#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Constructive mathematics is naturally typed. -- Simon Thompson
##
## Basic math routines for Nim.
## This module is available for the `JavaScript target
## <backends.html#the-javascript-target>`_.
include "system/inclrtl"
{.push debugger:off .} # the user does not want to trace a part
# of the standard library!
{.push checks:off, line_dir:off, stack_trace:off.}
when defined(Posix) and not defined(haiku):
{.passl: "-lm".}
when not defined(js):
import times
const
PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
E* = 2.71828182845904523536028747 ## Euler's number
MaxFloat64Precision* = 16 ## maximum number of meaningful digits
## after the decimal point for Nim's
## ``float64`` type.
MaxFloat32Precision* = 8 ## maximum number of meaningful digits
## after the decimal point for Nim's
## ``float32`` type.
MaxFloatPrecision* = MaxFloat64Precision ## maximum number of
## meaningful digits
## after the decimal point
## for Nim's ``float`` type.
type
FloatClass* = enum ## describes the class a floating point value belongs to.
## This is the type that is returned by `classify`.
fcNormal, ## value is an ordinary nonzero floating point value
fcSubnormal, ## value is a subnormal (a very small) floating point value
fcZero, ## value is zero
fcNegZero, ## value is the negative zero
fcNan, ## value is Not-A-Number (NAN)
fcInf, ## value is positive infinity
fcNegInf ## value is negative infinity
proc classify*(x: float): FloatClass =
## classifies a floating point value. Returns `x`'s class as specified by
## `FloatClass`.
# JavaScript and most C compilers have no classify:
if x == 0.0:
if 1.0/x == Inf:
return fcZero
else:
return fcNegZero
if x*0.5 == x:
if x > 0.0: return fcInf
else: return fcNegInf
if x != x: return fcNan
return fcNormal
# XXX: fcSubnormal is not detected!
proc binom*(n, k: int): int {.noSideEffect.} =
## computes the binomial coefficient
if k <= 0: return 1
if 2*k > n: return binom(n, n-k)
result = n
for i in countup(2, k):
result = (result * (n + 1 - i)) div i
proc fac*(n: int): int {.noSideEffect.} =
## computes the faculty/factorial function.
result = 1
for i in countup(2, n):
result = result * i
proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
## returns true, if `x` is a power of two, false otherwise.
## Zero and negative numbers are not a power of two.
return (x != 0) and ((x and (x - 1)) == 0)
proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
## returns `x` rounded up to the nearest power of two.
## Zero and negative numbers get rounded up to 1.
result = x - 1
when defined(cpu64):
result = result or (result shr 32)
when sizeof(int) > 2:
result = result or (result shr 16)
when sizeof(int) > 1:
result = result or (result shr 8)
result = result or (result shr 4)
result = result or (result shr 2)
result = result or (result shr 1)
result += 1 + ord(x<=0)
proc countBits32*(n: int32): int {.noSideEffect.} =
## counts the set bits in `n`.
var v = n
v = v -% ((v shr 1'i32) and 0x55555555'i32)
v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32
proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
## computes the sum of the elements in `x`.
## If `x` is empty, 0 is returned.
for i in items(x): result = result + i
proc mean*(x: openArray[float]): float {.noSideEffect.} =
## computes the mean of the elements in `x`.
## If `x` is empty, NaN is returned.
result = sum(x) / toFloat(len(x))
proc variance*(x: openArray[float]): float {.noSideEffect.} =
## computes the variance of the elements in `x`.
## If `x` is empty, NaN is returned.
result = 0.0
var m = mean(x)
for i in 0 .. high(x):
var diff = x[i] - m
result = result + diff*diff
result = result / toFloat(len(x))
proc random*(max: int): int {.benign.}
## returns a random number in the range 0..max-1. The sequence of
## random number is always the same, unless `randomize` is called
## which initializes the random number generator with a "random"
## number, i.e. a tickcount.
proc random*(max: float): float {.benign.}
## returns a random number in the range 0..<max. The sequence of
## random number is always the same, unless `randomize` is called
## which initializes the random number generator with a "random"
## number, i.e. a tickcount. This has a 16-bit resolution on windows
## and a 48-bit resolution on other platforms.
proc randomize*() {.benign.}
## initializes the random number generator with a "random"
## number, i.e. a tickcount. Note: Does nothing for the JavaScript target,
## as JavaScript does not support this.
proc randomize*(seed: int) {.benign.}
## initializes the random number generator with a specific seed.
## Note: Does nothing for the JavaScript target,
## as JavaScript does not support this.
{.push noSideEffect.}
when not defined(JS):
proc sqrt*(x: float): float {.importc: "sqrt", header: "<math.h>".}
## computes the square root of `x`.
proc ln*(x: float): float {.importc: "log", header: "<math.h>".}
## computes ln(x).
proc log10*(x: float): float {.importc: "log10", header: "<math.h>".}
proc log2*(x: float): float = return ln(x) / ln(2.0)
proc exp*(x: float): float {.importc: "exp", header: "<math.h>".}
## computes e**x.
proc frexp*(x: float, exponent: var int): float {.
importc: "frexp", header: "<math.h>".}
## Split a number into mantissa and exponent.
## `frexp` calculates the mantissa m (a float greater than or equal to 0.5
## and less than 1) and the integer value n such that `x` (the original
## float value) equals m * 2**n. frexp stores n in `exponent` and returns
## m.
proc round*(x: float): int {.importc: "lrint", header: "<math.h>".}
## converts a float to an int by rounding.
proc arccos*(x: float): float {.importc: "acos", header: "<math.h>".}
proc arcsin*(x: float): float {.importc: "asin", header: "<math.h>".}
proc arctan*(x: float): float {.importc: "atan", header: "<math.h>".}
proc arctan2*(y, x: float): float {.importc: "atan2", header: "<math.h>".}
## Calculate the arc tangent of `y` / `x`.
## `atan2` returns the arc tangent of `y` / `x`; it produces correct
## results even when the resulting angle is near pi/2 or -pi/2
## (`x` near 0).
proc cos*(x: float): float {.importc: "cos", header: "<math.h>".}
proc cosh*(x: float): float {.importc: "cosh", header: "<math.h>".}
proc hypot*(x, y: float): float {.importc: "hypot", header: "<math.h>".}
## same as ``sqrt(x*x + y*y)``.
proc sinh*(x: float): float {.importc: "sinh", header: "<math.h>".}
proc sin*(x: float): float {.importc: "sin", header: "<math.h>".}
proc tan*(x: float): float {.importc: "tan", header: "<math.h>".}
proc tanh*(x: float): float {.importc: "tanh", header: "<math.h>".}
proc pow*(x, y: float): float {.importc: "pow", header: "<math.h>".}
## computes x to power raised of y.
# C procs:
proc srand(seed: cint) {.importc: "srand", header: "<stdlib.h>".}
proc rand(): cint {.importc: "rand", header: "<stdlib.h>".}
when not defined(windows):
proc srand48(seed: clong) {.importc: "srand48", header: "<stdlib.h>".}
proc drand48(): float {.importc: "drand48", header: "<stdlib.h>".}
proc random(max: float): float =
result = drand48() * max
when defined(windows):
proc random(max: float): float =
# we are hardcodeing this because
# importcing macros is extremely problematic
# and because the value is publicly documented
# on MSDN and very unlikely to change
const rand_max = 32767
result = (float(rand()) / float(rand_max)) * max
proc randomize() =
randomize(cast[int](epochTime()))
proc randomize(seed: int) =
srand(cint(seed))
when declared(srand48): srand48(seed)
proc random(max: int): int =
result = int(rand()) mod max
proc trunc*(x: float): float {.importc: "trunc", header: "<math.h>".}
proc floor*(x: float): float {.importc: "floor", header: "<math.h>".}
proc ceil*(x: float): float {.importc: "ceil", header: "<math.h>".}
proc fmod*(x, y: float): float {.importc: "fmod", header: "<math.h>".}
else:
proc mathrandom(): float {.importc: "Math.random", nodecl.}
proc floor*(x: float): float {.importc: "Math.floor", nodecl.}
proc ceil*(x: float): float {.importc: "Math.ceil", nodecl.}
proc random(max: int): int =
result = int(floor(mathrandom() * float(max)))
proc random(max: float): float =
result = float(mathrandom() * float(max))
proc randomize() = discard
proc randomize(seed: int) = discard
proc sqrt*(x: float): float {.importc: "Math.sqrt", nodecl.}
proc ln*(x: float): float {.importc: "Math.log", nodecl.}
proc log10*(x: float): float = return ln(x) / ln(10.0)
proc log2*(x: float): float = return ln(x) / ln(2.0)
proc exp*(x: float): float {.importc: "Math.exp", nodecl.}
proc round*(x: float): int {.importc: "Math.round", nodecl.}
proc pow*(x, y: float): float {.importc: "Math.pow", nodecl.}
proc frexp*(x: float, exponent: var int): float =
if x == 0.0:
exponent = 0
result = 0.0
elif x < 0.0:
result = -frexp(-x, exponent)
else:
var ex = floor(log2(x))
exponent = round(ex)
result = x / pow(2.0, ex)
proc arccos*(x: float): float {.importc: "Math.acos", nodecl.}
proc arcsin*(x: float): float {.importc: "Math.asin", nodecl.}
proc arctan*(x: float): float {.importc: "Math.atan", nodecl.}
proc arctan2*(y, x: float): float {.importc: "Math.atan2", nodecl.}
proc cos*(x: float): float {.importc: "Math.cos", nodecl.}
proc cosh*(x: float): float = return (exp(x)+exp(-x))*0.5
proc hypot*(x, y: float): float = return sqrt(x*x + y*y)
proc sinh*(x: float): float = return (exp(x)-exp(-x))*0.5
proc sin*(x: float): float {.importc: "Math.sin", nodecl.}
proc tan*(x: float): float {.importc: "Math.tan", nodecl.}
proc tanh*(x: float): float =
var y = exp(2.0*x)
return (y-1.0)/(y+1.0)
{.pop.}
proc `mod`*(x, y: float): float =
result = if y == 0.0: x else: x - y * (x/y).floor
proc random*[T](x: Slice[T]): T =
## For a slice `a .. b` returns a value in the range `a .. b-1`.
result = random(x.b - x.a) + x.a
proc random*[T](a: openArray[T]): T =
## returns a random element from the openarray `a`.
result = a[random(a.low..a.len)]
type
RunningStat* = object ## an accumulator for statistical data
n*: int ## number of pushed data
sum*, min*, max*, mean*: float ## self-explaining
oldM, oldS, newS: float
{.deprecated: [TFloatClass: FloatClass, TRunningStat: RunningStat].}
proc push*(s: var RunningStat, x: float) =
## pushes a value `x` for processing
inc(s.n)
# See Knuth TAOCP vol 2, 3rd edition, page 232
if s.n == 1:
s.min = x
s.max = x
s.oldM = x
s.mean = x
s.oldS = 0.0
else:
if s.min > x: s.min = x
if s.max < x: s.max = x
s.mean = s.oldM + (x - s.oldM)/toFloat(s.n)
s.newS = s.oldS + (x - s.oldM)*(x - s.mean)
# set up for next iteration:
s.oldM = s.mean
s.oldS = s.newS
s.sum = s.sum + x
proc push*(s: var RunningStat, x: int) =
## pushes a value `x` for processing. `x` is simply converted to ``float``
## and the other push operation is called.
push(s, toFloat(x))
proc variance*(s: RunningStat): float =
## computes the current variance of `s`
if s.n > 1: result = s.newS / (toFloat(s.n - 1))
proc standardDeviation*(s: RunningStat): float =
## computes the current standard deviation of `s`
result = sqrt(variance(s))
{.pop.}
{.pop.}
proc `^`*[T](x, y: T): T =
## Computes ``x`` to the power ``y`. ``x`` must be non-negative, use
## `pow <#pow,float,float>` for negative exponents.
assert y >= 0
var (x, y) = (x, y)
result = 1
while y != 0:
if (y and 1) != 0:
result *= x
y = y shr 1
x *= x
proc gcd*[T](x, y: T): T =
## Computes the greatest common divisor of ``x`` and ``y``.
var (x,y) = (x,y)
while y != 0:
x = x mod y
swap x, y
abs x
proc lcm*[T](x, y: T): T =
## Computes the least common multiple of ``x`` and ``y``.
x div gcd(x, y) * y
when isMainModule and not defined(JS):
proc gettime(dummy: ptr cint): cint {.importc: "time", header: "<time.h>".}
# Verifies random seed initialization.
let seed = gettime(nil)
randomize(seed)
const SIZE = 10
var buf : array[0..SIZE, int]
# Fill the buffer with random values
for i in 0..SIZE-1:
buf[i] = random(high(int))
# Check that the second random calls are the same for each position.
randomize(seed)
for i in 0..SIZE-1:
assert buf[i] == random(high(int)), "non deterministic random seeding"
echo "random values equal after reseeding"
# Check for no side effect annotation
proc mySqrt(num: float): float {.noSideEffect.} =
return sqrt(num)