#
#
# Nim's Runtime Library
# (c) Copyright 2020 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Integer arithmetic with overflow checking. Uses
# intrinsics or inline assembler.
proc raiseOverflow {.compilerproc, noinline.} =
# a single proc to reduce code size to a minimum
sysFatal(OverflowDefect, "over- or underflow")
proc raiseDivByZero {.compilerproc, noinline.} =
sysFatal(DivByZeroDefect, "division by zero")
{.pragma: nimbaseH, importc, nodecl, noSideEffect, compilerproc.}
when not defined(nimEmulateOverflowChecks):
# take the #define from nimbase.h
proc nimAddInt(a, b: int, res: ptr int): bool {.nimbaseH.}
proc nimSubInt(a, b: int, res: ptr int): bool {.nimbaseH.}
proc nimMulInt(a, b: int, res: ptr int): bool {.nimbaseH.}
proc nimAddInt64(a, b: int64; res: ptr int64): bool {.nimbaseH.}
proc nimSubInt64(a, b: int64; res: ptr int64): bool {.nimbaseH.}
proc nimMulInt64(a, b: int64; res: ptr int64): bool {.nimbaseH.}
# unary minus and 'abs' not required here anymore and are directly handled
# in the code generator.
# 'nimModInt' does exist in nimbase.h without check as we moved the
# check for 0 to the codgen.
proc nimModInt(a, b: int; res: ptr int): bool {.nimbaseH.}
proc nimModInt64(a, b: int64; res: ptr int64): bool {.nimbaseH.}
# Platform independent versions.
template addImplFallback(name, T, U) {.dirty.} =
when not declared(name):
proc name(a, b: T; res: ptr T): bool {.compilerproc, inline.} =
let r = cast[T](cast[U](a) + cast[U](b))
if (r xor a) >= T(0) or (r xor b) >= T(0):
res[] = r
else:
result = true
addImplFallback(nimAddInt, int, uint)
addImplFallback(nimAddInt64, int64, uint64)
template subImplFallback(name, T, U) {.dirty.} =
when not declared(name):
proc name(a, b: T; res: ptr T): bool {.compilerproc, inline.} =
let r = cast[T](cast[U](a) - cast[U](b))
if (r xor a) >= 0 or (r xor not b) >= 0:
res[] = r
else:
result = true
subImplFallback(nimSubInt, int, uint)
subImplFallback(nimSubInt64, int64, uint64)
template mulImplFallback(name, T, U, conv) {.dirty.} =
#
# This code has been inspired by Python's source code.
# The native int product x*y is either exactly right or *way* off, being
# just the last n bits of the true product, where n is the number of bits
# in an int (the delivered product is the true product plus i*2**n for
# some integer i).
#
# The native float64 product x*y is subject to three
# rounding errors: on a sizeof(int)==8 box, each cast to double can lose
# info, and even on a sizeof(int)==4 box, the multiplication can lose info.
# But, unlike the native int product, it's not in *range* trouble: even
# if sizeof(int)==32 (256-bit ints), the product easily fits in the
# dynamic range of a float64. So the leading 50 (or so) bits of the float64
# product are correct.
#
# We check these two ways against each other, and declare victory if
# they're approximately the same. Else, because the native int product is
# the only one that can lose catastrophic amounts of information, it's the
# native int product that must have overflowed.
#
when not declared(name):
proc name(a, b: T; res: ptr T): bool {.compilerproc, inline.} =
let r = cast[T](cast[U](a) * cast[U](b))
let floatProd = conv(a) * conv(b)
let resAsFloat = conv(r)
# Fast path for normal case: small multiplicands, and no info
# is lost in either method.
if resAsFloat == floatProd:
res[] = r
else:
# Somebody somewhere lost info. Close enough, or way off? Note
# that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
# The difference either is or isn't significant compared to the
# true value (of which floatProd is a good approximation).
# abs(diff)/abs(prod) <= 1/32 iff
# 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
res[] = r
else:
result = true
mulImplFallback(nimMulInt, int, uint, toFloat)
mulImplFallback(nimMulInt64, int64, uint64, toBiggestFloat)
template divImplFallback(name, T) {.dirty.} =
proc name(a, b: T; res: ptr T): bool {.compilerproc, inline.} =
# we moved the b == 0 case out into the codegen.
if a == low(T) and b == T(-1):
result = true
else:
res[] = a div b
divImplFallback(nimDivInt, int)
divImplFallback(nimDivInt64, int64)
proc raiseFloatInvalidOp {.compilerproc, noinline.} =
sysFatal(FloatInvalidOpDefect, "FPU operation caused a NaN result")
proc raiseFloatOverflow(x: float64) {.compilerproc, noinline.} =
if x > 0.0:
sysFatal(FloatOverflowDefect, "FPU operation caused an overflow")
else:
sysFatal(FloatUnderflowDefect, "FPU operations caused an underflow")