#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# string & sequence handling procedures needed by the code generator
# strings are dynamically resized, have a length field
# and are zero-terminated, so they can be casted to C
# strings easily
# we don't use refcounts because that's a behaviour
# the programmer may not want
proc resize(old: int): int {.inline.} =
if old <= 0: result = 4
elif old < 65536: result = old * 2
else: result = old * 3 div 2 # for large arrays * 3/2 is better
proc cmpStrings(a, b: NimString): int {.inline, compilerProc.} =
if a == b: return 0
if a == nil: return -1
if b == nil: return 1
let minlen = min(a.len, b.len)
if minlen > 0:
result = c_memcmp(addr a.data, addr b.data, minlen.csize)
if result == 0:
result = a.len - b.len
else:
result = a.len - b.len
proc eqStrings(a, b: NimString): bool {.inline, compilerProc.} =
if a == b: return true
if a == nil or b == nil: return false
return a.len == b.len and
equalMem(addr(a.data), addr(b.data), a.len)
when declared(allocAtomic):
template allocStr(size: untyped): untyped =
cast[NimString](allocAtomic(size))
template allocStrNoInit(size: untyped): untyped =
cast[NimString](boehmAllocAtomic(size))
elif defined(gcRegions):
template allocStr(size: untyped): untyped =
cast[NimString](newStr(addr(strDesc), size, true))
template allocStrNoInit(size: untyped): untyped =
cast[NimString](newStr(addr(strDesc), size, false))
else:
template allocStr(size: untyped): untyped =
cast[NimString](newObj(addr(strDesc), size))
template allocStrNoInit(size: untyped): untyped =
cast[NimString](newObjNoInit(addr(strDesc), size))
proc rawNewStringNoInit(space: int): NimString {.compilerProc.} =
var s = space
if s < 7: s = 7
result = allocStrNoInit(sizeof(TGenericSeq) + s + 1)
result.reserved = s
when defined(gogc):
result.elemSize = 1
proc rawNewString(space: int): NimString {.compilerProc.} =
var s = space
if s < 7: s = 7
result = allocStr(sizeof(TGenericSeq) + s + 1)
result.reserved = s
when defined(gogc):
result.elemSize = 1
proc mnewString(len: int): NimString {.compilerProc.} =
result = rawNewString(len)
result.len = len
proc copyStrLast(s: NimString, start, last: int): NimString {.compilerProc.} =
var start = max(start, 0)
var len = min(last, s.len-1) - start + 1
if len > 0:
result = rawNewStringNoInit(len)
result.len = len
copyMem(addr(result.data), addr(s.data[start]), len)
result.data[len] = '\0'
else:
result = rawNewString(len)
proc copyStr(s: NimString, start: int): NimString {.compilerProc.} =
result = copyStrLast(s, start, s.len-1)
proc toNimStr(str: cstring, len: int): NimString {.compilerProc.} =
result = rawNewStringNoInit(len)
result.len = len
copyMem(addr(result.data), str, len + 1)
proc cstrToNimstr(str: cstring): NimString {.compilerRtl.} =
if str == nil: NimString(nil)
else: toNimStr(str, str.len)
template wasMoved(x: NimString): bool = false
# (x.reserved and seqShallowFlag) != 0
proc copyString(src: NimString): NimString {.compilerRtl.} =
if src != nil:
if (src.reserved and seqShallowFlag) != 0:
result = src
else:
result = rawNewStringNoInit(src.len)
result.len = src.len
copyMem(addr(result.data), addr(src.data), src.len + 1)
sysAssert((seqShallowFlag and result.reserved) == 0, "copyString")
when defined(nimShallowStrings):
if (src.reserved and strlitFlag) != 0:
result.reserved = (result.reserved and not strlitFlag) or seqShallowFlag
proc newOwnedString(src: NimString; n: int): NimString =
result = rawNewStringNoInit(n)
result.len = n
copyMem(addr(result.data), addr(src.data), n)
result.data[n] = '\0'
proc copyStringRC1(src: NimString): NimString {.compilerRtl.} =
if src != nil:
when declared(newObjRC1) and not defined(gcRegions):
var s = src.len
if s < 7: s = 7
result = cast[NimString](newObjRC1(addr(strDesc), sizeof(TGenericSeq) +
s+1))
result.reserved = s
else:
result = rawNewStringNoInit(src.len)
result.len = src.len
copyMem(addr(result.data), addr(src.data), src.len + 1)
sysAssert((seqShallowFlag and result.reserved) == 0, "copyStringRC1")
when defined(nimShallowStrings):
if (src.reserved and strlitFlag) != 0:
result.reserved = (result.reserved and not strlitFlag) or seqShallowFlag
proc copyDeepString(src: NimString): NimString {.inline.} =
if src != nil:
result = rawNewStringNoInit(src.len)
result.len = src.len
copyMem(addr(result.data), addr(src.data), src.len + 1)
proc hashString(s: string): int {.compilerproc.} =
# the compiler needs exactly the same hash function!
# this used to be used for efficient generation of string case statements
var h = 0
for i in 0..len(s)-1:
h = h +% ord(s[i])
h = h +% h shl 10
h = h xor (h shr 6)
h = h +% h shl 3
h = h xor (h shr 11)
h = h +% h shl 15
result = h
proc addChar(s: NimString, c: char): NimString =
# is compilerproc!
result = s
if result.len >= result.space:
let r = resize(result.space)
result = cast[NimString](growObj(result,
sizeof(TGenericSeq) + r + 1))
result.reserved = r
elif wasMoved(s):
result = newOwnedString(s, s.len)
result.data[result.len] = c
result.data[result.len+1] = '\0'
inc(result.len)
# These routines should be used like following:
# <Nim code>
# s &= "Hello " & name & ", how do you feel?"
#
# <generated C code>
# {
# s = resizeString(s, 6 + name->len + 17);
# appendString(s, strLit1);
# appendString(s, strLit2);
# appendString(s, strLit3);
# }
#
# <Nim code>
# s = "Hello " & name & ", how do you feel?"
#
# <generated C code>
# {
# string tmp0;
# tmp0 = rawNewString(6 + name->len + 17);
# appendString(s, strLit1);
# appendString(s, strLit2);
# appendString(s, strLit3);
# s = tmp0;
# }
#
# <Nim code>
# s = ""
#
# <generated C code>
# s = rawNewString(0);
proc resizeString(dest: NimString, addlen: int): NimString {.compilerRtl.} =
if dest.len + addlen <= dest.space and not wasMoved(dest):
result = dest
else: # slow path:
var sp = max(resize(dest.space), dest.len + addlen)
result = cast[NimString](growObj(dest, sizeof(TGenericSeq) + sp + 1))
result.reserved = sp
#result = rawNewString(sp)
#copyMem(result, dest, dest.len + sizeof(TGenericSeq))
# DO NOT UPDATE LEN YET: dest.len = newLen
proc appendString(dest, src: NimString) {.compilerproc, inline.} =
copyMem(addr(dest.data[dest.len]), addr(src.data), src.len + 1)
inc(dest.len, src.len)
proc appendChar(dest: NimString, c: char) {.compilerproc, inline.} =
dest.data[dest.len] = c
dest.data[dest.len+1] = '\0'
inc(dest.len)
proc setLengthStr(s: NimString, newLen: int): NimString {.compilerRtl.} =
var n = max(newLen, 0)
if wasMoved(s):
result = newOwnedString(s, n)
elif n <= s.space:
result = s
else:
result = resizeString(s, n)
result.len = n
result.data[n] = '\0'
# ----------------- sequences ----------------------------------------------
proc incrSeq(seq: PGenericSeq, elemSize: int): PGenericSeq {.compilerProc.} =
# increments the length by one:
# this is needed for supporting ``add``;
#
# add(seq, x) generates:
# seq = incrSeq(seq, sizeof(x));
# seq[seq->len-1] = x;
result = seq
if result.len >= result.space:
let r = resize(result.space)
result = cast[PGenericSeq](growObj(result, elemSize * r +
GenericSeqSize))
result.reserved = r
inc(result.len)
proc incrSeqV2(seq: PGenericSeq, elemSize: int): PGenericSeq {.compilerProc.} =
# incrSeq version 2
result = seq
if result.len >= result.space:
let r = resize(result.space)
result = cast[PGenericSeq](growObj(result, elemSize * r +
GenericSeqSize))
result.reserved = r
proc setLengthSeq(seq: PGenericSeq, elemSize, newLen: int): PGenericSeq {.
compilerRtl, inl.} =
result = seq
if result.space < newLen:
let r = max(resize(result.space), newLen)
result = cast[PGenericSeq](growObj(result, elemSize * r +
GenericSeqSize))
result.reserved = r
elif newLen < result.len:
# we need to decref here, otherwise the GC leaks!
when not defined(boehmGC) and not defined(nogc) and
not defined(gcMarkAndSweep) and not defined(gogc) and
not defined(gcRegions):
when false: # compileOption("gc", "v2"):
for i in newLen..result.len-1:
let len0 = gch.tempStack.len
forAllChildrenAux(cast[pointer](cast[ByteAddress](result) +%
GenericSeqSize +% (i*%elemSize)),
extGetCellType(result).base, waPush)
let len1 = gch.tempStack.len
for i in len0 ..< len1:
doDecRef(gch.tempStack.d[i], LocalHeap, MaybeCyclic)
gch.tempStack.len = len0
else:
if ntfNoRefs notin extGetCellType(result).base.flags:
for i in newLen..result.len-1:
forAllChildrenAux(cast[pointer](cast[ByteAddress](result) +%
GenericSeqSize +% (i*%elemSize)),
extGetCellType(result).base, waZctDecRef)
# XXX: zeroing out the memory can still result in crashes if a wiped-out
# cell is aliased by another pointer (ie proc parameter or a let variable).
# This is a tought problem, because even if we don't zeroMem here, in the
# presence of user defined destructors, the user will expect the cell to be
# "destroyed" thus creating the same problem. We can destoy the cell in the
# finalizer of the sequence, but this makes destruction non-deterministic.
zeroMem(cast[pointer](cast[ByteAddress](result) +% GenericSeqSize +%
(newLen*%elemSize)), (result.len-%newLen) *% elemSize)
result.len = newLen
# --------------- other string routines ----------------------------------
proc add*(result: var string; x: int64) =
let base = result.len
setLen(result, base + sizeof(x)*4)
var i = 0
var y = x
while true:
var d = y div 10
result[base+i] = chr(abs(int(y - d*10)) + ord('0'))
inc(i)
y = d
if y == 0: break
if x < 0:
result[base+i] = '-'
inc(i)
setLen(result, base+i)
# mirror the string:
for j in 0..i div 2 - 1:
swap(result[base+j], result[base+i-j-1])
proc nimIntToStr(x: int): string {.compilerRtl.} =
result = newStringOfCap(sizeof(x)*4)
result.add x
proc add*(result: var string; x: float) =
when nimvm:
result.add $x
else:
var buf: array[0..64, char]
when defined(nimNoArrayToCstringConversion):
var n: int = c_sprintf(addr buf, "%.16g", x)
else:
var n: int = c_sprintf(buf, "%.16g", x)
var hasDot = false
for i in 0..n-1:
if buf[i] == ',':
buf[i] = '.'
hasDot = true
elif buf[i] in {'a'..'z', 'A'..'Z', '.'}:
hasDot = true
if not hasDot:
buf[n] = '.'
buf[n+1] = '0'
buf[n+2] = '\0'
# On Windows nice numbers like '1.#INF', '-1.#INF' or '1.#NAN'
# of '-1.#IND' are produced.
# We want to get rid of these here:
if buf[n-1] in {'n', 'N', 'D', 'd'}:
result.add "nan"
elif buf[n-1] == 'F':
if buf[0] == '-':
result.add "-inf"
else:
result.add "inf"
else:
var i = 0
while buf[i] != '\0':
result.add buf[i]
inc i
proc nimFloatToStr(f: float): string {.compilerproc.} =
result = newStringOfCap(8)
result.add f
proc c_strtod(buf: cstring, endptr: ptr cstring): float64 {.
importc: "strtod", header: "<stdlib.h>", noSideEffect.}
const
IdentChars = {'a'..'z', 'A'..'Z', '0'..'9', '_'}
powtens = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22]
proc nimParseBiggestFloat(s: string, number: var BiggestFloat,
start = 0): int {.compilerProc.} =
# This routine attempt to parse float that can parsed quickly.
# ie whose integer part can fit inside a 53bits integer.
# their real exponent must also be <= 22. If the float doesn't follow
# these restrictions, transform the float into this form:
# INTEGER * 10 ^ exponent and leave the work to standard `strtod()`.
# This avoid the problems of decimal character portability.
# see: http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
var
i = start
sign = 1.0
kdigits, fdigits = 0
exponent: int
integer: uint64
frac_exponent = 0
exp_sign = 1
first_digit = -1
has_sign = false
# Sign?
if s[i] == '+' or s[i] == '-':
has_sign = true
if s[i] == '-':
sign = -1.0
inc(i)
# NaN?
if s[i] == 'N' or s[i] == 'n':
if s[i+1] == 'A' or s[i+1] == 'a':
if s[i+2] == 'N' or s[i+2] == 'n':
if s[i+3] notin IdentChars:
number = NaN
return i+3 - start
return 0
# Inf?
if s[i] == 'I' or s[i] == 'i':
if s[i+1] == 'N' or s[i+1] == 'n':
if s[i+2] == 'F' or s[i+2] == 'f':
if s[i+3] notin IdentChars:
number = Inf*sign
return i+3 - start
return 0
if s[i] in {'0'..'9'}:
first_digit = (s[i].ord - '0'.ord)
# Integer part?
while s[i] in {'0'..'9'}:
inc(kdigits)
integer = integer * 10'u64 + (s[i].ord - '0'.ord).uint64
inc(i)
while s[i] == '_': inc(i)
# Fractional part?
if s[i] == '.':
inc(i)
# if no integer part, Skip leading zeros
if kdigits <= 0:
while s[i] == '0':
inc(frac_exponent)
inc(i)
while s[i] == '_': inc(i)
if first_digit == -1 and s[i] in {'0'..'9'}:
first_digit = (s[i].ord - '0'.ord)
# get fractional part
while s[i] in {'0'..'9'}:
inc(fdigits)
inc(frac_exponent)
integer = integer * 10'u64 + (s[i].ord - '0'.ord).uint64
inc(i)
while s[i] == '_': inc(i)
# if has no digits: return error
if kdigits + fdigits <= 0 and
(i == start or # no char consumed (empty string).
(i == start + 1 and has_sign)): # or only '+' or '-
return 0
if s[i] in {'e', 'E'}:
inc(i)
if s[i] == '+' or s[i] == '-':
if s[i] == '-':
exp_sign = -1
inc(i)
if s[i] notin {'0'..'9'}:
return 0
while s[i] in {'0'..'9'}:
exponent = exponent * 10 + (ord(s[i]) - ord('0'))
inc(i)
while s[i] == '_': inc(i) # underscores are allowed and ignored
var real_exponent = exp_sign*exponent - frac_exponent
let exp_negative = real_exponent < 0
var abs_exponent = abs(real_exponent)
# if exponent greater than can be represented: +/- zero or infinity
if abs_exponent > 999:
if exp_negative:
number = 0.0*sign
else:
number = Inf*sign
return i - start
# if integer is representable in 53 bits: fast path
# max fast path integer is 1<<53 - 1 or 8999999999999999 (16 digits)
let digits = kdigits + fdigits
if digits <= 15 or (digits <= 16 and first_digit <= 8):
# max float power of ten with set bits above the 53th bit is 10^22
if abs_exponent <= 22:
if exp_negative:
number = sign * integer.float / powtens[abs_exponent]
else:
number = sign * integer.float * powtens[abs_exponent]
return i - start
# if exponent is greater try to fit extra exponent above 22 by multiplying
# integer part is there is space left.
let slop = 15 - kdigits - fdigits
if abs_exponent <= 22 + slop and not exp_negative:
number = sign * integer.float * powtens[slop] * powtens[abs_exponent-slop]
return i - start
# if failed: slow path with strtod.
var t: array[500, char] # flaviu says: 325 is the longest reasonable literal
var ti = 0
let maxlen = t.high - "e+000".len # reserve enough space for exponent
result = i - start
i = start
# re-parse without error checking, any error should be handled by the code above.
if s[i] == '.': i.inc
while s[i] in {'0'..'9','+','-'}:
if ti < maxlen:
t[ti] = s[i]; inc(ti)
inc(i)
while s[i] in {'.', '_'}: # skip underscore and decimal point
inc(i)
# insert exponent
t[ti] = 'E'; inc(ti)
t[ti] = (if exp_negative: '-' else: '+'); inc(ti)
inc(ti, 3)
# insert adjusted exponent
t[ti-1] = ('0'.ord + abs_exponent mod 10).char; abs_exponent = abs_exponent div 10
t[ti-2] = ('0'.ord + abs_exponent mod 10).char; abs_exponent = abs_exponent div 10
t[ti-3] = ('0'.ord + abs_exponent mod 10).char
when defined(nimNoArrayToCstringConversion):
number = c_strtod(addr t, nil)
else:
number = c_strtod(t, nil)
proc nimInt64ToStr(x: int64): string {.compilerRtl.} =
result = newStringOfCap(sizeof(x)*4)
result.add x
proc nimBoolToStr(x: bool): string {.compilerRtl.} =
return if x: "true" else: "false"
proc nimCharToStr(x: char): string {.compilerRtl.} =
result = newString(1)
result[0] = x
proc binaryStrSearch(x: openArray[string], y: string): int {.compilerproc.} =
var
a = 0
b = len(x)
while a < b:
var mid = (a + b) div 2
if x[mid] < y:
a = mid + 1
else:
b = mid
if a < len(x) and x[a] == y:
result = a
else:
result = -1