#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Low level allocator for Nim. Has been designed to support the GC.
# TODO:
# - eliminate "used" field
# - make searching for block O(1)
{.push profiler:off.}
# ------------ platform specific chunk allocation code -----------------------
# some platforms have really weird unmap behaviour: unmap(blockStart, PageSize)
# really frees the whole block. Happens for Linux/PowerPC for example. Amd64
# and x86 are safe though; Windows is special because MEM_RELEASE can only be
# used with a size of 0:
const weirdUnmap = not (defined(amd64) or defined(i386)) or defined(windows)
when defined(posix):
const
PROT_READ = 1 # page can be read
PROT_WRITE = 2 # page can be written
MAP_PRIVATE = 2'i32 # Changes are private
when defined(macosx) or defined(bsd):
const MAP_ANONYMOUS = 0x1000
elif defined(solaris):
const MAP_ANONYMOUS = 0x100
else:
var
MAP_ANONYMOUS {.importc: "MAP_ANONYMOUS", header: "<sys/mman.h>".}: cint
proc mmap(adr: pointer, len: int, prot, flags, fildes: cint,
off: int): pointer {.header: "<sys/mman.h>".}
proc munmap(adr: pointer, len: int) {.header: "<sys/mman.h>".}
proc osAllocPages(size: int): pointer {.inline.} =
result = mmap(nil, size, PROT_READ or PROT_WRITE,
MAP_PRIVATE or MAP_ANONYMOUS, -1, 0)
if result == nil or result == cast[pointer](-1):
raiseOutOfMem()
proc osDeallocPages(p: pointer, size: int) {.inline} =
when reallyOsDealloc: munmap(p, size)
elif defined(windows):
const
MEM_RESERVE = 0x2000
MEM_COMMIT = 0x1000
MEM_TOP_DOWN = 0x100000
PAGE_READWRITE = 0x04
MEM_DECOMMIT = 0x4000
MEM_RELEASE = 0x8000
proc virtualAlloc(lpAddress: pointer, dwSize: int, flAllocationType,
flProtect: int32): pointer {.
header: "<windows.h>", stdcall, importc: "VirtualAlloc".}
proc virtualFree(lpAddress: pointer, dwSize: int,
dwFreeType: int32) {.header: "<windows.h>", stdcall,
importc: "VirtualFree".}
proc osAllocPages(size: int): pointer {.inline.} =
result = virtualAlloc(nil, size, MEM_RESERVE or MEM_COMMIT,
PAGE_READWRITE)
if result == nil: raiseOutOfMem()
proc osDeallocPages(p: pointer, size: int) {.inline.} =
# according to Microsoft, 0 is the only correct value for MEM_RELEASE:
# This means that the OS has some different view over how big the block is
# that we want to free! So, we cannot reliably release the memory back to
# Windows :-(. We have to live with MEM_DECOMMIT instead.
# Well that used to be the case but MEM_DECOMMIT fragments the address
# space heavily, so we now treat Windows as a strange unmap target.
when reallyOsDealloc: virtualFree(p, 0, MEM_RELEASE)
#VirtualFree(p, size, MEM_DECOMMIT)
else:
{.error: "Port memory manager to your platform".}
# --------------------- end of non-portable code -----------------------------
# We manage *chunks* of memory. Each chunk is a multiple of the page size.
# Each chunk starts at an address that is divisible by the page size. Chunks
# that are bigger than ``ChunkOsReturn`` are returned back to the operating
# system immediately.
const
ChunkOsReturn = 256 * PageSize # 1 MB
InitialMemoryRequest = ChunkOsReturn div 2 # < ChunkOsReturn!
SmallChunkSize = PageSize
type
PTrunk = ptr TTrunk
TTrunk {.final.} = object
next: PTrunk # all nodes are connected with this pointer
key: int # start address at bit 0
bits: array[0..IntsPerTrunk-1, int] # a bit vector
TTrunkBuckets = array[0..255, PTrunk]
TIntSet {.final.} = object
data: TTrunkBuckets
type
TAlignType = BiggestFloat
TFreeCell {.final, pure.} = object
next: ptr TFreeCell # next free cell in chunk (overlaid with refcount)
zeroField: int # 0 means cell is not used (overlaid with typ field)
# 1 means cell is manually managed pointer
# otherwise a PNimType is stored in there
PChunk = ptr TBaseChunk
PBigChunk = ptr TBigChunk
PSmallChunk = ptr TSmallChunk
TBaseChunk {.pure, inheritable.} = object
prevSize: int # size of previous chunk; for coalescing
size: int # if < PageSize it is a small chunk
used: bool # later will be optimized into prevSize...
TSmallChunk = object of TBaseChunk
next, prev: PSmallChunk # chunks of the same size
freeList: ptr TFreeCell
free: int # how many bytes remain
acc: int # accumulator for small object allocation
data: TAlignType # start of usable memory
TBigChunk = object of TBaseChunk # not necessarily > PageSize!
next, prev: PBigChunk # chunks of the same (or bigger) size
align: int
data: TAlignType # start of usable memory
template smallChunkOverhead(): expr = sizeof(TSmallChunk)-sizeof(TAlignType)
template bigChunkOverhead(): expr = sizeof(TBigChunk)-sizeof(TAlignType)
proc roundup(x, v: int): int {.inline.} =
result = (x + (v-1)) and not (v-1)
sysAssert(result >= x, "roundup: result < x")
#return ((-x) and (v-1)) +% x
sysAssert(roundup(14, PageSize) == PageSize, "invalid PageSize")
sysAssert(roundup(15, 8) == 16, "roundup broken")
sysAssert(roundup(65, 8) == 72, "roundup broken 2")
# ------------- chunk table ---------------------------------------------------
# We use a PtrSet of chunk starts and a table[Page, chunksize] for chunk
# endings of big chunks. This is needed by the merging operation. The only
# remaining operation is best-fit for big chunks. Since there is a size-limit
# for big chunks (because greater than the limit means they are returned back
# to the OS), a fixed size array can be used.
type
PLLChunk = ptr TLLChunk
TLLChunk {.pure.} = object ## *low-level* chunk
size: int # remaining size
acc: int # accumulator
next: PLLChunk # next low-level chunk; only needed for dealloc
PAvlNode = ptr TAvlNode
TAvlNode {.pure, final.} = object
link: array[0..1, PAvlNode] # Left (0) and right (1) links
key, upperBound: int
level: int
TMemRegion {.final, pure.} = object
minLargeObj, maxLargeObj: int
freeSmallChunks: array[0..SmallChunkSize div MemAlign-1, PSmallChunk]
llmem: PLLChunk
currMem, maxMem, freeMem: int # memory sizes (allocated from OS)
lastSize: int # needed for the case that OS gives us pages linearly
freeChunksList: PBigChunk # XXX make this a datastructure with O(1) access
chunkStarts: TIntSet
root, deleted, last, freeAvlNodes: PAvlNode
# shared:
var
bottomData: TAvlNode
bottom: PAvlNode
{.push stack_trace: off.}
proc initAllocator() =
when not defined(useNimRtl):
bottom = addr(bottomData)
bottom.link[0] = bottom
bottom.link[1] = bottom
{.pop.}
proc incCurrMem(a: var TMemRegion, bytes: int) {.inline.} =
inc(a.currMem, bytes)
proc decCurrMem(a: var TMemRegion, bytes: int) {.inline.} =
a.maxMem = max(a.maxMem, a.currMem)
dec(a.currMem, bytes)
proc getMaxMem(a: var TMemRegion): int =
# Since we update maxPagesCount only when freeing pages,
# maxPagesCount may not be up to date. Thus we use the
# maximum of these both values here:
result = max(a.currMem, a.maxMem)
proc llAlloc(a: var TMemRegion, size: int): pointer =
# *low-level* alloc for the memory managers data structures. Deallocation
# is done at he end of the allocator's life time.
if a.llmem == nil or size > a.llmem.size:
# the requested size is ``roundup(size+sizeof(TLLChunk), PageSize)``, but
# since we know ``size`` is a (small) constant, we know the requested size
# is one page:
sysAssert roundup(size+sizeof(TLLChunk), PageSize) == PageSize, "roundup 6"
var old = a.llmem # can be nil and is correct with nil
a.llmem = cast[PLLChunk](osAllocPages(PageSize))
incCurrMem(a, PageSize)
a.llmem.size = PageSize - sizeof(TLLChunk)
a.llmem.acc = sizeof(TLLChunk)
a.llmem.next = old
result = cast[pointer](cast[ByteAddress](a.llmem) + a.llmem.acc)
dec(a.llmem.size, size)
inc(a.llmem.acc, size)
zeroMem(result, size)
proc allocAvlNode(a: var TMemRegion, key, upperBound: int): PAvlNode =
if a.freeAvlNodes != nil:
result = a.freeAvlNodes
a.freeAvlNodes = a.freeAvlNodes.link[0]
else:
result = cast[PAvlNode](llAlloc(a, sizeof(TAvlNode)))
result.key = key
result.upperBound = upperBound
result.link[0] = bottom
result.link[1] = bottom
result.level = 1
sysAssert(bottom == addr(bottomData), "bottom data")
sysAssert(bottom.link[0] == bottom, "bottom link[0]")
sysAssert(bottom.link[1] == bottom, "bottom link[1]")
proc deallocAvlNode(a: var TMemRegion, n: PAvlNode) {.inline.} =
n.link[0] = a.freeAvlNodes
a.freeAvlNodes = n
include "system/avltree"
proc llDeallocAll(a: var TMemRegion) =
var it = a.llmem
while it != nil:
# we know each block in the list has the size of 1 page:
var next = it.next
osDeallocPages(it, PageSize)
it = next
proc intSetGet(t: TIntSet, key: int): PTrunk =
var it = t.data[key and high(t.data)]
while it != nil:
if it.key == key: return it
it = it.next
result = nil
proc intSetPut(a: var TMemRegion, t: var TIntSet, key: int): PTrunk =
result = intSetGet(t, key)
if result == nil:
result = cast[PTrunk](llAlloc(a, sizeof(result[])))
result.next = t.data[key and high(t.data)]
t.data[key and high(t.data)] = result
result.key = key
proc contains(s: TIntSet, key: int): bool =
var t = intSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
result = (t.bits[u shr IntShift] and (1 shl (u and IntMask))) != 0
else:
result = false
proc incl(a: var TMemRegion, s: var TIntSet, key: int) =
var t = intSetPut(a, s, key shr TrunkShift)
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] or (1 shl (u and IntMask))
proc excl(s: var TIntSet, key: int) =
var t = intSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] and not
(1 shl (u and IntMask))
iterator elements(t: TIntSet): int {.inline.} =
# while traversing it is forbidden to change the set!
for h in 0..high(t.data):
var r = t.data[h]
while r != nil:
var i = 0
while i <= high(r.bits):
var w = r.bits[i] # taking a copy of r.bits[i] here is correct, because
# modifying operations are not allowed during traversation
var j = 0
while w != 0: # test all remaining bits for zero
if (w and 1) != 0: # the bit is set!
yield (r.key shl TrunkShift) or (i shl IntShift +% j)
inc(j)
w = w shr 1
inc(i)
r = r.next
proc isSmallChunk(c: PChunk): bool {.inline.} =
return c.size <= SmallChunkSize-smallChunkOverhead()
proc chunkUnused(c: PChunk): bool {.inline.} =
result = not c.used
iterator allObjects(m: TMemRegion): pointer {.inline.} =
for s in elements(m.chunkStarts):
# we need to check here again as it could have been modified:
if s in m.chunkStarts:
let c = cast[PChunk](s shl PageShift)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
let size = c.size
var a = cast[ByteAddress](addr(c.data))
let limit = a + c.acc
while a <% limit:
yield cast[pointer](a)
a = a +% size
else:
let c = cast[PBigChunk](c)
yield addr(c.data)
proc isCell(p: pointer): bool {.inline.} =
result = cast[ptr TFreeCell](p).zeroField >% 1
# ------------- chunk management ----------------------------------------------
proc pageIndex(c: PChunk): int {.inline.} =
result = cast[ByteAddress](c) shr PageShift
proc pageIndex(p: pointer): int {.inline.} =
result = cast[ByteAddress](p) shr PageShift
proc pageAddr(p: pointer): PChunk {.inline.} =
result = cast[PChunk](cast[ByteAddress](p) and not PageMask)
#sysAssert(Contains(allocator.chunkStarts, pageIndex(result)))
proc requestOsChunks(a: var TMemRegion, size: int): PBigChunk =
incCurrMem(a, size)
inc(a.freeMem, size)
result = cast[PBigChunk](osAllocPages(size))
sysAssert((cast[ByteAddress](result) and PageMask) == 0, "requestOsChunks 1")
#zeroMem(result, size)
result.next = nil
result.prev = nil
result.used = false
result.size = size
# update next.prevSize:
var nxt = cast[ByteAddress](result) +% size
sysAssert((nxt and PageMask) == 0, "requestOsChunks 2")
var next = cast[PChunk](nxt)
if pageIndex(next) in a.chunkStarts:
#echo("Next already allocated!")
next.prevSize = size
# set result.prevSize:
var lastSize = if a.lastSize != 0: a.lastSize else: PageSize
var prv = cast[ByteAddress](result) -% lastSize
sysAssert((nxt and PageMask) == 0, "requestOsChunks 3")
var prev = cast[PChunk](prv)
if pageIndex(prev) in a.chunkStarts and prev.size == lastSize:
#echo("Prev already allocated!")
result.prevSize = lastSize
else:
result.prevSize = 0 # unknown
a.lastSize = size # for next request
proc freeOsChunks(a: var TMemRegion, p: pointer, size: int) =
# update next.prevSize:
var c = cast[PChunk](p)
var nxt = cast[ByteAddress](p) +% c.size
sysAssert((nxt and PageMask) == 0, "freeOsChunks")
var next = cast[PChunk](nxt)
if pageIndex(next) in a.chunkStarts:
next.prevSize = 0 # XXX used
excl(a.chunkStarts, pageIndex(p))
osDeallocPages(p, size)
decCurrMem(a, size)
dec(a.freeMem, size)
#c_fprintf(c_stdout, "[Alloc] back to OS: %ld\n", size)
proc isAccessible(a: TMemRegion, p: pointer): bool {.inline.} =
result = contains(a.chunkStarts, pageIndex(p))
proc contains[T](list, x: T): bool =
var it = list
while it != nil:
if it == x: return true
it = it.next
proc writeFreeList(a: TMemRegion) =
var it = a.freeChunksList
c_fprintf(c_stdout, "freeChunksList: %p\n", it)
while it != nil:
c_fprintf(c_stdout, "it: %p, next: %p, prev: %p\n",
it, it.next, it.prev)
it = it.next
proc listAdd[T](head: var T, c: T) {.inline.} =
sysAssert(c notin head, "listAdd 1")
sysAssert c.prev == nil, "listAdd 2"
sysAssert c.next == nil, "listAdd 3"
c.next = head
if head != nil:
sysAssert head.prev == nil, "listAdd 4"
head.prev = c
head = c
proc listRemove[T](head: var T, c: T) {.inline.} =
sysAssert(c in head, "listRemove")
if c == head:
head = c.next
sysAssert c.prev == nil, "listRemove 2"
if head != nil: head.prev = nil
else:
sysAssert c.prev != nil, "listRemove 3"
c.prev.next = c.next
if c.next != nil: c.next.prev = c.prev
c.next = nil
c.prev = nil
proc updatePrevSize(a: var TMemRegion, c: PBigChunk,
prevSize: int) {.inline.} =
var ri = cast[PChunk](cast[ByteAddress](c) +% c.size)
sysAssert((cast[ByteAddress](ri) and PageMask) == 0, "updatePrevSize")
if isAccessible(a, ri):
ri.prevSize = prevSize
proc freeBigChunk(a: var TMemRegion, c: PBigChunk) =
var c = c
sysAssert(c.size >= PageSize, "freeBigChunk")
inc(a.freeMem, c.size)
when coalescRight:
var ri = cast[PChunk](cast[ByteAddress](c) +% c.size)
sysAssert((cast[ByteAddress](ri) and PageMask) == 0, "freeBigChunk 2")
if isAccessible(a, ri) and chunkUnused(ri):
sysAssert(not isSmallChunk(ri), "freeBigChunk 3")
if not isSmallChunk(ri):
listRemove(a.freeChunksList, cast[PBigChunk](ri))
inc(c.size, ri.size)
excl(a.chunkStarts, pageIndex(ri))
when coalescLeft:
if c.prevSize != 0:
var le = cast[PChunk](cast[ByteAddress](c) -% c.prevSize)
sysAssert((cast[ByteAddress](le) and PageMask) == 0, "freeBigChunk 4")
if isAccessible(a, le) and chunkUnused(le):
sysAssert(not isSmallChunk(le), "freeBigChunk 5")
if not isSmallChunk(le):
listRemove(a.freeChunksList, cast[PBigChunk](le))
inc(le.size, c.size)
excl(a.chunkStarts, pageIndex(c))
c = cast[PBigChunk](le)
if c.size < ChunkOsReturn or weirdUnmap:
incl(a, a.chunkStarts, pageIndex(c))
updatePrevSize(a, c, c.size)
listAdd(a.freeChunksList, c)
c.used = false
else:
freeOsChunks(a, c, c.size)
proc splitChunk(a: var TMemRegion, c: PBigChunk, size: int) =
var rest = cast[PBigChunk](cast[ByteAddress](c) +% size)
sysAssert(rest notin a.freeChunksList, "splitChunk")
rest.size = c.size - size
rest.used = false
rest.next = nil
rest.prev = nil
rest.prevSize = size
updatePrevSize(a, c, rest.size)
c.size = size
incl(a, a.chunkStarts, pageIndex(rest))
listAdd(a.freeChunksList, rest)
proc getBigChunk(a: var TMemRegion, size: int): PBigChunk =
# use first fit for now:
sysAssert((size and PageMask) == 0, "getBigChunk 1")
sysAssert(size > 0, "getBigChunk 2")
result = a.freeChunksList
block search:
while result != nil:
sysAssert chunkUnused(result), "getBigChunk 3"
if result.size == size:
listRemove(a.freeChunksList, result)
break search
elif result.size > size:
listRemove(a.freeChunksList, result)
splitChunk(a, result, size)
break search
result = result.next
sysAssert result != a.freeChunksList, "getBigChunk 4"
if size < InitialMemoryRequest:
result = requestOsChunks(a, InitialMemoryRequest)
splitChunk(a, result, size)
else:
result = requestOsChunks(a, size)
result.prevSize = 0 # XXX why is this needed?
result.used = true
incl(a, a.chunkStarts, pageIndex(result))
dec(a.freeMem, size)
proc getSmallChunk(a: var TMemRegion): PSmallChunk =
var res = getBigChunk(a, PageSize)
sysAssert res.prev == nil, "getSmallChunk 1"
sysAssert res.next == nil, "getSmallChunk 2"
result = cast[PSmallChunk](res)
# -----------------------------------------------------------------------------
proc isAllocatedPtr(a: TMemRegion, p: pointer): bool {.benign.}
proc allocInv(a: TMemRegion): bool =
## checks some (not all yet) invariants of the allocator's data structures.
for s in low(a.freeSmallChunks)..high(a.freeSmallChunks):
var c = a.freeSmallChunks[s]
while c != nil:
if c.next == c:
echo "[SYSASSERT] c.next == c"
return false
if c.size != s * MemAlign:
echo "[SYSASSERT] c.size != s * MemAlign"
return false
var it = c.freeList
while it != nil:
if it.zeroField != 0:
echo "[SYSASSERT] it.zeroField != 0"
c_printf("%ld %p\n", it.zeroField, it)
return false
it = it.next
c = c.next
result = true
proc rawAlloc(a: var TMemRegion, requestedSize: int): pointer =
sysAssert(allocInv(a), "rawAlloc: begin")
sysAssert(roundup(65, 8) == 72, "rawAlloc: roundup broken")
sysAssert(requestedSize >= sizeof(TFreeCell), "rawAlloc: requested size too small")
var size = roundup(requestedSize, MemAlign)
sysAssert(size >= requestedSize, "insufficient allocated size!")
#c_fprintf(c_stdout, "alloc; size: %ld; %ld\n", requestedSize, size)
if size <= SmallChunkSize-smallChunkOverhead():
# allocate a small block: for small chunks, we use only its next pointer
var s = size div MemAlign
var c = a.freeSmallChunks[s]
if c == nil:
c = getSmallChunk(a)
c.freeList = nil
sysAssert c.size == PageSize, "rawAlloc 3"
c.size = size
c.acc = size
c.free = SmallChunkSize - smallChunkOverhead() - size
c.next = nil
c.prev = nil
listAdd(a.freeSmallChunks[s], c)
result = addr(c.data)
sysAssert((cast[ByteAddress](result) and (MemAlign-1)) == 0, "rawAlloc 4")
else:
sysAssert(allocInv(a), "rawAlloc: begin c != nil")
sysAssert c.next != c, "rawAlloc 5"
#if c.size != size:
# c_fprintf(c_stdout, "csize: %lld; size %lld\n", c.size, size)
sysAssert c.size == size, "rawAlloc 6"
if c.freeList == nil:
sysAssert(c.acc + smallChunkOverhead() + size <= SmallChunkSize,
"rawAlloc 7")
result = cast[pointer](cast[ByteAddress](addr(c.data)) +% c.acc)
inc(c.acc, size)
else:
result = c.freeList
sysAssert(c.freeList.zeroField == 0, "rawAlloc 8")
c.freeList = c.freeList.next
dec(c.free, size)
sysAssert((cast[ByteAddress](result) and (MemAlign-1)) == 0, "rawAlloc 9")
sysAssert(allocInv(a), "rawAlloc: end c != nil")
sysAssert(allocInv(a), "rawAlloc: before c.free < size")
if c.free < size:
sysAssert(allocInv(a), "rawAlloc: before listRemove test")
listRemove(a.freeSmallChunks[s], c)
sysAssert(allocInv(a), "rawAlloc: end listRemove test")
sysAssert(((cast[ByteAddress](result) and PageMask) - smallChunkOverhead()) %%
size == 0, "rawAlloc 21")
sysAssert(allocInv(a), "rawAlloc: end small size")
else:
size = roundup(requestedSize+bigChunkOverhead(), PageSize)
# allocate a large block
var c = getBigChunk(a, size)
sysAssert c.prev == nil, "rawAlloc 10"
sysAssert c.next == nil, "rawAlloc 11"
sysAssert c.size == size, "rawAlloc 12"
result = addr(c.data)
sysAssert((cast[ByteAddress](result) and (MemAlign-1)) == 0, "rawAlloc 13")
if a.root == nil: a.root = bottom
add(a, a.root, cast[ByteAddress](result), cast[ByteAddress](result)+%size)
sysAssert(isAccessible(a, result), "rawAlloc 14")
sysAssert(allocInv(a), "rawAlloc: end")
when logAlloc: cprintf("rawAlloc: %ld %p\n", requestedSize, result)
proc rawAlloc0(a: var TMemRegion, requestedSize: int): pointer =
result = rawAlloc(a, requestedSize)
zeroMem(result, requestedSize)
proc rawDealloc(a: var TMemRegion, p: pointer) =
#sysAssert(isAllocatedPtr(a, p), "rawDealloc: no allocated pointer")
sysAssert(allocInv(a), "rawDealloc: begin")
var c = pageAddr(p)
if isSmallChunk(c):
# `p` is within a small chunk:
var c = cast[PSmallChunk](c)
var s = c.size
sysAssert(((cast[ByteAddress](p) and PageMask) - smallChunkOverhead()) %%
s == 0, "rawDealloc 3")
var f = cast[ptr TFreeCell](p)
#echo("setting to nil: ", $cast[TAddress](addr(f.zeroField)))
sysAssert(f.zeroField != 0, "rawDealloc 1")
f.zeroField = 0
f.next = c.freeList
c.freeList = f
when overwriteFree:
# set to 0xff to check for usage after free bugs:
c_memset(cast[pointer](cast[int](p) +% sizeof(TFreeCell)), -1'i32,
s -% sizeof(TFreeCell))
# check if it is not in the freeSmallChunks[s] list:
if c.free < s:
# add it to the freeSmallChunks[s] array:
listAdd(a.freeSmallChunks[s div MemAlign], c)
inc(c.free, s)
else:
inc(c.free, s)
if c.free == SmallChunkSize-smallChunkOverhead():
listRemove(a.freeSmallChunks[s div MemAlign], c)
c.size = SmallChunkSize
freeBigChunk(a, cast[PBigChunk](c))
sysAssert(((cast[ByteAddress](p) and PageMask) - smallChunkOverhead()) %%
s == 0, "rawDealloc 2")
else:
# set to 0xff to check for usage after free bugs:
when overwriteFree: c_memset(p, -1'i32, c.size -% bigChunkOverhead())
# free big chunk
var c = cast[PBigChunk](c)
a.deleted = bottom
del(a, a.root, cast[int](addr(c.data)))
freeBigChunk(a, c)
sysAssert(allocInv(a), "rawDealloc: end")
when logAlloc: cprintf("rawDealloc: %p\n", p)
proc isAllocatedPtr(a: TMemRegion, p: pointer): bool =
if isAccessible(a, p):
var c = pageAddr(p)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
var offset = (cast[ByteAddress](p) and (PageSize-1)) -%
smallChunkOverhead()
result = (c.acc >% offset) and (offset %% c.size == 0) and
(cast[ptr TFreeCell](p).zeroField >% 1)
else:
var c = cast[PBigChunk](c)
result = p == addr(c.data) and cast[ptr TFreeCell](p).zeroField >% 1
proc prepareForInteriorPointerChecking(a: var TMemRegion) {.inline.} =
a.minLargeObj = lowGauge(a.root)
a.maxLargeObj = highGauge(a.root)
proc interiorAllocatedPtr(a: TMemRegion, p: pointer): pointer =
if isAccessible(a, p):
var c = pageAddr(p)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
var offset = (cast[ByteAddress](p) and (PageSize-1)) -%
smallChunkOverhead()
if c.acc >% offset:
sysAssert(cast[ByteAddress](addr(c.data)) +% offset ==
cast[ByteAddress](p), "offset is not what you think it is")
var d = cast[ptr TFreeCell](cast[ByteAddress](addr(c.data)) +%
offset -% (offset %% c.size))
if d.zeroField >% 1:
result = d
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
else:
var c = cast[PBigChunk](c)
var d = addr(c.data)
if p >= d and cast[ptr TFreeCell](d).zeroField >% 1:
result = d
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
else:
var q = cast[int](p)
if q >=% a.minLargeObj and q <=% a.maxLargeObj:
# this check is highly effective! Test fails for 99,96% of all checks on
# an x86-64.
var avlNode = inRange(a.root, q)
if avlNode != nil:
var k = cast[pointer](avlNode.key)
var c = cast[PBigChunk](pageAddr(k))
sysAssert(addr(c.data) == k, " k is not the same as addr(c.data)!")
if cast[ptr TFreeCell](k).zeroField >% 1:
result = k
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
proc ptrSize(p: pointer): int =
var x = cast[pointer](cast[ByteAddress](p) -% sizeof(TFreeCell))
var c = pageAddr(p)
sysAssert(not chunkUnused(c), "ptrSize")
result = c.size -% sizeof(TFreeCell)
if not isSmallChunk(c):
dec result, bigChunkOverhead()
proc alloc(allocator: var TMemRegion, size: Natural): pointer =
result = rawAlloc(allocator, size+sizeof(TFreeCell))
cast[ptr TFreeCell](result).zeroField = 1 # mark it as used
sysAssert(not isAllocatedPtr(allocator, result), "alloc")
result = cast[pointer](cast[ByteAddress](result) +% sizeof(TFreeCell))
proc alloc0(allocator: var TMemRegion, size: Natural): pointer =
result = alloc(allocator, size)
zeroMem(result, size)
proc dealloc(allocator: var TMemRegion, p: pointer) =
sysAssert(p != nil, "dealloc 0")
var x = cast[pointer](cast[ByteAddress](p) -% sizeof(TFreeCell))
sysAssert(x != nil, "dealloc 1")
sysAssert(isAccessible(allocator, x), "is not accessible")
sysAssert(cast[ptr TFreeCell](x).zeroField == 1, "dealloc 2")
rawDealloc(allocator, x)
sysAssert(not isAllocatedPtr(allocator, x), "dealloc 3")
proc realloc(allocator: var TMemRegion, p: pointer, newsize: Natural): pointer =
if newsize > 0:
result = alloc0(allocator, newsize)
if p != nil:
copyMem(result, p, ptrSize(p))
dealloc(allocator, p)
elif p != nil:
dealloc(allocator, p)
proc deallocOsPages(a: var TMemRegion) =
# we free every 'ordinarily' allocated page by iterating over the page bits:
for p in elements(a.chunkStarts):
var page = cast[PChunk](p shl PageShift)
when not weirdUnmap:
var size = if page.size < PageSize: PageSize else: page.size
osDeallocPages(page, size)
else:
# Linux on PowerPC for example frees MORE than asked if 'munmap'
# receives the start of an originally mmap'ed memory block. This is not
# too bad, but we must not access 'page.size' then as that could trigger
# a segfault. But we don't need to access 'page.size' here anyway,
# because calling munmap with PageSize suffices:
osDeallocPages(page, PageSize)
# And then we free the pages that are in use for the page bits:
llDeallocAll(a)
proc getFreeMem(a: TMemRegion): int {.inline.} = result = a.freeMem
proc getTotalMem(a: TMemRegion): int {.inline.} = result = a.currMem
proc getOccupiedMem(a: TMemRegion): int {.inline.} =
result = a.currMem - a.freeMem
# ---------------------- thread memory region -------------------------------
template instantiateForRegion(allocator: expr) =
when defined(fulldebug):
proc interiorAllocatedPtr*(p: pointer): pointer =
result = interiorAllocatedPtr(allocator, p)
proc isAllocatedPtr*(p: pointer): bool =
let p = cast[pointer](cast[ByteAddress](p)-%ByteAddress(sizeof(TCell)))
result = isAllocatedPtr(allocator, p)
proc deallocOsPages = deallocOsPages(allocator)
proc alloc(size: Natural): pointer =
result = alloc(allocator, size)
proc alloc0(size: Natural): pointer =
result = alloc0(allocator, size)
proc dealloc(p: pointer) =
dealloc(allocator, p)
proc realloc(p: pointer, newsize: Natural): pointer =
result = realloc(allocator, p, newSize)
when false:
proc countFreeMem(): int =
# only used for assertions
var it = allocator.freeChunksList
while it != nil:
inc(result, it.size)
it = it.next
proc getFreeMem(): int =
result = allocator.freeMem
#sysAssert(result == countFreeMem())
proc getTotalMem(): int = return allocator.currMem
proc getOccupiedMem(): int = return getTotalMem() - getFreeMem()
# -------------------- shared heap region ----------------------------------
when hasThreadSupport:
var sharedHeap: TMemRegion
var heapLock: TSysLock
initSysLock(heapLock)
proc allocShared(size: Natural): pointer =
when hasThreadSupport:
acquireSys(heapLock)
result = alloc(sharedHeap, size)
releaseSys(heapLock)
else:
result = alloc(size)
proc allocShared0(size: Natural): pointer =
result = allocShared(size)
zeroMem(result, size)
proc deallocShared(p: pointer) =
when hasThreadSupport:
acquireSys(heapLock)
dealloc(sharedHeap, p)
releaseSys(heapLock)
else:
dealloc(p)
proc reallocShared(p: pointer, newsize: Natural): pointer =
when hasThreadSupport:
acquireSys(heapLock)
result = realloc(sharedHeap, p, newsize)
releaseSys(heapLock)
else:
result = realloc(p, newSize)
when hasThreadSupport:
template sharedMemStatsShared(v: int) {.immediate.} =
acquireSys(heapLock)
result = v
releaseSys(heapLock)
proc getFreeSharedMem(): int =
sharedMemStatsShared(sharedHeap.freeMem)
proc getTotalSharedMem(): int =
sharedMemStatsShared(sharedHeap.currMem)
proc getOccupiedSharedMem(): int =
sharedMemStatsShared(sharedHeap.currMem - sharedHeap.freeMem)
{.pop.}