#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Garbage Collector
#
# The basic algorithm is *Deferrent Reference Counting* with cycle detection.
# This is achieved by combining a Deutsch-Bobrow garbage collector
# together with Christoper's partial mark-sweep garbage collector.
#
# Special care has been taken to avoid recursion as far as possible to avoid
# stack overflows when traversing deep datastructures. It is well-suited
# for soft real time applications (like games).
{.push profiler:off.}
const
CycleIncrease = 2 # is a multiplicative increase
InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow
ZctThreshold = 500 # we collect garbage if the ZCT's size
# reaches this threshold
# this seems to be a good value
withRealTime = defined(useRealtimeGC)
when withRealTime and not declared(getTicks):
include "system/timers"
when defined(memProfiler):
proc nimProfile(requestedSize: int)
const
rcShift = 6 # the reference count is shifted so we can use
# the least significat bits for additinal flags:
rcAlive = 0b00000 # object is reachable.
# color *black* in the original paper
rcCycleCandidate = 0b00001 # possible root of a cycle. *purple*
rcDecRefApplied = 0b00010 # the first dec-ref phase of the
# collector was already applied to this
# object. *gray*
rcMaybeDead = 0b00011 # this object is a candidate for deletion
# during the collect cycles algorithm.
# *white*.
rcReallyDead = 0b00100 # this is proved to be garbage
rcRetiredBuffer = 0b00101 # this is a seq or string buffer that
# was replaced by a resize operation.
# see growObj for details
rcColorMask = RefCount(0b00111)
rcZct = 0b01000 # already added to ZCT
rcInCycleRoots = 0b10000 # already buffered as cycle candidate
rcHasStackRef = 0b100000 # the object had a stack ref in the last
# cycle collection
rcMarkBit = rcHasStackRef # this is currently used for leak detection
# when traceGC is on
rcBufferedAnywhere = rcZct or rcInCycleRoots
rcIncrement = 1 shl rcShift # don't touch the color bits
const
NewObjectsAreCycleRoots = true
# the alternative is to use the old strategy of adding cycle roots
# in incRef (in the compiler itself, this doesn't change much)
IncRefRemovesCandidates = false
# this is safe only if we can reliably track the fact that the object
# has stack references. This could be easily done by adding another bit
# to the refcount field and setting it up in unmarkStackAndRegisters.
# The bit must also be set for new objects that are not rc1 and it must be
# examined in the decref loop in collectCycles.
# XXX: not implemented yet as tests didn't show any improvement from this
MarkingSkipsAcyclicObjects = true
# Acyclic objects can be safely ignored in the mark and scan phases,
# because they cannot contribute to the internal count.
# XXX: if we generate specialized `markCyclic` and `markAcyclic`
# procs we can further optimize this as there won't be need for any
# checks in the code
MinimumStackMarking = false
# Try to scan only the user stack and ignore the part of the stack
# belonging to the GC itself. see setStackTop for further info.
# XXX: still has problems in release mode in the compiler itself.
# investigate how it affects growObj
CollectCyclesStats = false
type
WalkOp = enum
waPush
Finalizer {.compilerproc.} = proc (self: pointer) {.nimcall.}
# A ref type can have a finalizer that is called before the object's
# storage is freed.
GcStat {.final, pure.} = object
stackScans: int # number of performed stack scans (for statistics)
cycleCollections: int # number of performed full collections
maxThreshold: int # max threshold that has been set
maxStackSize: int # max stack size
maxStackCells: int # max stack cells in ``decStack``
cycleTableSize: int # max entries in cycle table
maxPause: int64 # max measured GC pause in nanoseconds
GcHeap {.final, pure.} = object # this contains the zero count and
# non-zero count table
stackBottom: pointer
stackTop: pointer
cycleThreshold: int
zct: CellSeq # the zero count table
decStack: CellSeq # cells in the stack that are to decref again
cycleRoots: CellSeq
tempStack: CellSeq # temporary stack for recursion elimination
freeStack: CellSeq # objects ready to be freed
recGcLock: int # prevent recursion via finalizers; no thread lock
cycleRootsTrimIdx: int # Trimming is a light-weight collection of the
# cycle roots table that uses a cheap linear scan
# to find only possitively dead objects.
# One strategy is to perform it only for new objects
# allocated between the invocations of collectZCT.
# This index indicates the start of the range of
# such new objects within the table.
when withRealTime:
maxPause: Nanos # max allowed pause in nanoseconds; active if > 0
region: MemRegion # garbage collected region
stat: GcStat
{.deprecated: [TWalkOp: WalkOp, TFinalizer: Finalizer, TGcStat: GcStat,
TGcHeap: GcHeap].}
var
gch* {.rtlThreadVar.}: GcHeap
when not defined(useNimRtl):
instantiateForRegion(gch.region)
template acquire(gch: GcHeap) =
when hasThreadSupport and hasSharedHeap:
AcquireSys(HeapLock)
template release(gch: GcHeap) =
when hasThreadSupport and hasSharedHeap:
releaseSys(HeapLock)
template setColor(c: PCell, color) =
c.refcount = (c.refcount and not rcColorMask) or color
template color(c: PCell): expr =
c.refcount and rcColorMask
template isBitDown(c: PCell, bit): expr =
(c.refcount and bit) == 0
template isBitUp(c: PCell, bit): expr =
(c.refcount and bit) != 0
template setBit(c: PCell, bit): expr =
c.refcount = c.refcount or bit
template isDead(c: Pcell): expr =
c.isBitUp(rcReallyDead) # also covers rcRetiredBuffer
template clearBit(c: PCell, bit): expr =
c.refcount = c.refcount and (not RefCount(bit))
when debugGC:
var gcCollectionIdx = 0
proc colorStr(c: PCell): cstring =
let color = c.color
case color
of rcAlive: return "alive"
of rcMaybeDead: return "maybedead"
of rcCycleCandidate: return "candidate"
of rcDecRefApplied: return "marked"
of rcRetiredBuffer: return "retired"
of rcReallyDead: return "dead"
else: return "unknown?"
proc inCycleRootsStr(c: PCell): cstring =
if c.isBitUp(rcInCycleRoots): result = "cycleroot"
else: result = ""
proc inZctStr(c: PCell): cstring =
if c.isBitUp(rcZct): result = "zct"
else: result = ""
proc writeCell*(msg: CString, c: PCell, force = false) =
var kind = -1
if c.typ != nil: kind = ord(c.typ.kind)
when trackAllocationSource:
c_fprintf(c_stdout, "[GC %d] %s: %p %d rc=%ld %s %s %s from %s(%ld)\n",
gcCollectionIdx,
msg, c, kind, c.refcount shr rcShift,
c.colorStr, c.inCycleRootsStr, c.inZctStr,
c.filename, c.line)
else:
c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld\n",
msg, c, kind, c.refcount shr rcShift)
proc addZCT(zct: var CellSeq, c: PCell) {.noinline.} =
if c.isBitDown(rcZct):
c.setBit rcZct
zct.add c
template setStackTop(gch) =
# This must be called immediately after we enter the GC code
# to minimize the size of the scanned stack. The stack consumed
# by the GC procs may amount to 200-400 bytes depending on the
# build settings and this contributes to false-positives
# in the conservative stack marking
when MinimumStackMarking:
var stackTop {.volatile.}: pointer
gch.stackTop = addr(stackTop)
template addCycleRoot(cycleRoots: var CellSeq, c: PCell) =
if c.color != rcCycleCandidate:
c.setColor rcCycleCandidate
# the object may be buffered already. for example, consider:
# decref; incref; decref
if c.isBitDown(rcInCycleRoots):
c.setBit rcInCycleRoots
cycleRoots.add c
proc cellToUsr(cell: PCell): pointer {.inline.} =
# convert object (=pointer to refcount) to pointer to userdata
result = cast[pointer](cast[ByteAddress](cell)+%ByteAddress(sizeof(Cell)))
proc usrToCell*(usr: pointer): PCell {.inline.} =
# convert pointer to userdata to object (=pointer to refcount)
result = cast[PCell](cast[ByteAddress](usr)-%ByteAddress(sizeof(Cell)))
proc canbeCycleRoot(c: PCell): bool {.inline.} =
result = ntfAcyclic notin c.typ.flags
proc extGetCellType(c: pointer): PNimType {.compilerproc.} =
# used for code generation concerning debugging
result = usrToCell(c).typ
proc internRefcount(p: pointer): int {.exportc: "getRefcount".} =
result = int(usrToCell(p).refcount) shr rcShift
# this that has to equals zero, otherwise we have to round up UnitsPerPage:
when BitsPerPage mod (sizeof(int)*8) != 0:
{.error: "(BitsPerPage mod BitsPerUnit) should be zero!".}
# forward declarations:
proc collectCT(gch: var GcHeap)
proc isOnStack*(p: pointer): bool {.noinline.}
proc forAllChildren(cell: PCell, op: WalkOp)
proc doOperation(p: pointer, op: WalkOp)
proc forAllChildrenAux(dest: pointer, mt: PNimType, op: WalkOp)
# we need the prototype here for debugging purposes
proc prepareDealloc(cell: PCell) =
if cell.typ.finalizer != nil:
# the finalizer could invoke something that
# allocates memory; this could trigger a garbage
# collection. Since we are already collecting we
# prevend recursive entering here by a lock.
# XXX: we should set the cell's children to nil!
inc(gch.recGcLock)
(cast[Finalizer](cell.typ.finalizer))(cellToUsr(cell))
dec(gch.recGcLock)
when traceGC:
# traceGC is a special switch to enable extensive debugging
type
CellState = enum
csAllocated, csFreed
{.deprecated: [TCellState: CellState].}
var
states: array[CellState, CellSet]
proc traceCell(c: PCell, state: CellState) =
case state
of csAllocated:
if c in states[csAllocated]:
writeCell("attempt to alloc an already allocated cell", c)
sysAssert(false, "traceCell 1")
excl(states[csFreed], c)
# writecell("allocated", c)
of csFreed:
if c in states[csFreed]:
writeCell("attempt to free a cell twice", c)
sysAssert(false, "traceCell 2")
if c notin states[csAllocated]:
writeCell("attempt to free not an allocated cell", c)
sysAssert(false, "traceCell 3")
excl(states[csAllocated], c)
# writecell("freed", c)
incl(states[state], c)
proc computeCellWeight(c: PCell): int =
var x: CellSet
x.init
let startLen = gch.tempStack.len
c.forAllChildren waPush
while startLen != gch.tempStack.len:
dec gch.tempStack.len
var c = gch.tempStack.d[gch.tempStack.len]
if c in states[csFreed]: continue
inc result
if c notin x:
x.incl c
c.forAllChildren waPush
template markChildrenRec(cell) =
let startLen = gch.tempStack.len
cell.forAllChildren waPush
let isMarked = cell.isBitUp(rcMarkBit)
while startLen != gch.tempStack.len:
dec gch.tempStack.len
var c = gch.tempStack.d[gch.tempStack.len]
if c in states[csFreed]: continue
if c.isBitDown(rcMarkBit):
c.setBit rcMarkBit
c.forAllChildren waPush
if c.isBitUp(rcMarkBit) and not isMarked:
writecell("cyclic cell", cell)
cprintf "Weight %d\n", cell.computeCellWeight
proc writeLeakage(onlyRoots: bool) =
if onlyRoots:
for c in elements(states[csAllocated]):
if c notin states[csFreed]:
markChildrenRec(c)
var f = 0
var a = 0
for c in elements(states[csAllocated]):
inc a
if c in states[csFreed]: inc f
elif c.isBitDown(rcMarkBit):
writeCell("leak", c)
cprintf "Weight %d\n", c.computeCellWeight
cfprintf(cstdout, "Allocations: %ld; freed: %ld\n", a, f)
template gcTrace(cell, state: expr): stmt {.immediate.} =
when logGC: writeCell($state, cell)
when traceGC: traceCell(cell, state)
template WithHeapLock(blk: stmt): stmt =
when hasThreadSupport and hasSharedHeap: AcquireSys(HeapLock)
blk
when hasThreadSupport and hasSharedHeap: ReleaseSys(HeapLock)
proc rtlAddCycleRoot(c: PCell) {.rtl, inl.} =
# we MUST access gch as a global here, because this crosses DLL boundaries!
WithHeapLock: addCycleRoot(gch.cycleRoots, c)
proc rtlAddZCT(c: PCell) {.rtl, inl.} =
# we MUST access gch as a global here, because this crosses DLL boundaries!
WithHeapLock: addZCT(gch.zct, c)
type
CyclicMode = enum
Cyclic,
Acyclic,
MaybeCyclic
ReleaseType = enum
AddToZTC
FreeImmediately
HeapType = enum
LocalHeap
SharedHeap
{.deprecated: [TCyclicMode: CyclicMode, TReleaseType: ReleaseType,
THeapType: HeapType].}
template `++` (rc: RefCount, heapType: HeapType): stmt =
when heapType == SharedHeap:
discard atomicInc(rc, rcIncrement)
else:
inc rc, rcIncrement
template `--`(rc: RefCount): expr =
dec rc, rcIncrement
rc <% rcIncrement
template `--` (rc: RefCount, heapType: HeapType): expr =
(when heapType == SharedHeap: atomicDec(rc, rcIncrement) <% rcIncrement else: --rc)
template doDecRef(cc: PCell,
heapType = LocalHeap,
cycleFlag = MaybeCyclic): stmt =
var c = cc
sysAssert(isAllocatedPtr(gch.region, c), "decRef: interiorPtr")
# XXX: move this elesewhere
sysAssert(c.refcount >=% rcIncrement, "decRef")
if c.refcount--(heapType):
# this is the last reference from the heap
# add to a zero-count-table that will be matched against stack pointers
rtlAddZCT(c)
else:
when cycleFlag != Acyclic:
if cycleFlag == Cyclic or canBeCycleRoot(c):
# a cycle may have been broken
rtlAddCycleRoot(c)
template doIncRef(cc: PCell,
heapType = LocalHeap,
cycleFlag = MaybeCyclic): stmt =
var c = cc
c.refcount++(heapType)
when cycleFlag != Acyclic:
when NewObjectsAreCycleRoots:
if canbeCycleRoot(c):
addCycleRoot(gch.cycleRoots, c)
elif IncRefRemovesCandidates:
c.setColor rcAlive
# XXX: this is not really atomic enough!
proc nimGCref(p: pointer) {.compilerProc, inline.} = doIncRef(usrToCell(p))
proc nimGCunref(p: pointer) {.compilerProc, inline.} = doDecRef(usrToCell(p))
proc nimGCunrefNoCycle(p: pointer) {.compilerProc, inline.} =
sysAssert(allocInv(gch.region), "begin nimGCunrefNoCycle")
var c = usrToCell(p)
sysAssert(isAllocatedPtr(gch.region, c), "nimGCunrefNoCycle: isAllocatedPtr")
if c.refcount--(LocalHeap):
rtlAddZCT(c)
sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 2")
sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 5")
template doAsgnRef(dest: PPointer, src: pointer,
heapType = LocalHeap, cycleFlag = MaybeCyclic): stmt =
sysAssert(not isOnStack(dest), "asgnRef")
# BUGFIX: first incRef then decRef!
if src != nil: doIncRef(usrToCell(src), heapType, cycleFlag)
if dest[] != nil: doDecRef(usrToCell(dest[]), heapType, cycleFlag)
dest[] = src
proc asgnRef(dest: PPointer, src: pointer) {.compilerProc, inline.} =
# the code generator calls this proc!
doAsgnRef(dest, src, LocalHeap, MaybeCyclic)
proc asgnRefNoCycle(dest: PPointer, src: pointer) {.compilerProc, inline.} =
# the code generator calls this proc if it is known at compile time that no
# cycle is possible.
doAsgnRef(dest, src, LocalHeap, Acyclic)
proc unsureAsgnRef(dest: PPointer, src: pointer) {.compilerProc.} =
# unsureAsgnRef updates the reference counters only if dest is not on the
# stack. It is used by the code generator if it cannot decide wether a
# reference is in the stack or not (this can happen for var parameters).
if not isOnStack(dest):
if src != nil: doIncRef(usrToCell(src))
# XXX we must detect a shared heap here
# better idea may be to just eliminate the need for unsureAsgnRef
#
# XXX finally use assembler for the stack checking instead!
# the test for '!= nil' is correct, but I got tired of the segfaults
# resulting from the crappy stack checking:
if cast[int](dest[]) >=% PageSize: doDecRef(usrToCell(dest[]))
else:
# can't be an interior pointer if it's a stack location!
sysAssert(interiorAllocatedPtr(gch.region, dest)==nil,
"stack loc AND interior pointer")
dest[] = src
when hasThreadSupport and hasSharedHeap:
# shared heap version of the above procs
proc asgnRefSh(dest: PPointer, src: pointer) {.compilerProc, inline.} =
doAsgnRef(dest, src, SharedHeap, MaybeCyclic)
proc asgnRefNoCycleSh(dest: PPointer, src: pointer) {.compilerProc, inline.} =
doAsgnRef(dest, src, SharedHeap, Acyclic)
proc initGC() =
when not defined(useNimRtl):
when traceGC:
for i in low(CellState)..high(CellState): init(states[i])
gch.cycleThreshold = InitialCycleThreshold
gch.stat.stackScans = 0
gch.stat.cycleCollections = 0
gch.stat.maxThreshold = 0
gch.stat.maxStackSize = 0
gch.stat.maxStackCells = 0
gch.stat.cycleTableSize = 0
# init the rt
init(gch.zct)
init(gch.tempStack)
init(gch.freeStack)
init(gch.cycleRoots)
init(gch.decStack)
proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: WalkOp) =
var d = cast[ByteAddress](dest)
case n.kind
of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op)
of nkList:
for i in 0..n.len-1:
# inlined for speed
if n.sons[i].kind == nkSlot:
if n.sons[i].typ.kind in {tyRef, tyString, tySequence}:
doOperation(cast[PPointer](d +% n.sons[i].offset)[], op)
else:
forAllChildrenAux(cast[pointer](d +% n.sons[i].offset),
n.sons[i].typ, op)
else:
forAllSlotsAux(dest, n.sons[i], op)
of nkCase:
var m = selectBranch(dest, n)
if m != nil: forAllSlotsAux(dest, m, op)
of nkNone: sysAssert(false, "forAllSlotsAux")
proc forAllChildrenAux(dest: pointer, mt: PNimType, op: WalkOp) =
var d = cast[ByteAddress](dest)
if dest == nil: return # nothing to do
if ntfNoRefs notin mt.flags:
case mt.kind
of tyRef, tyString, tySequence: # leaf:
doOperation(cast[PPointer](d)[], op)
of tyObject, tyTuple:
forAllSlotsAux(dest, mt.node, op)
of tyArray, tyArrayConstr, tyOpenArray:
for i in 0..(mt.size div mt.base.size)-1:
forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op)
else: discard
proc forAllChildren(cell: PCell, op: WalkOp) =
sysAssert(cell != nil, "forAllChildren: 1")
sysAssert(cell.typ != nil, "forAllChildren: 2")
sysAssert cell.typ.kind in {tyRef, tySequence, tyString}, "forAllChildren: 3"
let marker = cell.typ.marker
if marker != nil:
marker(cellToUsr(cell), op.int)
else:
case cell.typ.kind
of tyRef: # common case
forAllChildrenAux(cellToUsr(cell), cell.typ.base, op)
of tySequence:
var d = cast[ByteAddress](cellToUsr(cell))
var s = cast[PGenericSeq](d)
if s != nil:
let baseAddr = d +% GenericSeqSize
for i in 0..s.len-1:
forAllChildrenAux(cast[pointer](baseAddr +% i *% cell.typ.base.size),
cell.typ.base, op)
else: discard
proc addNewObjToZCT(res: PCell, gch: var GcHeap) {.inline.} =
# we check the last 8 entries (cache line) for a slot that could be reused.
# In 63% of all cases we succeed here! But we have to optimize the heck
# out of this small linear search so that ``newObj`` is not slowed down.
#
# Slots to try cache hit
# 1 32%
# 4 59%
# 8 63%
# 16 66%
# all slots 68%
var L = gch.zct.len
var d = gch.zct.d
when true:
# loop unrolled for performance:
template replaceZctEntry(i: expr) =
c = d[i]
if c.refcount >=% rcIncrement:
c.clearBit(rcZct)
d[i] = res
return
if L > 8:
var c: PCell
replaceZctEntry(L-1)
replaceZctEntry(L-2)
replaceZctEntry(L-3)
replaceZctEntry(L-4)
replaceZctEntry(L-5)
replaceZctEntry(L-6)
replaceZctEntry(L-7)
replaceZctEntry(L-8)
add(gch.zct, res)
else:
d[L] = res
inc(gch.zct.len)
else:
for i in countdown(L-1, max(0, L-8)):
var c = d[i]
if c.refcount >=% rcIncrement:
c.clearBit(rcZct)
d[i] = res
return
add(gch.zct, res)
proc rawNewObj(typ: PNimType, size: int, gch: var GcHeap, rc1 = false): pointer =
# generates a new object and sets its reference counter to 0
acquire(gch)
sysAssert(allocInv(gch.region), "rawNewObj begin")
sysAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
collectCT(gch)
sysAssert(allocInv(gch.region), "rawNewObj after collect")
var res = cast[PCell](rawAlloc(gch.region, size + sizeof(Cell)))
sysAssert(allocInv(gch.region), "rawNewObj after rawAlloc")
sysAssert((cast[ByteAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
res.typ = typ
when trackAllocationSource and not hasThreadSupport:
if framePtr != nil and framePtr.prev != nil and framePtr.prev.prev != nil:
res.filename = framePtr.prev.prev.filename
res.line = framePtr.prev.prev.line
else:
res.filename = "nofile"
if rc1:
res.refcount = rcIncrement # refcount is 1
else:
# its refcount is zero, so add it to the ZCT:
res.refcount = rcZct
addNewObjToZCT(res, gch)
if NewObjectsAreCycleRoots and canBeCycleRoot(res):
res.setBit(rcInCycleRoots)
res.setColor rcCycleCandidate
gch.cycleRoots.add res
sysAssert(isAllocatedPtr(gch.region, res), "newObj: 3")
when logGC: writeCell("new cell", res)
gcTrace(res, csAllocated)
release(gch)
result = cellToUsr(res)
sysAssert(allocInv(gch.region), "rawNewObj end")
{.pop.}
proc freeCell(gch: var GcHeap, c: PCell) =
# prepareDealloc(c)
gcTrace(c, csFreed)
when reallyDealloc: rawDealloc(gch.region, c)
else:
sysAssert(c.typ != nil, "collectCycles")
zeroMem(c, sizeof(Cell))
template eraseAt(cells: var CellSeq, at: int): stmt =
cells.d[at] = cells.d[cells.len - 1]
dec cells.len
template trimAt(roots: var CellSeq, at: int): stmt =
# This will remove a cycle root candidate during trimming.
# a candidate is removed either because it received a refup and
# it's no longer a candidate or because it received further refdowns
# and now it's dead for sure.
let c = roots.d[at]
c.clearBit(rcInCycleRoots)
roots.eraseAt(at)
if c.isBitUp(rcReallyDead) and c.refcount <% rcIncrement:
# This case covers both dead objects and retired buffers
# That's why we must also check the refcount (it may be
# kept possitive by stack references).
freeCell(gch, c)
proc newObj(typ: PNimType, size: int): pointer {.compilerRtl.} =
setStackTop(gch)
result = rawNewObj(typ, size, gch, false)
zeroMem(result, size)
when defined(memProfiler): nimProfile(size)
proc newObjNoInit(typ: PNimType, size: int): pointer {.compilerRtl.} =
setStackTop(gch)
result = rawNewObj(typ, size, gch, false)
when defined(memProfiler): nimProfile(size)
proc newSeq(typ: PNimType, len: int): pointer {.compilerRtl.} =
setStackTop(gch)
# `newObj` already uses locks, so no need for them here.
let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
result = newObj(typ, size)
cast[PGenericSeq](result).len = len
cast[PGenericSeq](result).reserved = len
proc newObjRC1(typ: PNimType, size: int): pointer {.compilerRtl.} =
setStackTop(gch)
result = rawNewObj(typ, size, gch, true)
when defined(memProfiler): nimProfile(size)
proc newSeqRC1(typ: PNimType, len: int): pointer {.compilerRtl.} =
setStackTop(gch)
let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
result = newObjRC1(typ, size)
cast[PGenericSeq](result).len = len
cast[PGenericSeq](result).reserved = len
proc growObj(old: pointer, newsize: int, gch: var GcHeap): pointer =
acquire(gch)
collectCT(gch)
var ol = usrToCell(old)
sysAssert(ol.typ != nil, "growObj: 1")
sysAssert(ol.typ.kind in {tyString, tySequence}, "growObj: 2")
sysAssert(allocInv(gch.region), "growObj begin")
var res = cast[PCell](rawAlloc(gch.region, newsize + sizeof(Cell)))
var elemSize = if ol.typ.kind != tyString: ol.typ.base.size
else: 1
var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize
# XXX: This should happen outside
# call user-defined move code
# call user-defined default constructor
copyMem(res, ol, oldsize + sizeof(Cell))
zeroMem(cast[pointer](cast[ByteAddress](res)+% oldsize +% sizeof(Cell)),
newsize-oldsize)
sysAssert((cast[ByteAddress](res) and (MemAlign-1)) == 0, "growObj: 3")
sysAssert(res.refcount shr rcShift <=% 1, "growObj: 4")
when false:
if ol.isBitUp(rcZct):
var j = gch.zct.len-1
var d = gch.zct.d
while j >= 0:
if d[j] == ol:
d[j] = res
break
dec(j)
if ol.isBitUp(rcInCycleRoots):
for i in 0 .. <gch.cycleRoots.len:
if gch.cycleRoots.d[i] == ol:
eraseAt(gch.cycleRoots, i)
freeCell(gch, ol)
else:
# the new buffer inherits the GC state of the old one
if res.isBitUp(rcZct): gch.zct.add res
if res.isBitUp(rcInCycleRoots): gch.cycleRoots.add res
# Pay attention to what's going on here! We're not releasing the old memory.
# This is because at this point there may be an interior pointer pointing
# into this buffer somewhere on the stack (due to `var` parameters now and
# and `let` and `var:var` stack locations in the future).
# We'll release the memory in the next GC cycle. If we release it here,
# we cannot guarantee that no memory will be corrupted when only safe
# language features are used. Accessing the memory after the seq/string
# has been invalidated may still result in logic errors in the user code.
# We may improve on that by protecting the page in debug builds or
# by providing a warning when we detect a stack pointer into it.
let bufferFlags = ol.refcount and rcBufferedAnywhere
if bufferFlags == 0:
# we need this in order to collect it safely later
ol.refcount = rcRetiredBuffer or rcZct
gch.zct.add ol
else:
ol.refcount = rcRetiredBuffer or bufferFlags
when logGC:
writeCell("growObj old cell", ol)
writeCell("growObj new cell", res)
gcTrace(res, csAllocated)
release(gch)
result = cellToUsr(res)
sysAssert(allocInv(gch.region), "growObj end")
when defined(memProfiler): nimProfile(newsize-oldsize)
proc growObj(old: pointer, newsize: int): pointer {.rtl.} =
setStackTop(gch)
result = growObj(old, newsize, gch)
{.push profiler:off.}
# ---------------- cycle collector -------------------------------------------
proc doOperation(p: pointer, op: WalkOp) =
if p == nil: return
var c: PCell = usrToCell(p)
sysAssert(c != nil, "doOperation: 1")
gch.tempStack.add c
proc nimGCvisit(d: pointer, op: int) {.compilerRtl.} =
doOperation(d, WalkOp(op))
type
RecursionType = enum
FromChildren,
FromRoot
{.deprecated: [TRecursionType: RecursionType].}
proc collectZCT(gch: var GcHeap): bool
template pseudoRecursion(typ: RecursionType, body: stmt): stmt =
discard
proc trimCycleRoots(gch: var GcHeap, startIdx = gch.cycleRootsTrimIdx) =
var i = startIdx
while i < gch.cycleRoots.len:
if gch.cycleRoots.d[i].color != rcCycleCandidate:
gch.cycleRoots.trimAt i
else:
inc i
gch.cycleRootsTrimIdx = gch.cycleRoots.len
# we now use a much simpler and non-recursive algorithm for cycle removal
proc collectCycles(gch: var GcHeap) =
if gch.cycleRoots.len == 0: return
gch.stat.cycleTableSize = max(gch.stat.cycleTableSize, gch.cycleRoots.len)
when CollectCyclesStats:
let l0 = gch.cycleRoots.len
let tStart = getTicks()
var
decrefs = 0
increfs = 0
collected = 0
maybedeads = 0
template ignoreObject(c: PCell): expr =
# This controls which objects will be ignored in the mark and scan stages
(when MarkingSkipsAcyclicObjects: not canbeCycleRoot(c) else: false)
# not canbeCycleRoot(c)
# false
# c.isBitUp(rcHasStackRef)
template earlyMarkAliveRec(cell) =
let startLen = gch.tempStack.len
cell.setColor rcAlive
cell.forAllChildren waPush
while startLen != gch.tempStack.len:
dec gch.tempStack.len
var c = gch.tempStack.d[gch.tempStack.len]
if c.color != rcAlive:
c.setColor rcAlive
c.forAllChildren waPush
template earlyMarkAlive(stackRoots) =
# This marks all objects reachable from the stack as alive before any
# of the other stages is executed. Such objects cannot be garbage and
# they don't need to participate in the recursive decref/incref.
for i in 0 .. <stackRoots.len:
var c = stackRoots.d[i]
# c.setBit rcHasStackRef
earlyMarkAliveRec(c)
earlyMarkAlive(gch.decStack)
when CollectCyclesStats:
let tAfterEarlyMarkAlive = getTicks()
template recursiveDecRef(cell) =
let startLen = gch.tempStack.len
cell.setColor rcDecRefApplied
cell.forAllChildren waPush
while startLen != gch.tempStack.len:
dec gch.tempStack.len
var c = gch.tempStack.d[gch.tempStack.len]
if ignoreObject(c): continue
sysAssert(c.refcount >=% rcIncrement, "recursive dec ref")
dec c.refcount, rcIncrement
inc decrefs
if c.color != rcDecRefApplied:
c.setColor rcDecRefApplied
c.forAllChildren waPush
template markRoots(roots) =
var i = 0
while i < roots.len:
if roots.d[i].color == rcCycleCandidate:
recursiveDecRef(roots.d[i])
inc i
else:
roots.trimAt i
markRoots(gch.cycleRoots)
when CollectCyclesStats:
let tAfterMark = getTicks()
c_printf "COLLECT CYCLES %d: %d/%d\n", gcCollectionIdx, gch.cycleRoots.len, l0
template recursiveMarkAlive(cell) =
let startLen = gch.tempStack.len
cell.setColor rcAlive
cell.forAllChildren waPush
while startLen != gch.tempStack.len:
dec gch.tempStack.len
var c = gch.tempStack.d[gch.tempStack.len]
if ignoreObject(c): continue
inc c.refcount, rcIncrement
inc increfs
if c.color != rcAlive:
c.setColor rcAlive
c.forAllChildren waPush
template scanRoots(roots) =
for i in 0 .. <roots.len:
let startLen = gch.tempStack.len
gch.tempStack.add roots.d[i]
while startLen != gch.tempStack.len:
dec gch.tempStack.len
var c = gch.tempStack.d[gch.tempStack.len]
if ignoreObject(c): continue
if c.color == rcDecRefApplied:
if c.refcount >=% rcIncrement:
recursiveMarkAlive(c)
else:
# note that this is not necessarily the ultimate
# destiny of the object. we may still mark it alive
# later if we encounter another node from where it's
# reachable.
c.setColor rcMaybeDead
inc maybedeads
c.forAllChildren waPush
scanRoots(gch.cycleRoots)
when CollectCyclesStats:
let tAfterScan = getTicks()
template collectDead(roots) =
for i in 0 .. <roots.len:
var c = roots.d[i]
c.clearBit(rcInCycleRoots)
let startLen = gch.tempStack.len
gch.tempStack.add c
while startLen != gch.tempStack.len:
dec gch.tempStack.len
var c = gch.tempStack.d[gch.tempStack.len]
when MarkingSkipsAcyclicObjects:
if not canbeCycleRoot(c):
# This is an acyclic object reachable from a dead cyclic object
# We must do a normal decref here that may add the acyclic object
# to the ZCT
doDecRef(c, LocalHeap, Cyclic)
continue
if c.color == rcMaybeDead and not c.isBitUp(rcInCycleRoots):
c.setColor(rcReallyDead)
inc collected
c.forAllChildren waPush
# we need to postpone the actual deallocation in order to allow
# the finalizers to run while the data structures are still intact
gch.freeStack.add c
prepareDealloc(c)
for i in 0 .. <gch.freeStack.len:
freeCell(gch, gch.freeStack.d[i])
collectDead(gch.cycleRoots)
when CollectCyclesStats:
let tFinal = getTicks()
cprintf "times:\n early mark alive: %d ms\n mark: %d ms\n scan: %d ms\n collect: %d ms\n decrefs: %d\n increfs: %d\n marked dead: %d\n collected: %d\n",
(tAfterEarlyMarkAlive - tStart) div 1_000_000,
(tAfterMark - tAfterEarlyMarkAlive) div 1_000_000,
(tAfterScan - tAfterMark) div 1_000_000,
(tFinal - tAfterScan) div 1_000_000,
decrefs,
increfs,
maybedeads,
collected
deinit(gch.cycleRoots)
init(gch.cycleRoots)
deinit(gch.freeStack)
init(gch.freeStack)
when MarkingSkipsAcyclicObjects:
# Collect the acyclic objects that became unreachable due to collected
# cyclic objects.
discard collectZCT(gch)
# collectZCT may add new cycle candidates and we may decide to loop here
# if gch.cycleRoots.len > 0: repeat
var gcDebugging* = false
var seqdbg* : proc (s: PGenericSeq) {.cdecl.}
proc gcMark(gch: var GcHeap, p: pointer) {.inline.} =
# the addresses are not as cells on the stack, so turn them to cells:
sysAssert(allocInv(gch.region), "gcMark begin")
var cell = usrToCell(p)
var c = cast[ByteAddress](cell)
if c >% PageSize:
# fast check: does it look like a cell?
var objStart = cast[PCell](interiorAllocatedPtr(gch.region, cell))
if objStart != nil:
# mark the cell:
if objStart.color != rcReallyDead:
if gcDebugging:
# writeCell("marking ", objStart)
discard
else:
inc objStart.refcount, rcIncrement
gch.decStack.add objStart
else:
# With incremental clean-up, objects spend some time
# in various lists before being deallocated.
# We just found a reference on the stack to an object,
# which we have previously labeled as unreachable.
# This is either a bug in the GC or a pure accidental
# coincidence due to the conservative stack marking.
when debugGC:
# writeCell("marking dead object", objStart)
discard
when false:
if isAllocatedPtr(gch.region, cell):
sysAssert false, "allocated pointer but not interior?"
# mark the cell:
inc cell.refcount, rcIncrement
add(gch.decStack, cell)
sysAssert(allocInv(gch.region), "gcMark end")
proc markThreadStacks(gch: var GcHeap) =
when hasThreadSupport and hasSharedHeap:
{.error: "not fully implemented".}
var it = threadList
while it != nil:
# mark registers:
for i in 0 .. high(it.registers): gcMark(gch, it.registers[i])
var sp = cast[ByteAddress](it.stackBottom)
var max = cast[ByteAddress](it.stackTop)
# XXX stack direction?
# XXX unroll this loop:
while sp <=% max:
gcMark(gch, cast[PPointer](sp)[])
sp = sp +% sizeof(pointer)
it = it.next
# ----------------- stack management --------------------------------------
# inspired from Smart Eiffel
when defined(sparc):
const stackIncreases = false
elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or
defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820):
const stackIncreases = true
else:
const stackIncreases = false
when not defined(useNimRtl):
{.push stack_trace: off.}
proc setStackBottom(theStackBottom: pointer) =
#c_fprintf(c_stdout, "stack bottom: %p;\n", theStackBottom)
# the first init must be the one that defines the stack bottom:
if gch.stackBottom == nil: gch.stackBottom = theStackBottom
else:
var a = cast[ByteAddress](theStackBottom) # and not PageMask - PageSize*2
var b = cast[ByteAddress](gch.stackBottom)
#c_fprintf(c_stdout, "old: %p new: %p;\n",gch.stackBottom,theStackBottom)
when stackIncreases:
gch.stackBottom = cast[pointer](min(a, b))
else:
gch.stackBottom = cast[pointer](max(a, b))
{.pop.}
proc stackSize(): int {.noinline.} =
var stackTop {.volatile.}: pointer
result = abs(cast[int](addr(stackTop)) - cast[int](gch.stackBottom))
var
jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int
# a little hack to get the size of a JmpBuf in the generated C code
# in a platform independent way
when defined(sparc): # For SPARC architecture.
proc isOnStack(p: pointer): bool =
var stackTop {.volatile.}: pointer
stackTop = addr(stackTop)
var b = cast[ByteAddress](gch.stackBottom)
var a = cast[ByteAddress](stackTop)
var x = cast[ByteAddress](p)
result = a <=% x and x <=% b
proc markStackAndRegisters(gch: var GcHeap) {.noinline, cdecl.} =
when defined(sparcv9):
asm """"flushw \n" """
else:
asm """"ta 0x3 ! ST_FLUSH_WINDOWS\n" """
var
max = gch.stackBottom
sp: PPointer
stackTop: array[0..1, pointer]
sp = addr(stackTop[0])
# Addresses decrease as the stack grows.
while sp <= max:
gcMark(gch, sp[])
sp = cast[PPointer](cast[ByteAddress](sp) +% sizeof(pointer))
elif defined(ELATE):
{.error: "stack marking code is to be written for this architecture".}
elif stackIncreases:
# ---------------------------------------------------------------------------
# Generic code for architectures where addresses increase as the stack grows.
# ---------------------------------------------------------------------------
proc isOnStack(p: pointer): bool =
var stackTop {.volatile.}: pointer
stackTop = addr(stackTop)
var a = cast[ByteAddress](gch.stackBottom)
var b = cast[ByteAddress](stackTop)
var x = cast[ByteAddress](p)
result = a <=% x and x <=% b
proc markStackAndRegisters(gch: var GcHeap) {.noinline, cdecl.} =
var registers: C_JmpBuf
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
var max = cast[ByteAddress](gch.stackBottom)
var sp = cast[ByteAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer)
# sp will traverse the JMP_BUF as well (jmp_buf size is added,
# otherwise sp would be below the registers structure).
while sp >=% max:
gcMark(gch, cast[PPointer](sp)[])
sp = sp -% sizeof(pointer)
else:
# ---------------------------------------------------------------------------
# Generic code for architectures where addresses decrease as the stack grows.
# ---------------------------------------------------------------------------
proc isOnStack(p: pointer): bool =
var stackTop {.volatile.}: pointer
stackTop = addr(stackTop)
var b = cast[ByteAddress](gch.stackBottom)
var a = cast[ByteAddress](stackTop)
var x = cast[ByteAddress](p)
result = a <=% x and x <=% b
proc markStackAndRegisters(gch: var GcHeap) {.noinline, cdecl.} =
# We use a jmp_buf buffer that is in the C stack.
# Used to traverse the stack and registers assuming
# that 'setjmp' will save registers in the C stack.
type PStackSlice = ptr array [0..7, pointer]
var registers: C_JmpBuf
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
when MinimumStackMarking:
# mark the registers
var jmpbufPtr = cast[ByteAddress](addr(registers))
var jmpbufEnd = jmpbufPtr +% jmpbufSize
while jmpbufPtr <=% jmpbufEnd:
gcMark(gch, cast[PPointer](jmpbufPtr)[])
jmpbufPtr = jmpbufPtr +% sizeof(pointer)
var sp = cast[ByteAddress](gch.stackTop)
else:
var sp = cast[ByteAddress](addr(registers))
# mark the user stack
var max = cast[ByteAddress](gch.stackBottom)
# loop unrolled:
while sp <% max - 8*sizeof(pointer):
gcMark(gch, cast[PStackSlice](sp)[0])
gcMark(gch, cast[PStackSlice](sp)[1])
gcMark(gch, cast[PStackSlice](sp)[2])
gcMark(gch, cast[PStackSlice](sp)[3])
gcMark(gch, cast[PStackSlice](sp)[4])
gcMark(gch, cast[PStackSlice](sp)[5])
gcMark(gch, cast[PStackSlice](sp)[6])
gcMark(gch, cast[PStackSlice](sp)[7])
sp = sp +% sizeof(pointer)*8
# last few entries:
while sp <=% max:
gcMark(gch, cast[PPointer](sp)[])
sp = sp +% sizeof(pointer)
# ----------------------------------------------------------------------------
# end of non-portable code
# ----------------------------------------------------------------------------
proc releaseCell(gch: var GcHeap, cell: PCell) =
if cell.color != rcReallyDead:
prepareDealloc(cell)
cell.setColor rcReallyDead
let l1 = gch.tempStack.len
cell.forAllChildren waPush
let l2 = gch.tempStack.len
for i in l1 .. <l2:
var cc = gch.tempStack.d[i]
if cc.refcount--(LocalHeap):
releaseCell(gch, cc)
else:
if canbeCycleRoot(cc):
addCycleRoot(gch.cycleRoots, cc)
gch.tempStack.len = l1
if cell.isBitDown(rcBufferedAnywhere):
freeCell(gch, cell)
# else:
# This object is either buffered in the cycleRoots list and we'll leave
# it there to be collected in the next collectCycles or it's pending in
# the ZCT:
# (e.g. we are now cleaning the 15th object, but this one is 18th in the
# list. Note that this can happen only if we reached this point by the
# recursion).
# We can ignore it now as the ZCT cleaner will reach it soon.
proc collectZCT(gch: var GcHeap): bool =
const workPackage = 100
var L = addr(gch.zct.len)
when withRealtime:
var steps = workPackage
var t0: Ticks
if gch.maxPause > 0: t0 = getticks()
while L[] > 0:
var c = gch.zct.d[0]
sysAssert c.isBitUp(rcZct), "collectZCT: rcZct missing!"
sysAssert(isAllocatedPtr(gch.region, c), "collectZCT: isAllocatedPtr")
# remove from ZCT:
c.clearBit(rcZct)
gch.zct.d[0] = gch.zct.d[L[] - 1]
dec(L[])
when withRealtime: dec steps
if c.refcount <% rcIncrement:
# It may have a RC > 0, if it is in the hardware stack or
# it has not been removed yet from the ZCT. This is because
# ``incref`` does not bother to remove the cell from the ZCT
# as this might be too slow.
# In any case, it should be removed from the ZCT. But not
# freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!**
if c.color == rcRetiredBuffer:
if c.isBitDown(rcInCycleRoots):
freeCell(gch, c)
else:
# if c.color == rcReallyDead: writeCell("ReallyDead in ZCT?", c)
releaseCell(gch, c)
when withRealtime:
if steps == 0:
steps = workPackage
if gch.maxPause > 0:
let duration = getticks() - t0
# the GC's measuring is not accurate and needs some cleanup actions
# (stack unmarking), so subtract some short amount of time in to
# order to miss deadlines less often:
if duration >= gch.maxPause - 50_000:
return false
result = true
gch.trimCycleRoots
#deInit(gch.zct)
#init(gch.zct)
proc unmarkStackAndRegisters(gch: var GcHeap) =
var d = gch.decStack.d
for i in 0 .. <gch.decStack.len:
sysAssert isAllocatedPtr(gch.region, d[i]), "unmarkStackAndRegisters"
# XXX: just call doDecRef?
var c = d[i]
sysAssert c.typ != nil, "unmarkStackAndRegisters 2"
if c.color == rcRetiredBuffer:
continue
# XXX no need for an atomic dec here:
if c.refcount--(LocalHeap):
# the object survived only because of a stack reference
# it still doesn't have heap references
addZCT(gch.zct, c)
if canbeCycleRoot(c):
# any cyclic object reachable from the stack can be turned into
# a leak if it's orphaned through the stack reference
# that's because the write-barrier won't be executed for stack
# locations
addCycleRoot(gch.cycleRoots, c)
gch.decStack.len = 0
proc collectCTBody(gch: var GcHeap) =
when withRealtime:
let t0 = getticks()
when debugGC: inc gcCollectionIdx
sysAssert(allocInv(gch.region), "collectCT: begin")
gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize())
sysAssert(gch.decStack.len == 0, "collectCT")
prepareForInteriorPointerChecking(gch.region)
markStackAndRegisters(gch)
markThreadStacks(gch)
gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len)
inc(gch.stat.stackScans)
if collectZCT(gch):
when cycleGC:
if getOccupiedMem(gch.region) >= gch.cycleThreshold or alwaysCycleGC:
collectCycles(gch)
sysAssert gch.zct.len == 0, "zct is not null after collect cycles"
inc(gch.stat.cycleCollections)
gch.cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() *
CycleIncrease)
gch.stat.maxThreshold = max(gch.stat.maxThreshold, gch.cycleThreshold)
unmarkStackAndRegisters(gch)
sysAssert(allocInv(gch.region), "collectCT: end")
when withRealtime:
let duration = getticks() - t0
gch.stat.maxPause = max(gch.stat.maxPause, duration)
when defined(reportMissedDeadlines):
if gch.maxPause > 0 and duration > gch.maxPause:
c_fprintf(c_stdout, "[GC] missed deadline: %ld\n", duration)
proc collectCT(gch: var GcHeap) =
if (gch.zct.len >= ZctThreshold or (cycleGC and
getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) and
gch.recGcLock == 0:
collectCTBody(gch)
when withRealtime:
proc toNano(x: int): Nanos {.inline.} =
result = x * 1000
proc GC_setMaxPause*(MaxPauseInUs: int) =
gch.maxPause = MaxPauseInUs.toNano
proc GC_step(gch: var GcHeap, us: int, strongAdvice: bool) =
acquire(gch)
gch.maxPause = us.toNano
if (gch.zct.len >= ZctThreshold or (cycleGC and
getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) or
strongAdvice:
collectCTBody(gch)
release(gch)
proc GC_step*(us: int, strongAdvice = false) = GC_step(gch, us, strongAdvice)
when not defined(useNimRtl):
proc GC_disable() =
when hasThreadSupport and hasSharedHeap:
discard atomicInc(gch.recGcLock, 1)
else:
inc(gch.recGcLock)
proc GC_enable() =
if gch.recGcLock > 0:
when hasThreadSupport and hasSharedHeap:
discard atomicDec(gch.recGcLock, 1)
else:
dec(gch.recGcLock)
proc GC_setStrategy(strategy: GC_Strategy) =
case strategy
of gcThroughput: discard
of gcResponsiveness: discard
of gcOptimizeSpace: discard
of gcOptimizeTime: discard
proc GC_enableMarkAndSweep() =
gch.cycleThreshold = InitialCycleThreshold
proc GC_disableMarkAndSweep() =
gch.cycleThreshold = high(gch.cycleThreshold)-1
# set to the max value to suppress the cycle detector
proc GC_fullCollect() =
setStackTop(gch)
acquire(gch)
var oldThreshold = gch.cycleThreshold
gch.cycleThreshold = 0 # forces cycle collection
collectCT(gch)
gch.cycleThreshold = oldThreshold
release(gch)
proc GC_getStatistics(): string =
GC_disable()
result = "[GC] total memory: " & $(getTotalMem()) & "\n" &
"[GC] occupied memory: " & $(getOccupiedMem()) & "\n" &
"[GC] stack scans: " & $gch.stat.stackScans & "\n" &
"[GC] stack cells: " & $gch.stat.maxStackCells & "\n" &
"[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
"[GC] max threshold: " & $gch.stat.maxThreshold & "\n" &
"[GC] zct capacity: " & $gch.zct.cap & "\n" &
"[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" &
"[GC] max stack size: " & $gch.stat.maxStackSize & "\n" &
"[GC] max pause time [ms]: " & $(gch.stat.maxPause div 1000_000)
when traceGC: writeLeakage(true)
GC_enable()
{.pop.}