#
#
# Nim's Runtime Library
# (c) Copyright 2015 Nim Contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## [SHA-1 (Secure Hash Algorithm 1)](https://en.wikipedia.org/wiki/SHA-1)
## is a cryptographic hash function which takes an input and produces
## a 160-bit (20-byte) hash value known as a message digest.
##
## See also
## ========
## * `base64 module<base64.html>`_ for a Base64 encoder and decoder
## * `hashes module<hashes.html>`_ for efficient computations of hash values for diverse Nim types
## * `md5 module<md5.html>`_ for the MD5 checksum algorithm
runnableExamples:
let accessName = secureHash("John Doe")
assert $accessName == "AE6E4D1209F17B460503904FAD297B31E9CF6362"
runnableExamples("-r:off"):
let
a = secureHashFile("myFile.nim")
b = parseSecureHash("10DFAEBF6BFDBC7939957068E2EFACEC4972933C")
assert a == b, "files don't match"
import strutils
from endians import bigEndian32, bigEndian64
when defined(nimPreviewSlimSystem):
import std/syncio
const Sha1DigestSize = 20
type
Sha1Digest* = array[0 .. Sha1DigestSize - 1, uint8]
SecureHash* = distinct Sha1Digest
type
Sha1State* = object
count: int
state: array[5, uint32]
buf: array[64, byte]
# This implementation of the SHA-1 algorithm was ported from the Chromium OS one
# with minor modifications that should not affect its functionality.
proc newSha1State*(): Sha1State =
## Creates a `Sha1State`.
##
## If you use the `secureHash proc <#secureHash,openArray[char]>`_,
## there's no need to call this function explicitly.
result.count = 0
result.state[0] = 0x67452301'u32
result.state[1] = 0xEFCDAB89'u32
result.state[2] = 0x98BADCFE'u32
result.state[3] = 0x10325476'u32
result.state[4] = 0xC3D2E1F0'u32
template ror27(val: uint32): uint32 = (val shr 27) or (val shl 5)
template ror2 (val: uint32): uint32 = (val shr 2) or (val shl 30)
template ror31(val: uint32): uint32 = (val shr 31) or (val shl 1)
proc transform(ctx: var Sha1State) =
var w: array[80, uint32]
var a, b, c, d, e: uint32
var t = 0
a = ctx.state[0]
b = ctx.state[1]
c = ctx.state[2]
d = ctx.state[3]
e = ctx.state[4]
template shaF1(a, b, c, d, e, t: untyped) =
bigEndian32(addr w[t], addr ctx.buf[t * 4])
e += ror27(a) + w[t] + (d xor (b and (c xor d))) + 0x5A827999'u32
b = ror2(b)
while t < 15:
shaF1(a, b, c, d, e, t + 0)
shaF1(e, a, b, c, d, t + 1)
shaF1(d, e, a, b, c, t + 2)
shaF1(c, d, e, a, b, t + 3)
shaF1(b, c, d, e, a, t + 4)
t += 5
shaF1(a, b, c, d, e, t + 0) # 16th one, t == 15
template shaF11(a, b, c, d, e, t: untyped) =
w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
e += ror27(a) + w[t] + (d xor (b and (c xor d))) + 0x5A827999'u32
b = ror2(b)
shaF11(e, a, b, c, d, t + 1)
shaF11(d, e, a, b, c, t + 2)
shaF11(c, d, e, a, b, t + 3)
shaF11(b, c, d, e, a, t + 4)
template shaF2(a, b, c, d, e, t: untyped) =
w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
e += ror27(a) + w[t] + (b xor c xor d) + 0x6ED9EBA1'u32
b = ror2(b)
t = 20
while t < 40:
shaF2(a, b, c, d, e, t + 0)
shaF2(e, a, b, c, d, t + 1)
shaF2(d, e, a, b, c, t + 2)
shaF2(c, d, e, a, b, t + 3)
shaF2(b, c, d, e, a, t + 4)
t += 5
template shaF3(a, b, c, d, e, t: untyped) =
w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
e += ror27(a) + w[t] + ((b and c) or (d and (b or c))) + 0x8F1BBCDC'u32
b = ror2(b)
while t < 60:
shaF3(a, b, c, d, e, t + 0)
shaF3(e, a, b, c, d, t + 1)
shaF3(d, e, a, b, c, t + 2)
shaF3(c, d, e, a, b, t + 3)
shaF3(b, c, d, e, a, t + 4)
t += 5
template shaF4(a, b, c, d, e, t: untyped) =
w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
e += ror27(a) + w[t] + (b xor c xor d) + 0xCA62C1D6'u32
b = ror2(b)
while t < 80:
shaF4(a, b, c, d, e, t + 0)
shaF4(e, a, b, c, d, t + 1)
shaF4(d, e, a, b, c, t + 2)
shaF4(c, d, e, a, b, t + 3)
shaF4(b, c, d, e, a, t + 4)
t += 5
ctx.state[0] += a
ctx.state[1] += b
ctx.state[2] += c
ctx.state[3] += d
ctx.state[4] += e
proc update*(ctx: var Sha1State, data: openArray[char]) =
## Updates the `Sha1State` with `data`.
##
## If you use the `secureHash proc <#secureHash,openArray[char]>`_,
## there's no need to call this function explicitly.
var i = ctx.count mod 64
var j = 0
var len = data.len
# Gather 64-bytes worth of data in order to perform a round with the leftover
# data we had stored (but not processed yet)
if len > 64 - i:
copyMem(addr ctx.buf[i], unsafeAddr data[j], 64 - i)
len -= 64 - i
j += 64 - i
transform(ctx)
# Update the index since it's used in the while loop below _and_ we want to
# keep its value if this code path isn't executed
i = 0
# Process the bulk of the payload
while len >= 64:
copyMem(addr ctx.buf[0], unsafeAddr data[j], 64)
len -= 64
j += 64
transform(ctx)
# Process the tail of the payload (len is < 64)
while len > 0:
dec len
ctx.buf[i] = byte(data[j])
inc i
inc j
if i == 64:
transform(ctx)
i = 0
ctx.count += data.len
proc finalize*(ctx: var Sha1State): Sha1Digest =
## Finalizes the `Sha1State` and returns a `Sha1Digest`.
##
## If you use the `secureHash proc <#secureHash,openArray[char]>`_,
## there's no need to call this function explicitly.
var cnt = uint64(ctx.count * 8)
# a 1 bit
update(ctx, "\x80")
# Add padding until we reach a complexive size of 64 - 8 bytes
while (ctx.count mod 64) != (64 - 8):
update(ctx, "\x00")
# The message length as a 64bit BE number completes the block
var tmp: array[8, char]
bigEndian64(addr tmp[0], addr cnt)
update(ctx, tmp)
# Turn the result into a single 160-bit number
for i in 0 ..< 5:
bigEndian32(addr ctx.state[i], addr ctx.state[i])
copyMem(addr result[0], addr ctx.state[0], Sha1DigestSize)
# Public API
proc secureHash*(str: openArray[char]): SecureHash =
## Generates a `SecureHash` from `str`.
##
## **See also:**
## * `secureHashFile proc <#secureHashFile,string>`_ for generating a `SecureHash` from a file
## * `parseSecureHash proc <#parseSecureHash,string>`_ for converting a string `hash` to `SecureHash`
runnableExamples:
let hash = secureHash("Hello World")
assert hash == parseSecureHash("0A4D55A8D778E5022FAB701977C5D840BBC486D0")
var state = newSha1State()
state.update(str)
SecureHash(state.finalize())
proc secureHashFile*(filename: string): SecureHash =
## Generates a `SecureHash` from a file.
##
## **See also:**
## * `secureHash proc <#secureHash,openArray[char]>`_ for generating a `SecureHash` from a string
## * `parseSecureHash proc <#parseSecureHash,string>`_ for converting a string `hash` to `SecureHash`
const BufferLength = 8192
let f = open(filename)
var state = newSha1State()
var buffer = newString(BufferLength)
while true:
let length = readChars(f, buffer)
if length == 0:
break
buffer.setLen(length)
state.update(buffer)
if length != BufferLength:
break
close(f)
SecureHash(state.finalize())
proc `$`*(self: SecureHash): string =
## Returns the string representation of a `SecureHash`.
##
## **See also:**
## * `secureHash proc <#secureHash,openArray[char]>`_ for generating a `SecureHash` from a string
runnableExamples:
let hash = secureHash("Hello World")
assert $hash == "0A4D55A8D778E5022FAB701977C5D840BBC486D0"
result = ""
for v in Sha1Digest(self):
result.add(toHex(int(v), 2))
proc parseSecureHash*(hash: string): SecureHash =
## Converts a string `hash` to a `SecureHash`.
##
## **See also:**
## * `secureHash proc <#secureHash,openArray[char]>`_ for generating a `SecureHash` from a string
## * `secureHashFile proc <#secureHashFile,string>`_ for generating a `SecureHash` from a file
runnableExamples:
let
hashStr = "0A4D55A8D778E5022FAB701977C5D840BBC486D0"
secureHash = secureHash("Hello World")
assert secureHash == parseSecureHash(hashStr)
for i in 0 ..< Sha1DigestSize:
Sha1Digest(result)[i] = uint8(parseHexInt(hash[i*2] & hash[i*2 + 1]))
proc `==`*(a, b: SecureHash): bool =
## Checks if two `SecureHash` values are identical.
runnableExamples:
let
a = secureHash("Hello World")
b = secureHash("Goodbye World")
c = parseSecureHash("0A4D55A8D778E5022FAB701977C5D840BBC486D0")
assert a != b
assert a == c
# Not a constant-time comparison, but that's acceptable in this context
Sha1Digest(a) == Sha1Digest(b)
proc isValidSha1Hash*(s: string): bool =
## Checks if a string is a valid sha1 hash sum.
s.len == 40 and allCharsInSet(s, HexDigits)