", "c", "d", "d"]
## unique1 = deduplicate(dup1)
## unique2 = deduplicate(dup2)
## assert unique1 == @[1, 3, 4, 2, 8]
## assert unique2 == @["a", "c", "d"]
result = @[]
for itm in items(list):
if not result.contains(itm): result.add(itm)
{.deprecated: [distnct: deduplicate].}
proc zip*[S, T](list1: seq[S], list2: seq[T]): seq[tuple[a: S, b: T]] =
## Returns a new sequence with a combination of the two input sequences.
##
## For convenience you can access the returned tuples through the named
## fields `a` and `b`. If one sequence is shorter, the remaining items in the
## longer sequence are discarded. Example:
##
## .. code-block::
## let
## short = @[1, 2, 3]
## long = @[6, 5, 4, 3, 2, 1]
## words = @["one", "two", "three"]
## zip1 = zip(short, long)
## zip2 = zip(short, words)
## assert zip1 == @[(1, 6), (2, 5), (3, 4)]
## assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
## assert zip1[2].b == 4
## assert zip2[2].b == "three"
var m = min(list1.len, list2.len)
newSeq(result, m)
for i in 0 .. m-1:
result[i] = (list1[i], list2[i])
proc distribute*[T](list: seq[T], num: Positive, spread = true): seq[seq[T]] =
## Splits and distributes a sequence `list` into `num` sub sequences.
##
## Returns a sequence of `num` sequences. For some input values this is the
## inverse of the `concat <#concat>`_ proc. The proc will assert in debug
## builds if `s` is nil or `num` is less than one, and will likely crash on
## release builds. The input sequence `s` can be empty, which will produce
## `num` empty sequences.
##
## If `spread` is false and the length of `s` is not a multiple of `num`, the
## proc will max out the first sub sequences with ``1 + len(s) div num``
## entries, leaving the remainder of elements to the last sequence.
##
## On the other hand, if `spread` is true, the proc will distribute evenly
## the remainder of the division across all sequences, which makes the result
## more suited to multithreading where you are passing equal sized work units
## to a thread pool and want to maximize core usage.
##
## Example:
##
## .. code-block::
## let numbers = @[1, 2, 3, 4, 5, 6, 7]
## assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
## assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
## assert numbers.distribute(6)[0] == @[1, 2]
## assert numbers.distribute(6)[5] == @[7]
assert(not list.isNil, "`list` can't be nil")
if num < 2:
result = @[list]
return
let num = int(num) # XXX probably only needed because of .. bug
# Create the result and calculate the stride size and the remainder if any.
result = newSeq[seq[T]](num)
var
stride = list.len div num
first = 0
last = 0
extra = list.len mod num
if extra == 0 or spread == false:
# Use an algorithm which overcounts the stride and minimizes reading limits.
if extra > 0: inc(stride)
for i in 0 .. <num:
result[i] = newSeq[T]()
for g in first .. <min(list.len, first + stride):
result[i].add(list[g])
first += stride
else:
# Use an undercounting algorithm which *adds* the remainder each iteration.
for i in 0 .. <num:
last = first + stride
if extra > 0:
extra -= 1
inc(last)
result[i] = newSeq[T]()
for g in first .. <last:
result[i].add(list[g])
first = last
proc map*[T, S](list: openArray[T], op: proc (x: T): S {.closure.}):
seq[S]{.inline.} =
## Returns a new sequence with the results of `op` applied to every item in
## `list`.
##
## Since the input is not modified you can use this version of ``map`` to
## transform the type of the elements in the input sequence. Example:
##
## .. code-block:: nim
## let
## a = @[1, 2, 3, 4]
## b = map(a, proc(x: int): string = $x)
## assert b == @["1", "2", "3", "4"]
newSeq(result, list.len)
for i in 0 .. <list.len:
result[i] = op(list[i])
proc map*[T](list: var openArray[T], op: proc (x: var T) {.closure.})
{.deprecated.} =
## Applies `op` to every item in `list` modifying it directly.
##
## Note that this version of ``map`` requires your input and output types to
## be the same, since they are modified in-place. Example:
##
## .. code-block:: nim
## var a = @["1", "2", "3", "4"]
## echo repr(a)
## # --> ["1", "2", "3", "4"]
## map(a, proc(x: var string) = x &= "42")
## echo repr(a)
## # --> ["142", "242", "342", "442"]
## **Deprecated since version 0.12.0:** Use the ``apply`` proc instead.
for i in 0 .. <list.len: op(list[i])
proc apply*[T](list: var seq[T], op: proc (x: var T) {.closure.})
{.inline.} =
## Applies `op` to every item in `list` modifying it directly.
##
## Note that this requires your input and output types to
## be the same, since they are modified in-place.
## The parameter function takes a ``var T`` type parameter.
## Example:
##
## .. code-block:: nim
## var a = @["1", "2", "3", "4"]
## echo repr(a)
## # --> ["1", "2", "3", "4"]
## apply(a, proc(x: var string) = x &= "42")
## echo repr(a)
## # --> ["142", "242", "342", "442"]
##
for i in 0 .. <list.len: op(list[i])
proc apply*[T](list: var seq[T], op: proc (x: T): T {.closure.})
{.inline.} =
## Applies `op` to every item in `list` modifying it directly.
##
## Note that this requires your input and output types to
## be the same, since they are modified in-place.
## The parameter function takes and returns a ``T`` type variable.
## Example:
##
## .. code-block:: nim
## var a = @["1", "2", "3", "4"]
## echo repr(a)
## # --> ["1", "2", "3", "4"]
## apply(a, proc(x: string): string = x & "42")
## echo repr(a)
## # --> ["142", "242", "342", "442"]
##
for i in 0 .. <list.len: list[i] = op(list[i])
iterator filter*[T](list: seq[T], pred: proc(item: T): bool {.closure.}): T =
## Iterates through a sequence and yields every item that fulfills the
## predicate.
##
## Example:
##
## .. code-block::
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
## for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
## echo($n)
## # echoes 4, 8, 4 in separate lines
for i in 0 .. <list.len:
if pred(list[i]):
yield list[i]
proc filter*[T](list: seq[T], pred: proc(item: T): bool {.closure.}): seq[T]
{.inline.} =
## Returns a new sequence with all the items that fulfilled the predicate.
##
## Example:
##
## .. code-block::
## let
## colors = @["red", "yellow", "black"]
## f1 = filter(colors, proc(x: string): bool = x.len < 6)
## f2 = filter(colors) do (x: string) -> bool : x.len > 5
## assert f1 == @["red", "black"]
## assert f2 == @["yellow"]
result = newSeq[T]()
for i in 0 .. <list.len:
if pred(list[i]):
result.add(list[i])
proc keepIf*[T](list: var seq[T], pred: proc(item: T): bool {.closure.})
{.inline.} =
## Keeps the items in the passed sequence if they fulfilled the predicate.
## Same as the ``filter`` proc, but modifies the sequence directly.
##
## Example:
##
## .. code-block::
## var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
## keepIf(floats, proc(x: float): bool = x > 10)
## assert floats == @[13.0, 12.5, 10.1]
var pos = 0
for i in 0 .. <len(list):
if pred(list[i]):
if pos != i:
shallowCopy(list[pos], list[i])
inc(pos)
setLen(list, pos)
proc delete*[T](list: var seq[T]; first, last: Natural) =
## Deletes in `list` the items at position `first` .. `last`. This modifies
## `list` itself, it does not return a copy.
##
## Example:
##
##.. code-block::
## let outcome = @[1,1,1,1,1,1,1,1]
## var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
## dest.delete(3, 8)
## assert outcome == dest
var i = first
var j = last+1
var newLen = len(list)-j+i
while i < newLen:
list[i].shallowCopy(list[j])
inc(i)
inc(j)
setLen(list, newLen)
proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
## Inserts items from `src` into `dest` at position `pos`. This modifies
## `dest` itself, it does not return a copy.
##
## Example:
##
##.. code-block::
## var dest = @[1,1,1,1,1,1,1,1]
## let
## src = @[2,2,2,2,2,2]
## outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
## dest.insert(src, 3)
## assert dest == outcome
var j = len(dest) - 1
var i = len(dest) + len(src) - 1
dest.setLen(i + 1)
# Move items after `pos` to the end of the sequence.
while j >= pos:
dest[i].shallowCopy(dest[j])
dec(i)
dec(j)
# Insert items from `dest` into `dest` at `pos`
inc(j)
for item in src:
dest[j] = item
inc(j)
template filterIt*(list, pred: untyped): untyped =
## Returns a new sequence with all the items that fulfilled the predicate.
##
## Unlike the `proc` version, the predicate needs to be an expression using
## the ``it`` variable for testing, like: ``filterIt("abcxyz", it == 'x')``.
## Example:
##
## .. code-block::
## let
## temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
## acceptable = filterIt(temperatures, it < 50 and it > -10)
## notAcceptable = filterIt(temperatures, it > 50 or it < -10)
## assert acceptable == @[-2.0, 24.5, 44.31]
## assert notAcceptable == @[-272.15, 99.9, -113.44]
var result = newSeq[type(list[0])]()
for it {.inject.} in items(list):
if pred: result.add(it)
result
template keepItIf*(varSeq: seq, pred: untyped) =
## Convenience template around the ``keepIf`` proc to reduce typing.
##
## Unlike the `proc` version, the predicate needs to be an expression using
## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``.
## Example:
##
## .. code-block::
## var candidates = @["foo", "bar", "baz", "foobar"]
## keepItIf(candidates, it.len == 3 and it[0] == 'b')
## assert candidates == @["bar", "baz"]
var pos = 0
for i in 0 .. <len(varSeq):
let it {.inject.} = varSeq[i]
if pred:
if pos != i:
shallowCopy(varSeq[pos], varSeq[i])
inc(pos)
setLen(varSeq, pos)
proc all*[T](list: seq[T], pred: proc(item: T): bool {.closure.}): bool =
## Iterates through a sequence and checks if every item fulfills the
## predicate.
##
## Example:
##
## .. code-block::
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
## assert all(numbers, proc (x: int): bool = return x < 10) == true
## assert all(numbers, proc (x: int): bool = return x < 9) == false
for i in list:
if not pred(i):
return false
return true
template allIt*(list, pred: untyped): bool =
## Checks if every item fulfills the predicate.
##
## Example:
##
## .. code-block::
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
## assert allIt(numbers, it < 10) == true
## assert allIt(numbers, it < 9) == false
var result = true
for it {.inject.} in items(list):
if not pred:
result = false
break
result
proc any*[T](list: seq[T], pred: proc(item: T): bool {.closure.}): bool =
## Iterates through a sequence and checks if some item fulfills the
## predicate.
##
## Example:
##
## .. code-block::
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
## assert any(numbers, proc (x: int): bool = return x > 8) == true
## assert any(numbers, proc (x: int): bool = return x > 9) == false
for i in list:
if pred(i):
return true
return false
template anyIt*(list, pred: untyped): bool =
## Checks if some item fulfills the predicate.
##
## Example:
##
## .. code-block::
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
## assert anyIt(numbers, it > 8) == true
## assert anyIt(numbers, it > 9) == false
var result = false
for it {.inject.} in items(list):
if pred:
result = true
break
result
template toSeq*(iter: untyped): untyped =
## Transforms any iterator into a sequence.
##
## Example:
##
## .. code-block::
## let
## numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
## odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
## if x mod 2 == 1:
## result = true)
## assert odd_numbers == @[1, 3, 5, 7, 9]
when compiles(iter.len):
var i = 0
var result = newSeq[type(iter)](iter.len)
for x in iter:
result[i] = x
inc i
result
else:
var result: seq[type(iter)] = @[]
for x in iter:
result.add(x)
result
template foldl*(sequence, operation: untyped): untyped =
## Template to fold a sequence from left to right, returning the accumulation.
##
## The sequence is required to have at least a single element. Debug versions
## of your program will assert in this situation but release versions will
## happily go ahead. If the sequence has a single element it will be returned
## without applying ``operation``.
##
## The ``operation`` parameter should be an expression which uses the
## variables ``a`` and ``b`` for each step of the fold. Since this is a left
## fold, for non associative binary operations like subtraction think that
## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
## 3). Example:
##
## .. code-block::
## let
## numbers = @[5, 9, 11]
## addition = foldl(numbers, a + b)
## subtraction = foldl(numbers, a - b)
## multiplication = foldl(numbers, a * b)
## words = @["nim", "is", "cool"]
## concatenation = foldl(words, a & b)
## assert addition == 25, "Addition is (((5)+9)+11)"
## assert subtraction == -15, "Subtraction is (((5)-9)-11)"
## assert multiplication == 495, "Multiplication is (((5)*9)*11)"
## assert concatenation == "nimiscool"
let s = sequence
assert s.len > 0, "Can't fold empty sequences"
var result: type(s[0])
result = s[0]
for i in 1..<s.len:
let
a {.inject.} = result
b {.inject.} = s[i]
result = operation
result
template foldl*(sequence, operation, first): untyped =
## Template to fold a sequence from left to right, returning the accumulation.
##
## This version of ``foldl`` gets a starting parameter. This makes it possible
## to accumulate the sequence into a different type than the sequence elements.
##
## The ``operation`` parameter should be an expression which uses the variables
## ``a`` and ``b`` for each step of the fold. The ``first`` parameter is the
## start value (the first ``a``) and therefor defines the type of the result.
## Example:
##
## .. code-block::
## let
## numbers = @[0, 8, 1, 5]
## digits = foldl(numbers, a & (chr(b + ord('0'))), "")
## assert digits == "0815"
var result: type(first)
result = first
for x in items(sequence):
let
a {.inject.} = result
b {.inject.} = x
result = operation
result
template foldr*(sequence, operation: untyped): untyped =
## Template to fold a sequence from right to left, returning the accumulation.
##
## The sequence is required to have at least a single element. Debug versions
## of your program will assert in this situation but release versions will
## happily go ahead. If the sequence has a single element it will be returned
## without applying ``operation``.
##
## The ``operation`` parameter should be an expression which uses the
## variables ``a`` and ``b`` for each step of the fold. Since this is a right
## fold, for non associative binary operations like subtraction think that
## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
## (3))). Example:
##
## .. code-block::
## let
## numbers = @[5, 9, 11]
## addition = foldr(numbers, a + b)
## subtraction = foldr(numbers, a - b)
## multiplication = foldr(numbers, a * b)
## words = @["nim", "is", "cool"]
## concatenation = foldr(words, a & b)
## assert addition == 25, "Addition is (5+(9+(11)))"
## assert subtraction == 7, "Subtraction is (5-(9-(11)))"
## assert multiplication == 495, "Multiplication is (5*(9*(11)))"
## assert concatenation == "nimiscool"
let s = sequence
assert s.len > 0, "Can't fold empty sequences"
var result: type(s[0])
result = sequence[s.len - 1]
for i in countdown(s.len - 2, 0):
let
a {.inject.} = s[i]
b {.inject.} = result
result = operation
result
template mapIt*(list, typ, op: untyped): untyped =
## Convenience template around the ``map`` proc to reduce typing.
##
## The template injects the ``it`` variable which you can use directly in an
## expression. You also need to pass as `typ` the type of the expression,
## since the new returned sequence can have a different type than the
## original. Example:
##
## .. code-block::
## let
## nums = @[1, 2, 3, 4]
## strings = nums.mapIt(string, $(4 * it))
## assert strings == @["4", "8", "12", "16"]
## **Deprecated since version 0.12.0:** Use the ``mapIt(seq1, op)``
## template instead.
var result: seq[typ] = @[]
for it {.inject.} in items(list):
result.add(op)
result
template mapIt*(list, op: untyped): untyped =
## Convenience template around the ``map`` proc to reduce typing.
##
## The template injects the ``it`` variable which you can use directly in an
## expression. Example:
##
## .. code-block::
## let
## nums = @[1, 2, 3, 4]
## strings = nums.mapIt($(4 * it))
## assert strings == @["4", "8", "12", "16"]
type outType = type((
block:
var it{.inject.}: type(items(list));
op))
var result: seq[outType]
when compiles(list.len):
let s = list
var i = 0
result = newSeq[outType](s.len)
for it {.inject.} in s:
result[i] = op
i += 1
else:
result = @[]
for it {.inject.} in list:
result.add(op)
result
template applyIt*(varSeq, op: untyped) =
## Convenience template around the mutable ``apply`` proc to reduce typing.
##
## The template injects the ``it`` variable which you can use directly in an
## expression. The expression has to return the same type as the sequence you
## are mutating. Example:
##
## .. code-block::
## var nums = @[1, 2, 3, 4]
## nums.applyIt(it * 3)
## assert nums[0] + nums[3] == 15
for i in 0 .. <varSeq.len:
let it {.inject.} = varSeq[i]
varSeq[i] = op
template newSeqWith*(len: int, init: untyped): untyped =
## creates a new sequence, calling `init` to initialize each value. Example:
##
## .. code-block::
## var seq2D = newSeqWith(20, newSeq[bool](10))
## seq2D[0][0] = true
## seq2D[1][0] = true
## seq2D[0][1] = true
##
## import random
## var seqRand = newSeqWith(20, random(10))
## echo seqRand
var result = newSeq[type(init)](len)
for i in 0 .. <len:
result[i] = init
result
when isMainModule:
import strutils
block: # concat test
let
s1 = @[1, 2, 3]
s2 = @[4, 5]
s3 = @[6, 7]
total = concat(s1, s2, s3)
assert total == @[1, 2, 3, 4, 5, 6, 7]
block: # count test
let
s1 = @[1, 2, 3, 2]
s2 = @['a', 'b', 'x', 'a']
r0 = count(s1, 0)
r1 = count(s1, 1)
r2 = count(s1, 2)
r3 = count(s2, 'y')
r4 = count(s2, 'x')
r5 = count(s2, 'a')
assert r0 == 0
assert r1 == 1
assert r2 == 2
assert r3 == 0
assert r4 == 1
assert r5 == 2
block: # duplicates test
let
dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
dup2 = @["a", "a", "c", "d", "d"]
unique1 = deduplicate(dup1)
unique2 = deduplicate(dup2)
assert unique1 == @[1, 3, 4, 2, 8]
assert unique2 == @["a", "c", "d"]
block: # zip test
let
short = @[1, 2, 3]
long = @[6, 5, 4, 3, 2, 1]
words = @["one", "two", "three"]
zip1 = zip(short, long)
zip2 = zip(short, words)
assert zip1 == @[(1, 6), (2, 5), (3, 4)]
assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
assert zip1[2].b == 4
assert zip2[2].b == "three"
block: # filter proc test
let
colors = @["red", "yellow", "black"]
f1 = filter(colors, proc(x: string): bool = x.len < 6)
f2 = filter(colors) do (x: string) -> bool : x.len > 5
assert f1 == @["red", "black"]
assert f2 == @["yellow"]
block: # filter iterator test
let numbers = @[1, 4, 5, 8, 9, 7, 4]
assert toSeq(filter(numbers, proc (x: int): bool = x mod 2 == 0)) ==
@[4, 8, 4]
block: # keepIf test
var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
keepIf(floats, proc(x: float): bool = x > 10)
assert floats == @[13.0, 12.5, 10.1]
block: # filterIt test
let
temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
acceptable = filterIt(temperatures, it < 50 and it > -10)
notAcceptable = filterIt(temperatures, it > 50 or it < -10)
assert acceptable == @[-2.0, 24.5, 44.31]
assert notAcceptable == @[-272.15, 99.9, -113.44]
block: # keepItIf test
var candidates = @["foo", "bar", "baz", "foobar"]
keepItIf(candidates, it.len == 3 and it[0] == 'b')
assert candidates == @["bar", "baz"]
block: # any
let
numbers = @[1, 4, 5, 8, 9, 7, 4]
len0seq : seq[int] = @[]
assert any(numbers, proc (x: int): bool = return x > 8) == true
assert any(numbers, proc (x: int): bool = return x > 9) == false
assert any(len0seq, proc (x: int): bool = return true) == false
block: # anyIt
let
numbers = @[1, 4, 5, 8, 9, 7, 4]
len0seq : seq[int] = @[]
assert anyIt(numbers, it > 8) == true
assert anyIt(numbers, it > 9) == false
assert anyIt(len0seq, true) == false
block: # all
let
numbers = @[1, 4, 5, 8, 9, 7, 4]
len0seq : seq[int] = @[]
assert all(numbers, proc (x: int): bool = return x < 10) == true
assert all(numbers, proc (x: int): bool = return x < 9) == false
assert all(len0seq, proc (x: int): bool = return false) == true
block: # allIt
let
numbers = @[1, 4, 5, 8, 9, 7, 4]
len0seq : seq[int] = @[]
assert allIt(numbers, it < 10) == true
assert allIt(numbers, it < 9) == false
assert allIt(len0seq, false) == true
block: # toSeq test
let
numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
if x mod 2 == 1:
result = true)
assert odd_numbers == @[1, 3, 5, 7, 9]
block: # foldl tests
let
numbers = @[5, 9, 11]
addition = foldl(numbers, a + b)
subtraction = foldl(numbers, a - b)
multiplication = foldl(numbers, a * b)
words = @["nim", "is", "cool"]
concatenation = foldl(words, a & b)
assert addition == 25, "Addition is (((5)+9)+11)"
assert subtraction == -15, "Subtraction is (((5)-9)-11)"
assert multiplication == 495, "Multiplication is (((5)*9)*11)"
assert concatenation == "nimiscool"
block: # foldr tests
let
numbers = @[5, 9, 11]
addition = foldr(numbers, a + b)
subtraction = foldr(numbers, a - b)
multiplication = foldr(numbers, a * b)
words = @["nim", "is", "cool"]
concatenation = foldr(words, a & b)
assert addition == 25, "Addition is (5+(9+(11)))"
assert subtraction == 7, "Subtraction is (5-(9-(11)))"
assert multiplication == 495, "Multiplication is (5*(9*(11)))"
assert concatenation == "nimiscool"
block: # delete tests
let outcome = @[1,1,1,1,1,1,1,1]
var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
dest.delete(3, 8)
assert outcome == dest, """\
Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1]
is [1,1,1,1,1,1,1,1]"""
block: # insert tests
var dest = @[1,1,1,1,1,1,1,1]
let
src = @[2,2,2,2,2,2]
outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
dest.insert(src, 3)
assert dest == outcome, """\
Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1]
at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]"""
block: # mapIt tests
var
nums = @[1, 2, 3, 4]
strings = nums.mapIt($(4 * it))
nums.applyIt(it * 3)
assert nums[0] + nums[3] == 15
block: # distribute tests
let numbers = @[1, 2, 3, 4, 5, 6, 7]
doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
doAssert numbers.distribute(6)[0] == @[1, 2]
doAssert numbers.distribute(6)[5] == @[7]
let a = @[1, 2, 3, 4, 5, 6, 7]
doAssert a.distribute(1, true) == @[@[1, 2, 3, 4, 5, 6, 7]]
doAssert a.distribute(1, false) == @[@[1, 2, 3, 4, 5, 6, 7]]
doAssert a.distribute(2, true) == @[@[1, 2, 3, 4], @[5, 6, 7]]
doAssert a.distribute(2, false) == @[@[1, 2, 3, 4], @[5, 6, 7]]
doAssert a.distribute(3, true) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
doAssert a.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
doAssert a.distribute(4, true) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
doAssert a.distribute(4, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
doAssert a.distribute(5, true) == @[@[1, 2], @[3, 4], @[5], @[6], @[7]]
doAssert a.distribute(5, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]]
doAssert a.distribute(6, true) == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]]
doAssert a.distribute(6, false) == @[
@[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]]
doAssert a.distribute(8, false) == a.distribute(8, true)
doAssert a.distribute(90, false) == a.distribute(90, true)
var b = @[0]
for f in 1 .. 25: b.add(f)
doAssert b.distribute(5, true)[4].len == 5
doAssert b.distribute(5, false)[4].len == 2
block: # newSeqWith tests
var seq2D = newSeqWith(4, newSeq[bool](2))
seq2D[0][0] = true
seq2D[1][0] = true
seq2D[0][1] = true
doAssert seq2D == @[@[true, true], @[true, false], @[false, false], @[false, false]]
block: # cycle tests
let
a = @[1, 2, 3]
b: seq[int] = @[]
doAssert a.cycle(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
doAssert a.cycle(0) == @[]
#doAssert a.cycle(-1) == @[] # will not compile!
doAssert b.cycle(3) == @[]
block: # repeat tests
assert repeat(10, 5) == @[10, 10, 10, 10, 10]
assert repeat(@[1,2,3], 2) == @[@[1,2,3], @[1,2,3]]
when not defined(testing):
echo "Finished doc tests"