#
#
# Nim's Runtime Library
# (c) Copyright 2010 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements complex numbers.
## Complex numbers are currently implemented as generic on a 64-bit or 32-bit float.
{.push checks: off, line_dir: off, stack_trace: off, debugger: off.}
# the user does not want to trace a part of the standard library!
import math
type
Complex*[T: SomeFloat] = object
re*, im*: T
## A complex number, consisting of a real and an imaginary part.
Complex64* = Complex[float64]
## Alias for a pair of 64-bit floats.
Complex32* = Complex[float32]
## Alias for a pair of 32-bit floats.
proc complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] =
result.re = re
result.im = im
proc complex32*(re: float32; im: float32 = 0.0): Complex[float32] =
result.re = re
result.im = im
proc complex64*(re: float64; im: float64 = 0.0): Complex[float64] =
result.re = re
result.im = im
template im*(arg: typedesc[float32]): Complex32 = complex[float32](0, 1)
template im*(arg: typedesc[float64]): Complex64 = complex[float64](0, 1)
template im*(arg: float32): Complex32 = complex[float32](0, arg)
template im*(arg: float64): Complex64 = complex[float64](0, arg)
proc abs*[T](z: Complex[T]): T =
## Return the distance from (0,0) to ``z``.
result = hypot(z.re, z.im)
proc abs2*[T](z: Complex[T]): T =
## Return the squared distance from (0,0) to ``z``.
result = z.re*z.re + z.im*z.im
proc conjugate*[T](z: Complex[T]): Complex[T] =
## Conjugate of complex number ``z``.
result.re = z.re
result.im = -z.im
proc inv*[T](z: Complex[T]): Complex[T] =
## Multiplicative inverse of complex number ``z``.
conjugate(z) / abs2(z)
proc `==` *[T](x, y: Complex[T]): bool =
## Compare two complex numbers ``x`` and ``y`` for equality.
result = x.re == y.re and x.im == y.im
proc `+` *[T](x: T; y: Complex[T]): Complex[T] =
## Add a real number to a complex number.
result.re = x + y.re
result.im = y.im
proc `+` *[T](x: Complex[T]; y: T): Complex[T] =
## Add a complex number to a real number.
result.re = x.re + y
result.im = x.im
proc `+` *[T](x, y: Complex[T]): Complex[T] =
## Add two complex numbers.
result.re = x.re + y.re
result.im = x.im + y.im
proc `-` *[T](z: Complex[T]): Complex[T] =
## Unary minus for complex numbers.
result.re = -z.re
result.im = -z.im
proc `-` *[T](x: T; y: Complex[T]): Complex[T] =
## Subtract a complex number from a real number.
x + (-y)
proc `-` *[T](x: Complex[T]; y: T): Complex[T] =
## Subtract a real number from a complex number.
result.re = x.re - y
result.im = x.im
proc `-` *[T](x, y: Complex[T]): Complex[T] =
## Subtract two complex numbers.
result.re = x.re - y.re
result.im = x.im - y.im
proc `/` *[T](x: Complex[T]; y: T): Complex[T] =
## Divide complex number ``x`` by real number ``y``.
result.re = x.re / y
result.im = x.im / y
proc `/` *[T](x: T; y: Complex[T]): Complex[T] =
## Divide real number ``x`` by complex number ``y``.
result = x * inv(y)
proc `/` *[T](x, y: Complex[T]): Complex[T] =
## Divide ``x`` by ``y``.
var r, den: T
if abs(y.re) < abs(y.im):
r = y.re / y.im
den = y.im + r * y.re
result.re = (x.re * r + x.im) / den
result.im = (x.im * r - x.re) / den
else:
r = y.im / y.re
den = y.re + r * y.im
result.re = (x.re + r * x.im) / den
result.im = (x.im - r * x.re) / den
proc `*` *[T](x: T; y: Complex[T]): Complex[T] =
## Multiply a real number and a complex number.
result.re = x * y.re
result.im = x * y.im
proc `*` *[T](x: Complex[T]; y: T): Complex[T] =
## Multiply a complex number with a real number.
result.re = x.re * y
result.im = x.im * y
proc `*` *[T](x, y: Complex[T]): Complex[T] =
## Multiply ``x`` with ``y``.
result.re = x.re * y.re - x.im * y.im
result.im = x.im * y.re + x.re * y.im
proc `+=` *[T](x: var Complex[T]; y: Complex[T]) =
## Add ``y`` to ``x``.
x.re += y.re
x.im += y.im
proc `-=` *[T](x: var Complex[T]; y: Complex[T]) =
## Subtract ``y`` from ``x``.
x.re -= y.re
x.im -= y.im
proc `*=` *[T](x: var Complex[T]; y: Complex[T]) =
## Multiply ``y`` to ``x``.
let im = x.im * y.re + x.re * y.im
x.re = x.re * y.re - x.im * y.im
x.im = im
proc `/=` *[T](x: var Complex[T]; y: Complex[T]) =
## Divide ``x`` by ``y`` in place.
x = x / y
proc sqrt*[T](z: Complex[T]): Complex[T] =
## Square root for a complex number ``z``.
var x, y, w, r: T
if z.re == 0.0 and z.im == 0.0:
result = z
else:
x = abs(z.re)
y = abs(z.im)
if x >= y:
r = y / x
w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
else:
r = x / y
w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
if z.re >= 0.0:
result.re = w
result.im = z.im / (w * 2.0)
else:
result.im = if z.im >= 0.0: w else: -w
result.re = z.im / (result.im + result.im)
proc exp*[T](z: Complex[T]): Complex[T] =
## ``e`` raised to the power ``z``.
var
rho = exp(z.re)
theta = z.im
result.re = rho * cos(theta)
result.im = rho * sin(theta)
proc ln*[T](z: Complex[T]): Complex[T] =
## Returns the natural log of ``z``.
result.re = ln(abs(z))
result.im = arctan2(z.im, z.re)
proc log10*[T](z: Complex[T]): Complex[T] =
## Returns the log base 10 of ``z``.
result = ln(z) / ln(10.0)
proc log2*[T](z: Complex[T]): Complex[T] =
## Returns the log base 2 of ``z``.
result = ln(z) / ln(2.0)
proc pow*[T](x, y: Complex[T]): Complex[T] =
## ``x`` raised to the power ``y``.
if x.re == 0.0 and x.im == 0.0:
if y.re == 0.0 and y.im == 0.0:
result.re = 1.0
result.im = 0.0
else:
result.re = 0.0
result.im = 0.0
elif y.re == 1.0 and y.im == 0.0:
result = x
elif y.re == -1.0 and y.im == 0.0:
result = T(1.0) / x
else:
var
rho = abs(x)
theta = arctan2(x.im, x.re)
s = pow(rho, y.re) * exp(-y.im * theta)
r = y.re * theta + y.im * ln(rho)
result.re = s * cos(r)
result.im = s * sin(r)
proc pow*[T](x: Complex[T]; y: T): Complex[T] =
## Complex number ``x`` raised to the power ``y``.
pow(x, complex[T](y))
proc sin*[T](z: Complex[T]): Complex[T] =
## Returns the sine of ``z``.
result.re = sin(z.re) * cosh(z.im)
result.im = cos(z.re) * sinh(z.im)
proc arcsin*[T](z: Complex[T]): Complex[T] =
## Returns the inverse sine of ``z``.
result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z))
proc cos*[T](z: Complex[T]): Complex[T] =
## Returns the cosine of ``z``.
result.re = cos(z.re) * cosh(z.im)
result.im = -sin(z.re) * sinh(z.im)
proc arccos*[T](z: Complex[T]): Complex[T] =
## Returns the inverse cosine of ``z``.
result = -im(T) * ln(z + sqrt(z*z - T(1.0)))
proc tan*[T](z: Complex[T]): Complex[T] =
## Returns the tangent of ``z``.
result = sin(z) / cos(z)
proc arctan*[T](z: Complex[T]): Complex[T] =
## Returns the inverse tangent of ``z``.
result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z))
proc cot*[T](z: Complex[T]): Complex[T] =
## Returns the cotangent of ``z``.
result = cos(z)/sin(z)
proc arccot*[T](z: Complex[T]): Complex[T] =
## Returns the inverse cotangent of ``z``.
result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z))
proc sec*[T](z: Complex[T]): Complex[T] =
## Returns the secant of ``z``.
result = T(1.0) / cos(z)
proc arcsec*[T](z: Complex[T]): Complex[T] =
## Returns the inverse secant of ``z``.
result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z)
proc csc*[T](z: Complex[T]): Complex[T] =
## Returns the cosecant of ``z``.
result = T(1.0) / sin(z)
proc arccsc*[T](z: Complex[T]): Complex[T] =
## Returns the inverse cosecant of ``z``.
result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z)
proc sinh*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic sine of ``z``.
result = T(0.5) * (exp(z) - exp(-z))
proc arcsinh*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic sine of ``z``.
result = ln(z + sqrt(z*z + 1.0))
proc cosh*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic cosine of ``z``.
result = T(0.5) * (exp(z) + exp(-z))
proc arccosh*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic cosine of ``z``.
result = ln(z + sqrt(z*z - T(1.0)))
proc tanh*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic tangent of ``z``.
result = sinh(z) / cosh(z)
proc arctanh*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic tangent of ``z``.
result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z)))
proc sech*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic secant of ``z``.
result = T(2.0) / (exp(z) + exp(-z))
proc arcsech*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic secant of ``z``.
result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0)))
proc csch*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic cosecant of ``z``.
result = T(2.0) / (exp(z) - exp(-z))
proc arccsch*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic cosecant of ``z``.
result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0)))
proc coth*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic cotangent of ``z``.
result = cosh(z) / sinh(z)
proc arccoth*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic cotangent of ``z``.
result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z))
proc phase*[T](z: Complex[T]): T =
## Returns the phase of ``z``.
arctan2(z.im, z.re)
proc polar*[T](z: Complex[T]): tuple[r, phi: T] =
## Returns ``z`` in polar coordinates.
(r: abs(z), phi: phase(z))
proc rect*[T](r, phi: T): Complex[T] =
## Returns the complex number with polar coordinates ``r`` and ``phi``.
##
## | ``result.re = r * cos(phi)``
## | ``result.im = r * sin(phi)``
complex(r * cos(phi), r * sin(phi))
proc `$`*(z: Complex): string =
## Returns ``z``'s string representation as ``"(re, im)"``.
result = "(" & $z.re & ", " & $z.im & ")"
{.pop.}
when isMainModule:
proc `=~`[T](x, y: Complex[T]): bool =
result = abs(x.re-y.re) < 1e-6 and abs(x.im-y.im) < 1e-6
proc `=~`[T](x: Complex[T]; y: T): bool =
result = abs(x.re-y) < 1e-6 and abs(x.im) < 1e-6
var
z: Complex64 = complex(0.0, 0.0)
oo: Complex64 = complex(1.0, 1.0)
a: Complex64 = complex(1.0, 2.0)
b: Complex64 = complex(-1.0, -2.0)
m1: Complex64 = complex(-1.0, 0.0)
i: Complex64 = complex(0.0, 1.0)
one: Complex64 = complex(1.0, 0.0)
tt: Complex64 = complex(10.0, 20.0)
ipi: Complex64 = complex(0.0, -PI)
doAssert(a/2.0 =~ complex(0.5, 1.0))
doAssert(a == a)
doAssert((a-a) == z)
doAssert((a+b) == z)
doAssert((a+b) =~ 0.0)
doAssert((a/b) == m1)
doAssert((1.0/a) =~ complex(0.2, -0.4))
doAssert((a*b) == complex(3.0, -4.0))
doAssert(10.0*a == tt)
doAssert(a*10.0 == tt)
doAssert(tt/10.0 == a)
doAssert(oo+(-1.0) == i)
doAssert( (-1.0)+oo == i)
doAssert(abs(oo) == sqrt(2.0))
doAssert(conjugate(a) == complex(1.0, -2.0))
doAssert(sqrt(m1) == i)
doAssert(exp(ipi) =~ m1)
doAssert(pow(a, b) =~ complex(-3.72999124927876, -1.68815826725068))
doAssert(pow(z, a) =~ complex(0.0, 0.0))
doAssert(pow(z, z) =~ complex(1.0, 0.0))
doAssert(pow(a, one) =~ a)
doAssert(pow(a, m1) =~ complex(0.2, -0.4))
doAssert(pow(a, 2.0) =~ complex(-3.0, 4.0))
doAssert(pow(a, 2) =~ complex(-3.0, 4.0))
doAssert(not(pow(a, 2.0) =~ a))
doAssert(ln(a) =~ complex(0.804718956217050, 1.107148717794090))
doAssert(log10(a) =~ complex(0.349485002168009, 0.480828578784234))
doAssert(log2(a) =~ complex(1.16096404744368, 1.59727796468811))
doAssert(sin(a) =~ complex(3.16577851321617, 1.95960104142161))
doAssert(cos(a) =~ complex(2.03272300701967, -3.05189779915180))
doAssert(tan(a) =~ complex(0.0338128260798967, 1.0147936161466335))
doAssert(cot(a) =~ 1.0 / tan(a))
doAssert(sec(a) =~ 1.0 / cos(a))
doAssert(csc(a) =~ 1.0 / sin(a))
doAssert(arcsin(a) =~ complex(0.427078586392476, 1.528570919480998))
doAssert(arccos(a) =~ complex(1.14371774040242, -1.52857091948100))
doAssert(arctan(a) =~ complex(1.338972522294494, 0.402359478108525))
doAssert(arccot(a) =~ complex(0.2318238045004031, -0.402359478108525))
doAssert(arcsec(a) =~ complex(1.384478272687081, 0.3965682301123288))
doAssert(arccsc(a) =~ complex(0.1863180541078155, -0.3965682301123291))
doAssert(cosh(a) =~ complex(-0.642148124715520, 1.068607421382778))
doAssert(sinh(a) =~ complex(-0.489056259041294, 1.403119250622040))
doAssert(tanh(a) =~ complex(1.1667362572409199, -0.243458201185725))
doAssert(sech(a) =~ 1.0 / cosh(a))
doAssert(csch(a) =~ 1.0 / sinh(a))
doAssert(coth(a) =~ 1.0 / tanh(a))
doAssert(arccosh(a) =~ complex(1.528570919480998, 1.14371774040242))
doAssert(arcsinh(a) =~ complex(1.469351744368185, 1.06344002357775))
doAssert(arctanh(a) =~ complex(0.173286795139986, 1.17809724509617))
doAssert(arcsech(a) =~ arccosh(1.0/a))
doAssert(arccsch(a) =~ arcsinh(1.0/a))
doAssert(arccoth(a) =~ arctanh(1.0/a))
doAssert(phase(a) == 1.1071487177940904)
var t = polar(a)
doAssert(rect(t.r, t.phi) =~ a)
doAssert(rect(1.0, 2.0) =~ complex(-0.4161468365471424, 0.9092974268256817))
var
i64: Complex32 = complex(0.0f, 1.0f)
a64: Complex32 = 2.0f*i64 + 1.0.float32
b64: Complex32 = complex(-1.0'f32, -2.0'f32)
doAssert(a64 == a64)
doAssert(a64 == -b64)
doAssert(a64 + b64 =~ 0.0'f32)
doAssert(not(pow(a64, b64) =~ a64))
doAssert(pow(a64, 0.5f) =~ sqrt(a64))
doAssert(pow(a64, 2) =~ complex(-3.0'f32, 4.0'f32))
doAssert(sin(arcsin(b64)) =~ b64)
doAssert(cosh(arccosh(a64)) =~ a64)
doAssert(phase(a64) - 1.107149f < 1e-6)
var t64 = polar(a64)
doAssert(rect(t64.r, t64.phi) =~ a64)
doAssert(rect(1.0f, 2.0f) =~ complex(-0.4161468f, 0.90929742f))
doAssert(sizeof(a64) == 8)
doAssert(sizeof(a) == 16)
doAssert 123.0.im + 456.0 == complex64(456, 123)
var localA = complex(0.1'f32)
doAssert localA.im is float32